RESUMO
Mammals do not possess the ability to spontaneously repair or regenerate damaged retinal tissue. In contrast to teleost fish which are capable of retina regeneration through the action of Müller glia, mammals undergo a process of reactive gliosis and scarring that inhibits replacement of lost neurons. Thus, it is important to discover novel methods for stimulating mammalian Müller glia to dedifferentiate and produce progenitor cells that can replace lost retinal neurons. Inducing an endogenous regenerative pathway mediated by Müller glia would provide an attractive alternative to stem cell injections or gene therapy approaches. Extracellular vesicles (EVs) are now recognized to serve as a novel form of cell-cell communication through the transfer of cargo from donor to recipient cells or by the activation of signaling cascades in recipient cells. EVs have been shown to promote proliferation and regeneration raising the possibility that delivery of EVs could be a viable treatment for visual disorders. Here, we provide protocols to isolate EVs for use in retina regeneration experiments.
Assuntos
Vesículas Extracelulares , Regeneração , Retina , Animais , Vesículas Extracelulares/metabolismo , Retina/metabolismo , Retina/citologia , Retina/fisiologia , Células Ependimogliais/metabolismo , Células Ependimogliais/citologia , Camundongos , Comunicação Celular , Proliferação de Células , Regeneração Nervosa/fisiologiaRESUMO
Artificial visual system empowered by 2D materials-based hardware simulates the functionalities of the human visual system, leading the forefront of artificial intelligence vision. However, retina-mimicked hardware that has not yet fully emulated the neural circuits of visual pathways is restricted from realizing more complex and special functions. In this work, we proposed a human visual pathway-replicated hardware that consists of crossbar arrays with split floating gate 2D tungsten diselenide (WSe2) unit devices that simulate the retina and visual cortex, and related connective peripheral circuits that replicate connectomics between the retina and visual cortex. This hardware experimentally displays advanced multi-functions of red-green color-blindness processing, low-power shape recognition, and self-driven motion tracking, promoting the development of machine vision, driverless technology, brain-computer interfaces, and intelligent robotics.
Assuntos
Interfaces Cérebro-Computador , Retina , Vias Visuais , Humanos , Vias Visuais/fisiologia , Retina/fisiologia , Córtex Visual/fisiologia , Tungstênio/química , Robótica/instrumentação , Selênio/química , Inteligência ArtificialRESUMO
The retina transforms patterns of light into visual feature representations supporting behaviour. These representations are distributed across various types of retinal ganglion cells (RGCs), whose spatial and temporal tuning properties have been studied extensively in many model organisms, including the mouse. However, it has been difficult to link the potentially nonlinear retinal transformations of natural visual inputs to specific ethological purposes. Here, we discover a nonlinear selectivity to chromatic contrast in an RGC type that allows the detection of changes in visual context. We trained a convolutional neural network (CNN) model on large-scale functional recordings of RGC responses to natural mouse movies, and then used this model to search in silico for stimuli that maximally excite distinct types of RGCs. This procedure predicted centre colour opponency in transient suppressed-by-contrast (tSbC) RGCs, a cell type whose function is being debated. We confirmed experimentally that these cells indeed responded very selectively to Green-OFF, UV-ON contrasts. This type of chromatic contrast was characteristic of transitions from ground to sky in the visual scene, as might be elicited by head or eye movements across the horizon. Because tSbC cells performed best among all RGC types at reliably detecting these transitions, we suggest a role for this RGC type in providing contextual information (i.e. sky or ground) necessary for the selection of appropriate behavioural responses to other stimuli, such as looming objects. Our work showcases how a combination of experiments with natural stimuli and computational modelling allows discovering novel types of stimulus selectivity and identifying their potential ethological relevance.
Assuntos
Células Ganglionares da Retina , Animais , Células Ganglionares da Retina/fisiologia , Camundongos , Estimulação Luminosa , Retina/fisiologia , Percepção de Cores/fisiologia , Redes Neurais de Computação , Camundongos Endogâmicos C57BLRESUMO
The neuromorphic vision system that utilizes spikes as information carriers is crucial for the formation of spiking neural networks. Here, we present a bioinspired flexible artificial spiking photoreceptor (ASP), which is realized by using a single VO2 Mott memristor that can simultaneously sense and encode the stimulus light into spikes. The ASP has high spike-encoded photosensitivity and ultrawide photosensing range (405-808 nm) with good endurance (>7 × 107) and high flexibility (bending radius â¼5 mm). Then, we put forward an all-spike electronic retina architecture that comprises one layer of ASPs and one layer of artificial optical nerves (AONs) to process the spike information. Each AON consists of a single Mott memristor connected in series with a neuro-transistor that is a multiple-input floating-gate MOS transistor. Simulation results demonstrate that the all-spike electronic retina can successfully segment images with high Shannon entropy, thus laying the foundation for the development of a spike-based neuromorphic vision system.
Assuntos
Redes Neurais de Computação , Retina/fisiologia , Transistores EletrônicosRESUMO
Adaptation in cone photoreceptors allows our visual system to effectively operate over an enormous range of light intensities. However, little is known about the properties of cone adaptation in the specialized region of the primate central retina called the fovea, which is densely packed with cones and mediates high-acuity central vision. Here we show that macaque foveal cones exhibit weaker and slower luminance adaptation compared to cones in the peripheral retina. We find that this difference in adaptive properties between foveal and peripheral cones is due to differences in the magnitude of a hyperpolarization-activated current, Ih. This Ih current regulates the strength and time course of luminance adaptation in peripheral cones where it is more prominent than in foveal cones. A weaker and slower adaptation in foveal cones helps maintain a higher sensitivity for a longer duration which may be well-suited for maximizing the collection of high-acuity information at the fovea during gaze fixation between rapid eye movements.
Assuntos
Fóvea Central , Retina , Células Fotorreceptoras Retinianas Cones , Animais , Células Fotorreceptoras Retinianas Cones/fisiologia , Fóvea Central/fisiologia , Retina/fisiologia , Macaca mulatta , Adaptação Ocular/fisiologia , Masculino , Estimulação LuminosaRESUMO
In this issue of the Journal of Experimental Medicine, Cao et al. (https://doi.org/10.1084/jem.20240386) demonstrate that the connection between the eye and the brain goes beyond the impulses carried by the optic nerve and that in Alzheimer's disease (AD), the influx of toxic Aß from the brain to the retina underlies AD-induced retinal degeneration.
Assuntos
Doença de Alzheimer , Encéfalo , Humanos , Encéfalo/fisiologia , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/patologia , Potenciais de Ação/fisiologia , Olho/metabolismo , Peptídeos beta-Amiloides/metabolismo , Retina/metabolismo , Retina/fisiologia , Nervo Óptico/patologia , Nervo Óptico/metabolismo , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologiaRESUMO
Changes in synaptic strength across timescales are integral to algorithmic operations of neural circuits. However, pinpointing synaptic loci that undergo plasticity in intact brain circuits and delineating contributions of synaptic plasticity to circuit function remain challenging. The whole-mount retina preparation provides an accessible platform for measuring plasticity at specific synapses while monitoring circuit-level behaviors during visual processing ex vivo. In this review, we discuss insights gained from retina studies into the versatile roles of short-term synaptic plasticity in context-dependent circuit functions. Plasticity at single synapse level greatly expands the algorithms of common microcircuit motifs and contributes to diverse circuit-level behaviors such as gain modulation, selective gating, and stimulus-dependent excitatory/inhibitory balance. Examples in retinal circuitry offer unequivocal support that synaptic plasticity increases the computational capacity of hardwired neural circuitry.
Assuntos
Plasticidade Neuronal , Retina , Sinapses , Plasticidade Neuronal/fisiologia , Retina/fisiologia , Animais , Humanos , Sinapses/fisiologia , Rede Nervosa/fisiologiaRESUMO
The retina transforms light into electrical signals, which are sent to the brain via the optic nerve to form our visual perception. This complex signal processing is performed by the retinal neuron and requires a significant amount of energy. Since neurons are unable to store energy, they must obtain glucose and oxygen from the bloodstream to produce energy to match metabolic needs. This process is called neurovascular coupling (NVC), and it is based on a precise mechanism that is not totally understood. The discovery of fine tubular processes termed tunnelling nanotubes (TNTs) set a new type of cell-to-cell communication. TNTs are extensions of the cellular membrane that allow the transfer of material between connected cells. Recently, they have been reported in the brain and retina of living mice, where they connect pericytes, which are vascular mural cells that regulate vessel diameter. Accordingly, these TNTs were termed interpericyte tunnelling nanotubes (IPTNTs), which showed a vital role in blood delivery and NVC. In this chapter, we review the involvement of TNTs in NVC and discuss their implications in retinal neurodegeneration.
Assuntos
Comunicação Celular , Retina , Animais , Humanos , Retina/fisiologia , Comunicação Celular/fisiologia , Pericitos/fisiologia , Nanotubos , Camundongos , Acoplamento Neurovascular/fisiologia , Vasos Retinianos/fisiologia , Estruturas da Membrana CelularRESUMO
Fixational eye movements alter the number and timing of spikes transmitted from the retina to the brain, but whether these changes enhance or degrade the retinal signal is unclear. To quantify this, we developed a Bayesian method for reconstructing natural images from the recorded spikes of hundreds of retinal ganglion cells (RGCs) in the macaque retina (male), combining a likelihood model for RGC light responses with the natural image prior implicitly embedded in an artificial neural network optimized for denoising. The method matched or surpassed the performance of previous reconstruction algorithms, and provides an interpretable framework for characterizing the retinal signal. Reconstructions were improved with artificial stimulus jitter that emulated fixational eye movements, even when the eye movement trajectory was assumed to be unknown and had to be inferred from retinal spikes. Reconstructions were degraded by small artificial perturbations of spike times, revealing more precise temporal encoding than suggested by previous studies. Finally, reconstructions were substantially degraded when derived from a model that ignored cell-to-cell interactions, indicating the importance of stimulus-evoked correlations. Thus, fixational eye movements enhance the precision of the retinal representation.
Assuntos
Movimentos Oculares , Fixação Ocular , Retina , Células Ganglionares da Retina , Animais , Células Ganglionares da Retina/fisiologia , Retina/fisiologia , Movimentos Oculares/fisiologia , Masculino , Fixação Ocular/fisiologia , Macaca mulatta , Teorema de Bayes , Algoritmos , Potenciais de Ação/fisiologia , Estimulação Luminosa , Modelos NeurológicosRESUMO
The Pattern Electroretinogram (PERG) is an essential tool in ophthalmic electrophysiology, providing an objective assessment of the central retinal function. It quantifies the activity of cells in the macula and the ganglion cells of the retina, assisting in the differentiation of macular and optic nerve conditions. In this study, we present the IOBA-PERG dataset, an extensive collection of 1354 transient PERG responses accessible on the PhysioNet repository. These recordings were conducted at the Institute of Applied Ophthalmobiology (IOBA) at University of Valladolid, over an extended period spanning nearly two decades, from 2003 to 2022. The dataset includes 336 records, ensuring at least one PERG signal per eye. The dataset thoughtfully includes demographic and clinical data, comprising information such as age, gender, visual acuity measurements, and expert diagnoses. This comprehensive dataset fills a gap in ocular electrophysiological repositories, enhancing ophthalmology research. Researchers can explore a broad range of eye-related conditions and diseases, leading to enhanced diagnostic accuracy, innovative treatment strategies, methodological advancements, and a deeper understanding of ocular electrophysiology.
Assuntos
Eletrorretinografia , Retina , Humanos , Retina/fisiologia , Masculino , Feminino , AdultoRESUMO
Synaptotagmin-9 (Syt9) is a Ca2+ sensor mediating fast synaptic release expressed in various parts of the brain. The presence and role of Syt9 in retina is unknown. We found evidence for Syt9 expression throughout the retina and created mice to conditionally eliminate Syt9 in a cre-dependent manner. We crossed Syt9fl/fl mice with Rho-iCre, HRGP-Cre, and CMV-Cre mice to generate mice in which Syt9 was eliminated from rods (rodSyt9CKO), cones (coneSyt9CKO), or whole animals (CMVSyt9). CMVSyt9 mice showed an increase in scotopic electroretinogram (ERG) b-waves evoked by bright flashes with no change in a-waves. Cone-driven photopic ERG b-waves were not significantly different in CMVSyt9 knockout mice and selective elimination of Syt9 from cones had no effect on ERGs. However, selective elimination from rods decreased scotopic and photopic b-waves as well as oscillatory potentials. These changes occurred only with bright flashes where cone responses contribute. Synaptic release was measured in individual rods by recording anion currents activated by glutamate binding to presynaptic glutamate transporters. Loss of Syt9 from rods had no effect on spontaneous or depolarization-evoked release. Our data show that Syt9 acts at multiple sites in the retina and suggest that it may play a role in regulating transmission of cone signals by rods.
Assuntos
Eletrorretinografia , Camundongos Knockout , Retina , Células Fotorreceptoras Retinianas Cones , Células Fotorreceptoras Retinianas Bastonetes , Sinaptotagminas , Animais , Sinaptotagminas/metabolismo , Sinaptotagminas/genética , Retina/metabolismo , Retina/fisiologia , Camundongos , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Estimulação Luminosa , Camundongos Endogâmicos C57BLRESUMO
The retina is an ideal model for understanding the fundamental rules for how neural networks are constructed. The compact neural networks of the retina perform all of the initial processing of visual information before transmission to higher visual centers in the brain. The field of retinal connectomics uses high-resolution electron microscopy datasets to map the intricate organization of these networks and further our understanding of how these computations are performed by revealing the fundamental topologies and allowable networks behind retinal computations. In this article, we review some of the notable advances that retinal connectomics has provided in our understanding of the specific cells and the organization of their connectivities within the retina, as well as how these are shaped in development and break down in disease. Using these anatomical maps to inform modeling has been, and will continue to be, instrumental in understanding how the retina processes visual signals.
Assuntos
Conectoma , Retina , Humanos , Retina/fisiologia , Animais , Vias Visuais/fisiologia , Rede Nervosa/fisiologiaRESUMO
Recent advancements in artificial intelligence (AI) have prompted researchers to expand into the field of oculomics; the association between the retina and systemic health. Unlike conventional AI models trained on well-recognized retinal features, the retinal phenotypes that most oculomics models use are more subtle. Consequently, applying conventional tools, such as saliency maps, to understand how oculomics models arrive at their inference is problematic and open to bias. We hypothesized that neuron activation patterns (NAPs) could be an alternative way to interpret oculomics models, but currently, most existing implementations focus on failure diagnosis. In this study, we designed a novel NAP framework to interpret an oculomics model. We then applied our framework to an AI model predicting systolic blood pressure from fundus images in the United Kingdom Biobank dataset. We found that the NAP generated from our framework was correlated to the clinically relevant endpoint of cardiovascular risk. Our NAP was also able to discern two biologically distinct groups among participants who were assigned the same predicted systolic blood pressure. These results demonstrate the feasibility of our proposed NAP framework for gaining deeper insights into the functioning of oculomics models. Further work is required to validate these results on external datasets.
Assuntos
Inteligência Artificial , Humanos , Neurônios/fisiologia , Pressão Sanguínea/fisiologia , Masculino , Feminino , Reino Unido , Retina/fisiologia , Pessoa de Meia-IdadeRESUMO
Spatially nonlinear stimulus integration by retinal ganglion cells lies at the heart of various computations performed by the retina. It arises from the nonlinear transmission of signals that ganglion cells receive from bipolar cells, which thereby constitute functional subunits within a ganglion cell's receptive field. Inferring these subunits from recorded ganglion cell activity promises a new avenue for studying the functional architecture of the retina. This calls for efficient methods, which leave sufficient experimental time to leverage the acquired knowledge for further investigating identified subunits. Here, we combine concepts from super-resolution microscopy and computed tomography and introduce super-resolved tomographic reconstruction (STR) as a technique to efficiently stimulate and locate receptive field subunits. Simulations demonstrate that this approach can reliably identify subunits across a wide range of model variations, and application in recordings of primate parasol ganglion cells validates the experimental feasibility. STR can potentially reveal comprehensive subunit layouts within only a few tens of minutes of recording time, making it ideal for online analysis and closed-loop investigations of receptive field substructure in retina recordings.
Assuntos
Retina , Células Ganglionares da Retina , Animais , Células Ganglionares da Retina/fisiologia , Retina/fisiologia , Retina/diagnóstico por imagem , Biologia Computacional , Tomografia Computadorizada por Raios X/métodos , Simulação por Computador , Modelos NeurológicosRESUMO
Purpose: To determine the acute effect of caffeine intake on the retinal responses as measured with a global-flash multifocal electroretinogram (gfmERG) protocol at different contrast levels. Methods: Twenty-four young adults (age = 23.3 ± 2.4 years) participated in this placebo-controlled, double-masked, balanced crossover study. On two different days, participants orally ingested caffeine (300 mg) or placebo, and retinal responses were recorded 90 minutes later using a gfmERG at three contrast levels (95%, 50%, and 29%). The amplitude response density and peak time of the direct and induced components (direct component [DC] and induced component [IC], respectively) were extracted for five different eccentricities (1.3°, 5.0°, 9.6°, 15.2°, and 21.9°). Axial length, spherical equivalent refraction, habitual caffeine intake, and body weight were considered as continuous covariates. Results: Increased IC amplitude response density was found after caffeine ingestion in comparison to placebo (P = 0.021, Æp2 = 0.23), specifically for the 95% and 50% stimulus contrasts (P = 0.024 and 0.018, respectively). This effect of caffeine on IC amplitude response density was independent of the retinal eccentricity (P = 0.556). Caffeine had no effect on DC amplitude response density or DC and IC peak times. Conclusions: Our results show that oral caffeine intake increases the inner electro-retinal activity in young adults when viewing stimuli of high- (95%) to medium-contrast (50%). Given the increasing evidence that the inner retinal function is involved in the emmetropization process, these results may suggest that caffeine or its derivatives could potentially play a role in the mechanisms involved in eye growth.
Assuntos
Cafeína , Estudos Cross-Over , Eletrorretinografia , Humanos , Cafeína/administração & dosagem , Método Duplo-Cego , Masculino , Adulto Jovem , Feminino , Eletrorretinografia/efeitos dos fármacos , Administração Oral , Adulto , Retina/efeitos dos fármacos , Retina/fisiologia , Estimulantes do Sistema Nervoso Central/administração & dosagem , Estimulantes do Sistema Nervoso Central/farmacologia , Estimulação Luminosa , Sensibilidades de Contraste/fisiologia , Sensibilidades de Contraste/efeitos dos fármacosRESUMO
The preferred retinal locus (PRL) is the position on the retina to which humans direct stimuli during fixation. In healthy normal eyes, it has been shown to be very stable across time and between different tasks. Previous measurements of the PRL have been made under monocular viewing conditions. The current study examines where the PRLs in the two eyes' retinas are when subjects fixate binocularly and whether they shift when the demand for the eyes to converge is changed. Our apparatus allows us to see exactly where binocular stimuli fell on the two retinas during binocular fixation. Thus, our technique bypasses some of the issues involved in measuring binocular alignment with subjective techniques and previous objective techniques that use conventional eye trackers. These results show that PRLs shift slightly but systematically as the demand for convergence increases. The shifts cause under-convergence (also called exo fixation disparity) for near targets. They are not large enough to cause a break in binocular fusion. The fixation disparity we observed with increasing vergence demand is similar to fixation disparity observed in previous reports.
Assuntos
Fixação Ocular , Retina , Visão Binocular , Humanos , Visão Binocular/fisiologia , Fixação Ocular/fisiologia , Retina/fisiologia , Convergência Ocular/fisiologia , Disparidade Visual/fisiologia , Estimulação Luminosa/métodos , AdultoRESUMO
Synapse formation within the retinal circuit ensures that distinct neuronal types can communicate efficiently to process visual signals. Synapses thus form the core of the visual computations performed by the retinal circuit. Retinal synapses are diverse but can be broadly categorized into multipartner ribbon synapses and 1:1 conventional synapses. In this article, we review our current understanding of the cellular and molecular mechanisms that regulate the functional establishment of mammalian retinal synapses, including the role of adhesion proteins, synaptic proteins, extracellular matrix and cytoskeletal-associated proteins, and activity-dependent cues. We outline future directions and areas of research that will expand our knowledge of these mechanisms. Understanding the regulators moderating synapse formation and function not only reveals the integrated developmental processes that establish retinal circuits, but also divulges the identity of mechanisms that could be engaged during disease and degeneration.
Assuntos
Retina , Sinapses , Sinapses/fisiologia , Animais , Retina/fisiologia , HumanosRESUMO
Human eyes' optical components are misaligned. This study presents comprehensive geometric constructions in the binocular system, with the eye model incorporating the fovea that is displaced from the posterior pole and the lens that is tilted away from the eye's optical axis. It extends their previously considered horizontal misalignment with the vertical components. When the eyes' binocular posture changes, 3D spatial coordinates of the retinal disparity (iso-disparity curves), the subjective vertical horopter, and the eye's torsional orientation transformations are visualized in GeoGebra's simulations. The consequences and functional roles of vertical misalignment of the eye's optical components are explained in the following findings: (1) The classic Helmholtz theory, which states that the subjective vertical retinal meridian inclination to the retinal horizon explains the backward tilt of the perceived vertical horopter, is less relevant when the eye's optical components are misaligned. Instead, the lens vertical tilt provides the retinal vertical criterion that explains the experimentally measured vertical horopter inclination. (2) Listing's law, which originally restricts single-eye torsional positions and has imprecise binocular extensions, is formulated for binocular fixations using Euler's rotation theorem. It, however, replaces Listing's plane, which is defined for eyes looking at infinity, with the eyes muscles' natural tonus resting position corresponding to the abathic distance fixation of empirical straight frontal horopter. This new meaning of Listing's plane provides neurophysiological significance that has remained elusive.
Assuntos
Percepção de Profundidade , Visão Binocular , Humanos , Visão Binocular/fisiologia , Percepção de Profundidade/fisiologia , Disparidade Visual/fisiologia , Retina/fisiologiaRESUMO
Event-based imaging represents a new paradigm in visual information processing that addresses the speed and energy efficiency shortcomings inherently present in the current complementary metal oxide semiconductor-based machine vision. Realizing such imaging systems has previously been sought using very large-scale integration technologies that have complex circuitries consisting of many photodiodes, differential amplifiers, capacitors, and resistors. Here, we demonstrate that event-driven sensing can be achieved using a simple one-resistor, one-capacitor (1R1C) circuit, where the capacitor is modified with colloidal quantum dots (CQDs) to have a photoresponse. This sensory circuit emulates the motion-tracking function of the biological retina, in which the amacrine cells in the bipolar-to-ganglion synaptic pathway produce a transient spiking signal only in response to changes in light intensity but remain inactive under constant illumination. When extended to a 2D imaging array, the individual sensors work independently and output signals only when a change in the light intensity is detected; hence, the concept of the frame in image processing is thereby removed. In this work, we present the fabrication and characterization of a CQD photocapacitor-based 1R1C circuit that has a spectral response at 1550 nm in the short-wave infrared (SWIR). We report on the key performance parameters including peak responsivity, noise, and optical noise equivalent power and discuss the operating mechanism that is responsible for spiking responses in these artificial retinal circuits. The present work sets the foundation for expanding the bioinspired vision sensor capability toward midwave infrared (MWIR) and long-wave infrared (LWIR) spectral regions that are invisible to human eyes and mainstream semiconductor technologies.