Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
RNA ; 30(9): 1199-1212, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38876504

RESUMO

The spliceosome performs two consecutive transesterification reactions using one catalytic center, thus requiring its rearrangement between the two catalytic steps of splicing. The Prp16 ATPase facilitates exit from the first-step conformation of the catalytic center by destabilizing some interactions important for catalysis. To better understand rearrangements within the Saccharomyces cerevisiae catalytic center, we characterize factors that modulate the function of Prp16: Cwc2, N-terminal domain of Prp8, and U6-41AACAAU46 region. Alleles of these factors were identified through genetic screens for mutants that correct cs defects of prp16-302 alleles. Several of the identified U6, cwc2, and prp8 alleles are located in close proximity of each other in cryo-EM structures of the spliceosomal catalytic conformations. Cwc2 and U6 interact with the intron sequences in the first step, but they do not seem to contribute to the stability of the second-step catalytic center. On the other hand, the N-terminal segment of Prp8 not only affects intron positioning for the first step, but it also makes important contacts in the proximity of the active site for both the first and second steps of splicing. By identifying interactions important for the stability of catalytic conformations, our genetic analyses indirectly inform us about features of the transition-state conformation of the spliceosome.


Assuntos
Fatores de Processamento de RNA , Splicing de RNA , RNA Nuclear Pequeno , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Spliceossomos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , RNA Nuclear Pequeno/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Spliceossomos/metabolismo , Spliceossomos/genética , Fatores de Processamento de RNA/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/química , Íntrons/genética , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/genética , Ribonucleoproteína Nuclear Pequena U4-U6/química , Microscopia Crioeletrônica , Mutação , Ligação Proteica , Domínio Catalítico , Alelos , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/química , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/química , Proteínas de Ligação a RNA , Ribonucleoproteína Nuclear Pequena U5 , RNA Helicases
2.
Zhonghua Gan Zang Bing Za Zhi ; 32(4): 318-324, 2024 Apr 20.
Artigo em Chinês | MEDLINE | ID: mdl-38733186

RESUMO

Objective: To explore the antiviral activity of the small-molecule compound AM679 in hepatitis B virus (HBV) replication and infection cell models. Methods: The positive regulatory effect of AM679 on EFTUD2 expression was validated by qPCR and Western blotting. HepAD38 and HepG2-NTCP cells were treated with AM679 (0.5, 1, and 2 nmol/L). Negative control, positive control, and AM679 combined with the entecavir group were set up. HBV DNA intra-and extracellularly, as well as the expression levels of intracellular HBV total RNAs and 3.5kb-RNA changes, were detected with qPCR. Hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg) levels were measured in the cell supernatant by an enzyme-linked immunosorbent assay (ELISA). The t-test method was used for the statistical analysis of the mean difference between groups. Results: EFTUD2 mRNA and protein expression levels were significantly increased in HepAD38 and HepG2-NTCP cells following AM679 treatment, with a statistically significant difference (P < 0.001). Intra-and extracellular indicators such as HBV DNA, HBV RNAs, HBV 3.5kb-RNA, HBsAg, and HBeAg were decreased to varying degrees in both cell models, and the decrease in these indicators was more pronounced with the increase in AM679 concentration and prolonged treatment duration, while the combined use of AM679 and entecavir had a more significant antiviral effect. The HBV DNA inhibition rates in the supernatant of HepAD38 cells with the use of 2 nmol/L AM679 were 21% and 48% on days three and nine, respectively. The AM679 combined with the ETV treatment group had the most significant inhibitory effect (62%), with a P < 0.01. More active HBV replication was observed after silencing EFTUD2, while the antiviral activity of AM679 was significantly weakened. Conclusion: AM679 exerts anti-HBV activity in vitro by targeting the regulation of EFTUD2 expression.


Assuntos
Antivirais , Vírus da Hepatite B , Replicação Viral , Humanos , Antivirais/farmacologia , DNA Viral , Guanina/análogos & derivados , Células Hep G2 , Antígenos E da Hepatite B/metabolismo , Antígenos de Superfície da Hepatite B/metabolismo , Vírus da Hepatite B/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Indóis/química , Indóis/farmacologia , Ácidos Pentanoicos/química , Ácidos Pentanoicos/farmacologia , Fatores de Alongamento de Peptídeos/antagonistas & inibidores , Fatores de Alongamento de Peptídeos/metabolismo , Ribonucleoproteína Nuclear Pequena U5/antagonistas & inibidores , Ribonucleoproteína Nuclear Pequena U5/metabolismo
3.
Mol Genet Genomic Med ; 12(4): e2426, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38562046

RESUMO

BACKGROUND: Mandibulofacial dysostosis with microcephaly (MFDM, OMIM# 610536) is a rare monogenic disease that is caused by a mutation in the elongation factor Tu GTP binding domain containing 2 gene (EFTUD2, OMIM* 603892). It is characterized by mandibulofacial dysplasia, microcephaly, malformed ears, cleft palate, growth and intellectual disability. MFDM can be easily misdiagnosed due to its phenotypic overlap with other craniofacial dysostosis syndromes. The clinical presentation of MFDM is highly variable among patients. METHODS: A patient with craniofacial anomalies was enrolled and evaluated by a multidisciplinary team. To make a definitive diagnosis, whole-exome sequencing was performed, followed by validation by Sanger sequencing. RESULTS: The patient presented with extensive facial bone dysostosis, upward slanting palpebral fissures, outer and middle ear malformation, a previously unreported orbit anomaly, and spina bifida occulta. A novel, pathogenic insertion mutation (c.215_216insT: p.Tyr73Valfs*4) in EFTUD2 was identified as the likely cause of the disease. CONCLUSIONS: We diagnosed this atypical case of MFDM by the detection of a novel pathogenetic mutation in EFTUD2. We also observed previously unreported features. These findings enrich both the genotypic and phenotypic spectrum of MFDM.


Assuntos
Deficiência Intelectual , Disostose Mandibulofacial , Microcefalia , Humanos , Microcefalia/patologia , Disostose Mandibulofacial/genética , Disostose Mandibulofacial/patologia , Fenótipo , Mutação , Deficiência Intelectual/genética , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Ribonucleoproteína Nuclear Pequena U5/genética , Ribonucleoproteína Nuclear Pequena U5/metabolismo
4.
Nat Struct Mol Biol ; 31(5): 752-756, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38467877

RESUMO

The 20S U5 small nuclear ribonucleoprotein particle (snRNP) is a 17-subunit RNA-protein complex and a precursor of the U4/U6.U5 tri-snRNP, the major building block of the precatalytic spliceosome. CD2BP2 is a hallmark protein of the 20S U5 snRNP, absent from the mature tri-snRNP. Here we report a high-resolution cryogenic electron microscopy structure of the 20S U5 snRNP, shedding light on the mutually exclusive interfaces utilized during tri-snRNP assembly and the role of the CD2BP2 in facilitating this process.


Assuntos
Microscopia Crioeletrônica , Modelos Moleculares , Ribonucleoproteína Nuclear Pequena U5 , Humanos , Ribonucleoproteína Nuclear Pequena U5/química , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Spliceossomos/metabolismo , Spliceossomos/química , Spliceossomos/ultraestrutura , Conformação Proteica , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química
5.
Nat Struct Mol Biol ; 31(5): 747-751, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38467876

RESUMO

Pre-mRNA splicing by the spliceosome requires the biogenesis and recycling of its small nuclear ribonucleoprotein (snRNP) complexes, which are consumed in each round of splicing. The human U5 snRNP is the ~1 MDa 'heart' of the spliceosome and is recycled through an unknown mechanism involving major architectural rearrangements and the dedicated chaperones CD2BP2 and TSSC4. Late steps in U5 snRNP biogenesis similarly involve these chaperones. Here we report cryo-electron microscopy structures of four human U5 snRNP-CD2BP2-TSSC4 complexes, revealing how a series of molecular events primes the U5 snRNP to generate the ~2 MDa U4/U6.U5 tri-snRNP, the largest building block of the spliceosome.


Assuntos
Microscopia Crioeletrônica , Modelos Moleculares , Ribonucleoproteína Nuclear Pequena U5 , Spliceossomos , Humanos , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Ribonucleoproteína Nuclear Pequena U5/química , Ribonucleoproteína Nuclear Pequena U5/genética , Spliceossomos/metabolismo , Spliceossomos/química , Spliceossomos/ultraestrutura , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Conformação Proteica , Splicing de RNA , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética
6.
Nucleic Acids Res ; 52(5): 2093-2111, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38303573

RESUMO

Co-transcriptional processing of nascent pre-mRNAs by the spliceosome is vital to regulating gene expression and maintaining genome integrity. Here, we show that the deficiency of functional U5 small nuclear ribonucleoprotein particles (snRNPs) in Drosophila imaginal cells causes extensive transcriptome remodeling and accumulation of highly mutagenic R-loops, triggering a robust stress response and cell cycle arrest. Despite compromised proliferative capacity, the U5 snRNP-deficient cells increased protein translation and cell size, causing intra-organ growth disbalance before being gradually eliminated via apoptosis. We identify the Xrp1-Irbp18 heterodimer as the primary driver of transcriptional and cellular stress program downstream of U5 snRNP malfunction. Knockdown of Xrp1 or Irbp18 in U5 snRNP-deficient cells attenuated JNK and p53 activity, restored normal cell cycle progression and growth, and inhibited cell death. Reducing Xrp1-Irbp18, however, did not rescue the splicing defects, highlighting the requirement of accurate splicing for cellular and tissue homeostasis. Our work provides novel insights into the crosstalk between splicing and the DNA damage response and defines the Xrp1-Irbp18 heterodimer as a critical sensor of spliceosome malfunction and mediator of the stress-induced cellular senescence program.


The removal of introns and the joining of exons into mature mRNA by the spliceosome is crucial in regulating gene expression, simultaneously safeguarding genome integrity and enhancing proteome diversity in multicellular organisms. Spliceosome dysfunction is thus associated with various diseases and organismal aging. Our study describes the cascade of events in response to spliceosome dysfunction. We identified two transcription factors as drivers of a stress response program triggered by spliceosome dysfunction, which dramatically remodel gene expression to protect tissue integrity and induce a senescent-like state in damaged cells prior to their inevitable elimination. Together, we highlight the indispensable role of spliceosomes in maintaining homeostasis and implicate spliceosome dysfunction in senescent cell accumulation associated with the pathomechanisms of spliceopathies and aging.


Assuntos
Proteínas de Ligação a DNA , Ribonucleoproteína Nuclear Pequena U5 , Spliceossomos , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA/genética , Spliceossomos/genética , Spliceossomos/metabolismo , Animais , Drosophila melanogaster , Proteínas de Ligação a DNA/metabolismo
7.
Sci Total Environ ; 919: 170892, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38346650

RESUMO

Alternative splicing (AS), found in approximately 95 % of human genes, significantly amplifies protein diversity and is implicated in disease pathogenesis when dysregulated. However, the precise involvement of AS in the toxic mechanisms induced by TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) remains incompletely elucidated. This study conducted a thorough global AS analysis in six human cell lines following TCDD exposure. Our findings revealed that environmentally relevant concentration (0.1 nM) of TCDD significantly suppressed AS events in all cell types, notably inhibiting diverse splicing events and reducing transcript diversity, potentially attributed to modifications in the splicing patterns of the inhibitory factor family, particularly hnRNP. And we identified 151 genes with substantial AS alterations shared among these cell types, particularly enriched in immune and metabolic pathways. Moreover, TCDD induced cell-specific changes in splicing patterns and transcript levels, with increased sensitivity notably in THP-1 monocyte, potentially linked to aberrant expression of pivotal genes within the spliceosome pathway (DDX5, EFTUD2, PUF60, RBM25, SRSF1, and CRNKL1). This study extends our understanding of disrupted alternative splicing and its relation to the multisystem toxicity of TCDD. It sheds light on how environmental toxins affect post-transcriptional regulatory processes, offering a fresh perspective for toxicology and disease etiology investigations.


Assuntos
Dibenzodioxinas Policloradas , Humanos , Dibenzodioxinas Policloradas/toxicidade , Processamento Alternativo , Fatores de Processamento de Serina-Arginina , Fatores de Alongamento de Peptídeos , Ribonucleoproteína Nuclear Pequena U5
8.
J Exp Clin Cancer Res ; 43(1): 7, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38163859

RESUMO

BACKGROUND: Chemoresistance presents a significant obstacle in the treatment of colorectal cancer (CRC), yet the molecular basis underlying CRC chemoresistance remains poorly understood, impeding the development of new therapeutic interventions. Elongation factor Tu GTP binding domain containing 2 (EFTUD2) has emerged as a potential oncogenic factor implicated in various cancer types, where it fosters tumor growth and survival. However, its specific role in modulating the sensitivity of CRC cells to chemotherapy is still unclear. METHODS: Public dataset analysis and in-house sample validation were conducted to assess the expression of EFTUD2 in 5-fluorouracil (5-FU) chemotherapy-resistant CRC cells and the potential of EFTUD2 as a prognostic indicator for CRC. Experiments both in vitro, including MTT assay, EdU cell proliferation assay, TUNEL assay, and clone formation assay and in vivo, using cell-derived xenograft models, were performed to elucidate the function of EFTUD2 in sensitivity of CRC cells to 5-FU treatment. The molecular mechanism on the reciprocal regulation between EFTUD2 and the oncogenic transcription factor c-MYC was investigated through molecular docking, ubiquitination assay, chromatin immunoprecipitation (ChIP), dual luciferase reporter assay, and co-immunoprecipitation (Co-IP). RESULTS: We found that EFTUD2 expression was positively correlated with 5-FU resistance, higher pathological grade, and poor prognosis in CRC patients. We also demonstrated both in vitro and in vivo that knockdown of EFTUD2 sensitized CRC cells to 5-FU treatment, whereas overexpression of EFTUD2 impaired such sensitivity. Mechanistically, we uncovered that EFTUD2 physically interacted with and stabilized c-MYC protein by preventing its ubiquitin-mediated proteasomal degradation. Intriguingly, we found that c-MYC directly bound to the promoter region of EFTUD2 gene, activating its transcription. Leveraging rescue experiments, we further confirmed that the effect of EFTUD2 on 5-FU resistance was dependent on c-MYC stabilization. CONCLUSION: Our findings revealed a positive feedback loop involving an EFTUD2/c-MYC axis that hampers the efficacy of 5-FU chemotherapy in CRC cells by increasing EFTUD2 transcription and stabilizing c-MYC oncoprotein. This study highlights the potential of EFTUD2 as a promising therapeutic target to surmount chemotherapy resistance in CRC patients.


Assuntos
Neoplasias Colorretais , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Linhagem Celular Tumoral , Retroalimentação , Simulação de Acoplamento Molecular , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Resistencia a Medicamentos Antineoplásicos/genética , Proliferação de Células , Fatores de Alongamento de Peptídeos/genética , Ribonucleoproteína Nuclear Pequena U5/genética , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Ribonucleoproteína Nuclear Pequena U5/farmacologia
9.
J Ultrasound Med ; 43(3): 491-499, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38164991

RESUMO

OBJECTIVE: To prospectively evaluate the prognosis of fetuses diagnosed with micrognathia using prenatal ultrasound screening. METHODS: Between January 2019 and December 2022, a normal range of IFA to evaluate the facial profile in fetuses with micrognathia in a Chinese population between 11 and 20 gestational weeks was established, and the pregnancy outcomes of fetal micrognathia were described. The medical records of these pregnancies were collected, including family history, maternal demographics, sonographic findings, genetic testing results, and pregnancy outcomes. RESULTS: Ultrasound identified 25 patients with fetal micrognathia, with a mean IFA value of 43.6°. All cases of isolated fetal micrognathia in the initial scans were non-isolated in the following scans. A total of 78.9% (15/19) cases had a genetic cause confirmed, including 12 with chromosomal abnormalities and 3 with monogenic disorders. Monogenic disorders were all known causes of micrognathia, including two cases of campomelic dysplasia affected by SOX9 mutations and one case of mandibulofacial dysostosis with an EFTUD2 mutation. In the end, 19 cases were terminated, 1 live birth was diagnosed as Pierre Robin syndrome, and 5 cases were lost to follow-up. CONCLUSION: IFA is a useful indicator and three-dimensional ultrasound is a significant support technique for fetal micrognathia prenatal diagnosis. Repeat ultrasound monitoring and genetic testing are crucial, with CMA recommended and Whole exome sequencing performed when normal arrays are reported. Isolated fetal micrognathia may be an early manifestation of monogenic disorders.


Assuntos
Micrognatismo , Gravidez , Feminino , Humanos , Micrognatismo/diagnóstico , Micrognatismo/genética , Estudos Prospectivos , Ultrassonografia Pré-Natal/métodos , Diagnóstico Pré-Natal/métodos , Feto , Fatores de Alongamento de Peptídeos , Ribonucleoproteína Nuclear Pequena U5
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...