Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 308
Filtrar
1.
J Exp Clin Cancer Res ; 43(1): 267, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39343925

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) are widely involved in cancer development and progression, but the functions of most lncRNAs have not yet been elucidated. Metastasis is the main factor restricting the therapeutic outcomes of various cancer types, including oral squamous cell carcinoma (OSCC). Therefore, exploring the key lncRNAs that regulate OSCC metastasis and elucidating their molecular mechanisms will facilitate the development of new strategies for effective OSCC therapy. METHODS: We analyzed the lncRNA expression profiles of tumor tissues from OSCC patients with and without cervical lymph node metastasis, and OSCC cell lines. We revealed high expression of oral squamous cell carcinoma metastasis-related lncRNA 1 (lncOCMRL1) in OSCC patient tumor tissues with lymph node metastasis and highly metastatic OSCC cell lines. The effects of lncOCMRL1 knockdown on the invasion, migration and proliferation abilities of OSCC cells were explored through qRT-PCR, Transwell, colony formation, and cell proliferation experiments. The mechanism by which lncOCMRL1 promotes OSCC metastasis and proliferation was explored through RNA pull-down, silver staining, mass spectrometry, RIP, and WB experiments. To increase its translational potential, we developed a reduction-responsive nanodelivery system to deliver siRNA for antitumor therapy. RESULTS: We determined that lncOCMRL1 is highly expressed in OSCC metastatic tumor tissues and cells. Functional studies have shown that high lncOCMRL1 expression can promote the growth and metastasis of OSCC cells both in vivo and in vitro. Mechanistically, lncOCMRL1 could induce epithelial-mesenchymal transition (EMT) via the suppression of RRM2 ubiquitination and thereby promote the proliferation, invasion, and migration of OSCC cells. We further constructed reduction-responsive nanoparticles (NPs) for the systemic delivery of siRNAs targeting lncOCMRL1 and demonstrated their high efficacy in silencing lncOCMRL1 expression in vivo and significantly inhibited OSCC tumor growth and metastasis. CONCLUSIONS: Our results suggest that lncOCMRL1 is a reliable target for blocking lymph node metastasis in OSCC.


Assuntos
Proliferação de Células , Transição Epitelial-Mesenquimal , Neoplasias Bucais , RNA Longo não Codificante , Ribonucleosídeo Difosfato Redutase , Humanos , Neoplasias Bucais/patologia , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Camundongos , Animais , Feminino , Transição Epitelial-Mesenquimal/genética , Ribonucleosídeo Difosfato Redutase/metabolismo , Ribonucleosídeo Difosfato Redutase/genética , Masculino , Linhagem Celular Tumoral , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Metástase Neoplásica , Movimento Celular , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Pessoa de Meia-Idade , Camundongos Nus , Regulação Neoplásica da Expressão Gênica , Metástase Linfática
2.
Biogerontology ; 25(6): 1239-1251, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39261410

RESUMO

In skin aging, it has been hypothesized that aging fibroblasts accumulate within the epidermal basal layer, dermis, and subcutaneous fat, causing abnormal tissue remodeling and extracellular matrix dysfunction, thereby inducing an aging-related secretory phenotype (SASP). A new treatment for skin aging involves the specific elimination of senescent skin cells, especially fibroblasts within the dermis and keratinocytes in the basal layer. This requires the identification of specific protein markers of senescent cells, such as ribonucleoside-diphosphate reductase subunit M2 B (RRM2B), which is upregulated in various malignancies in response to DNA stress damage. However, the behavior and role of RRM2B in skin aging remain unclear. Therefore, we examined whether RRM2B functions as a senescence marker using a human dermal fibroblast model of aging. In a model of cellular senescence induced by replicative aging and exposure to ionizing radiation or UVB, RRM2B was upregulated at the gene and protein levels. This was correlated with decreased uptake of the senescence-associated ß-galactosidase activity and proliferation marker bromodeoxyuridine. RRM2B upregulation was concurrent with the increased expression of SASP factor genes. Furthermore, using fluorescence flow cytometry, RRM2B-positive cells were recovered more frequently in the aging cell population. In aging human skin, RRM2B was also found to be more abundant in the dermis and epidermal basal layer than other proteins. Therefore, RRM2B may serve as a clinical marker to identify senescent skin cells.


Assuntos
Senescência Celular , Fibroblastos , Ribonucleosídeo Difosfato Redutase , Envelhecimento da Pele , Humanos , Senescência Celular/fisiologia , Envelhecimento da Pele/fisiologia , Envelhecimento da Pele/genética , Fibroblastos/metabolismo , Ribonucleosídeo Difosfato Redutase/metabolismo , Ribonucleosídeo Difosfato Redutase/genética , Biomarcadores/metabolismo , Células Cultivadas , Pele/metabolismo , Pele/efeitos da radiação , Proliferação de Células , Idoso , Pessoa de Meia-Idade , Regulação para Cima , Feminino , Adulto , Masculino , Ribonucleotídeo Redutases , Proteínas de Ciclo Celular
3.
J Exp Clin Cancer Res ; 43(1): 255, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39243109

RESUMO

BACKGROUND: Intrahepatic cholangiocarcinoma (iCCA) is one of the most lethal malignancies and highly heterogeneous. We thus aimed to identify and characterize iCCA cell subpopulations with severe malignant features. METHODS: Transcriptomic datasets from three independent iCCA cohorts (iCCA cohorts 1-3, n = 382) and formalin-fixed and paraffin-embedded tissues from iCCA cohort 4 (n = 31) were used. An unbiased global screening strategy was established, including the transcriptome analysis with the activated malignancy/stemness (MS) signature in iCCA cohorts 1-3 and the mass spectrometry analysis of the sorted stemness reporter-positive iCCA cells. A group of cellular assays and subcutaneous tumor xenograft assay were performed to investigate functional roles of the candidate. Immunohistochemistry was performed in iCCA cohort 4 to examine the expression and localization of the candidate. Molecular and biochemical assays were used to evaluate the membrane localization and functional protein domains of the candidate. Cell sorting was performed and the corresponding cellular molecular assays were utilized to examine cancer stem cell features of the sorted cells. RESULTS: The unbiased global screening identified RRM2 as the top candidate, with a significantly higher level in iCCA patients with the MS signature activation and in iCCA cells positive for the stemness reporter. Consistently, silencing RRM2 significantly suppressed iCCA malignancy phenotypes both in vitro and in vivo. Moreover, immunohistochemistry in tumor tissues of iCCA patients revealed an unreported cell membrane localization of RRM2, in contrast to its usual cytoplasmic localization. RRM2 cell membrane localization was then confirmed in iCCA cells via immunofluorescence with or without cell membrane permeabilization, cell fractionation assay and cell surface biotinylation assay. Meanwhile, an unclassical signal peptide and a transmembrane domain of RRM2 were revealed experimentally. They were essential for RRM2 trafficking to cell membrane via the conventional endoplasmic reticulum (ER)-Golgi secretory pathway. Furthermore, the membrane RRM2-positive iCCA cells were successfully sorted. These cells possessed significant cancer stem cell malignant features including cell differentiation ability, self-renewal ability, tumor initiation ability, and stemness/malignancy gene signatures. Patients with membrane RRM2-positive iCCA cells had poor prognosis. CONCLUSIONS: RRM2 had an alternative cell membrane localization. The membrane RRM2-positive iCCA cells represented a malignant subpopulation with cancer stem cell features.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Células-Tronco Neoplásicas , Ribonucleosídeo Difosfato Redutase , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Colangiocarcinoma/genética , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Camundongos , Animais , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/genética , Ribonucleosídeo Difosfato Redutase/metabolismo , Ribonucleosídeo Difosfato Redutase/genética , Linhagem Celular Tumoral , Feminino , Masculino , Biomarcadores Tumorais/metabolismo
4.
Am J Pathol ; 194(11): 2163-2178, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39103093

RESUMO

Osteosarcoma is a malignant bone tumor characterized by high metastatic potential and recurrence rates after therapy. The small nuclear ribonucleoprotein polypeptides B and B1 (SNRPB), core components of a spliceosome, exhibit up-regulation across several cancer types. However, the precise role of SNRPB in osteosarcoma progression remains poorly elucidated. Herein, SNRPB expression was explored in human osteosarcoma tissues and normal bone tissues by immunohistochemical staining, revealing a notable up-regulation of SNRPB in osteosarcoma, correlating with diminished survival rates. The in vitro loss-of-function experiments showed that SNRPB knockdown significantly suppressed the osteosarcoma cell proliferation and migration, as well as tubule formation of human umbilical vascular endothelial cells, while enhancing osteosarcoma cell apoptosis. Mechanistically, SNRPB promoted the transcription of ribonucleotide reductase subunit M2 via E2F transcription factor 1. Further rescue experiments indicated that ribonucleotide reductase subunit M2 was required for SNRPB-induced malignant behaviors in osteosarcoma. Additionally, the function of SNRPB in osteosarcoma cell growth and apoptosis was confirmed to be associated with ataxia-telangiectasia mutated (ATM) signaling pathway activation. In conclusion, these findings provide initial insights into the underlying mechanisms governing SNRPB-induced osteosarcoma progression, and we propose SNRPB as a novel therapeutic target in osteosarcoma management.


Assuntos
Neoplasias Ósseas , Proliferação de Células , Progressão da Doença , Osteossarcoma , Transdução de Sinais , Humanos , Osteossarcoma/patologia , Osteossarcoma/metabolismo , Osteossarcoma/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/genética , Apoptose , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Ribonucleosídeo Difosfato Redutase/metabolismo , Ribonucleosídeo Difosfato Redutase/genética , Regulação Neoplásica da Expressão Gênica , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Masculino
5.
Cancer Lett ; 602: 217197, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39216548

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is highly malignant and has a poor prognosis, without effective therapeutic targets in common gene mutations. Gemcitabine, a first-line chemotherapeutic for PDAC, confers <10 % 5-year survival rate because of drug resistance. Y-box binding protein 1 (YBX1), associated with multidrug-resistance gene activation, remains unelucidated in PDAC gemcitabine resistance. In vivo and in vitro, we verified YBX1's promotional effects, especially gemcitabine resistance, in pancreatic cancer cells. YBX1-induced LRP1 transcription by binding to the LRP1 promoter region significantly altered the concentration and distribution of ß-catenin in pancreatic cancer cells. Through TCF3, ß-catenin bound to the promoter region of RRM1, a key gene for gemcitabine resistance, that promotes RRM1 expression. Combination therapy with the YBX1 inhibitor SU056 and gemcitabine effectively reduced gemcitabine resistance in in vivo and in vitro experiments. High YBX1 expression promoted pathogenesis and gemcitabine resistance in pancreatic cancer through the YBX1-LRP1-ß-catenin-RRM1 axis. Combining YBX1 inhibitors with gemcitabine may provide a new direction for combination chemotherapy to overcome gemcitabine resistance, which frequently occurs during chemotherapy for pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático , Desoxicitidina , Resistencia a Medicamentos Antineoplásicos , Gencitabina , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Neoplasias Pancreáticas , Ribonucleosídeo Difosfato Redutase , Proteína 1 de Ligação a Y-Box , beta Catenina , Animais , Humanos , Camundongos , Antimetabólitos Antineoplásicos/farmacologia , beta Catenina/metabolismo , beta Catenina/genética , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Gencitabina/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos Nus , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Ribonucleosídeo Difosfato Redutase/genética , Ribonucleosídeo Difosfato Redutase/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína 1 de Ligação a Y-Box/metabolismo , Proteína 1 de Ligação a Y-Box/genética
6.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(7): 1389-1396, 2024 Jul 20.
Artigo em Chinês | MEDLINE | ID: mdl-39051085

RESUMO

OBJECTIVE: To explore the role of ferroptosis-related genes in regulating ferroptosis of esophageal squamous cell carcinoma (ESCC). METHODS: ESCC datasets GSE161533 and GSE20347 were downloaded from the Gene Expression Omnibus (GEO) to identify the differentially expressed genes (DEGs) using R software. ESCC ferroptosis-related genes obtained by intersecting the DEGs with ferroptosis-related genes from FerrDb were analyzed using GO and KEGG analyses, protein-protein interaction (PPI) network analysis, and core gene identification through Cytoscape. The identified ferroptosis suppressor genes were validated using TCGA database, and their expression levels were detected using RT-qPCR in cultured normal esophageal cells and ESCC cells. Six ferroptosis suppressor genes (RRM2, GCLC, TFRC, TXN, SLC7A11, and EZH2) were downregulated with siRNA in ESCC cells, and the changes in cell proliferation and apoptosis were assessed with CCK8 assay and flow cytometry; Western blotting was performed to examine the changes in ferroptosis progression of the cells. RESULTS: We identified a total of 58 ESCC ferroptosis-related genes, which involved such biological processes as glutathione transmembrane transport, iron ion transport, and apoptosis and the ferroptosis, glutathione metabolism, and antifolate resistance pathways. The PPI network included 54 nodes and 74 edges with a clustering coefficient of 0.522 and PPI enrichment P<0.001. Cytoscape identified 6 core ferroptosis suppressor genes (RRM2, TFRC, TXN, EZH2, SLC7A11, and GCLC), which were highly expressed in ESCC tissues in the TCGA dataset and in ESCC cell lines. Downregulating these genes in ESCC TE1 cells significantly inhibited cell proliferation, promoted cell apoptosis, reduced the expression levels of ferroptosis markers GPX4 and FIH1, and increased the expression of ACSL4. CONCLUSION: High expression of ferroptosis suppressor genes in ESCC may cause arrest of ferroptosis progression to facilitate tumor development, and inhibiting these genes can restore ferroptosis and promote cell apoptosis, suggesting their value as potential therapeutic targets for ESCC.


Assuntos
Apoptose , Proliferação de Células , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Ferroptose , Humanos , Ferroptose/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Linhagem Celular Tumoral , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Proliferação de Células/genética , Apoptose/genética , Regulação Neoplásica da Expressão Gênica , Ribonucleosídeo Difosfato Redutase/genética , Ribonucleosídeo Difosfato Redutase/metabolismo , Mapas de Interação de Proteínas/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo , Genes Supressores de Tumor , Antígenos CD
7.
PLoS One ; 19(5): e0303593, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38820515

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a common inflammatory and autoimmune disease. Ribonucleotide Reductase Regulatory Subunit M2 (RRM2) is a crucial and a rate-limiting enzyme responsible for deoxynucleotide triphosphate(dNTP) production. We have found a high expression level of RRM2 in patients with RA, but the molecular mechanism of its action remains unclear. METHODS: We analyzed the expression of hub genes in RA using GSE77298 datasets downloaded from Gene Expression Omnibus database. RRM2 and insulin-like growth factor-2 messenger ribonucleic acid (mRNA)-binding protein 3 (IGF2BP3) gene knockdown was achieved by infection with lentiviruses. The expression of RRM2, IGF2BP3, matrix metalloproteinase (MMP)-1, and MMP-9 were detected via western blotting assay. Cell viability was detected via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. MeRIP-qRT-PCR was performed to test the interaction of IGF2BP3 and RRM2 mRNA via m6A modification. Cell proliferation was determined by clone formation assay. Migration and invasion assays were performed using transwell Boyden chamber. RESULTS: RRM2 and IGF2BP3 were highly expressed in clinical specimens and tumor necrosis factor alpha (TNF-α) and interleukin (IL)-1ß-stimulated synovial cells. RRM2 and IGF2BP3 knockdown inhibited the proliferation, migration, and invasion of MH7A cells. The inhibitory effects of IGF2BP3 knockdown were effectively reversed by simultaneously overexpressing RRM2 in MH7A cells. By analyzing N6-methyladenosine (m6A)2Target database, five m6A regulatory target binding sites for IGF2BP3 were identified in RRM2 mRNA, suggesting a direct relationship between IGF2BP3 and RRM2 mRNA. Additionally, in RRM2 small hairpin (sh)RNA lentivirus-infected cells, the levels of phosphorylated Akt and MMP-9 were significantly decreased compared with control shRNA lentivirus-infected cells. CONCLUSION: The present study demonstrated that RRM2 promoted the Akt phosphorylation leading to high expression of MMP-9 to promote the migration and invasive capacities of MH7A cells. Overall, IGF2BP promotes the expression of RRM2, and regulates the migration and invasion of MH7A cells via Akt/MMP-9 pathway to promote RA progression.


Assuntos
Artrite Reumatoide , Proliferação de Células , Metaloproteinase 9 da Matriz , Proteínas Proto-Oncogênicas c-akt , Proteínas de Ligação a RNA , Ribonucleosídeo Difosfato Redutase , Humanos , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Ribonucleosídeo Difosfato Redutase/metabolismo , Ribonucleosídeo Difosfato Redutase/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Progressão da Doença , Movimento Celular/genética , Regulação da Expressão Gênica
8.
Anticancer Res ; 44(6): 2471-2485, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38821625

RESUMO

BACKGROUND/AIM: The cytoplasmic retention and stabilization of CTNNB1 (ß-catenin) in response to Wnt is well documented in playing a role in tumor growth. Here, through the utilization of a multiplex siRNA library screening strategy, we investigated the modulation of CTNNB1 function in tumor cell progression by ribonucleoside-diphosphate reductase subunit M2 (RRM2). MATERIALS AND METHODS: We conducted a multiplex siRNA screening assay to identify targets involved in CTNNB1 nuclear translocation. In order to examine the effect of inhibition of RRM2, selected from the siRNA screening results, we performed RRM2 knockdown and assayed for colon cancer cell viability, sphere formation assay, and invasion assay. The interaction of RRM2 with CTNNB1 and its impact on oncogenesis was examined using immunoprecipitation, immunoblotting, immunocytochemistry, and RT-qPCR. RESULTS: After a series of screening and filtration steps, we identified 26 genes that were potentially involved in CTNNB1 nuclear translocation. All candidate genes were validated in various cell lines. The results revealed that siRNA-mediated knockdown of RRM2 reduces the nuclear translocation of CTNNB1. This reduction was accompanied by a decrease in cell count, resulting in a suppressive effect on tumor cell growth. CONCLUSION: High throughput siRNA screening is an attractive strategy for identifying gene functions in cancers and the interaction between RRM2 and CTNNB1 is an attractive drug target for regulating RRM2-CTNNB1-related pathways in cancers.


Assuntos
Neoplasias do Colo , Progressão da Doença , Ribonucleosídeo Difosfato Redutase , beta Catenina , Humanos , beta Catenina/metabolismo , beta Catenina/genética , Ribonucleosídeo Difosfato Redutase/genética , Ribonucleosídeo Difosfato Redutase/metabolismo , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Neoplasias do Colo/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , RNA Interferente Pequeno/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes
9.
Nat Commun ; 15(1): 4667, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821952

RESUMO

Checkpoint kinase 1 (CHK1) is critical for cell survival under replication stress (RS). CHK1 inhibitors (CHK1i's) in combination with chemotherapy have shown promising results in preclinical studies but have displayed minimal efficacy with substantial toxicity in clinical trials. To explore combinatorial strategies that can overcome these limitations, we perform an unbiased high-throughput screen in a non-small cell lung cancer (NSCLC) cell line and identify thioredoxin1 (Trx1), a major component of the mammalian antioxidant-system, as a determinant of CHK1i sensitivity. We establish a role for redox recycling of RRM1, the larger subunit of ribonucleotide reductase (RNR), and a depletion of the deoxynucleotide pool in this Trx1-mediated CHK1i sensitivity. Further, the TrxR inhibitor auranofin, an approved anti-rheumatoid arthritis drug, shows a synergistic interaction with CHK1i via interruption of the deoxynucleotide pool. Together, we show a pharmacological combination to treat NSCLC that relies on a redox regulatory link between the Trx system and mammalian RNR activity.


Assuntos
Auranofina , Carcinoma Pulmonar de Células não Pequenas , Quinase 1 do Ponto de Checagem , Neoplasias Pulmonares , Oxirredução , Tiorredoxinas , Quinase 1 do Ponto de Checagem/metabolismo , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Humanos , Oxirredução/efeitos dos fármacos , Tiorredoxinas/metabolismo , Linhagem Celular Tumoral , Auranofina/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Inibidores de Proteínas Quinases/farmacologia , Ribonucleosídeo Difosfato Redutase/metabolismo , Ribonucleosídeo Difosfato Redutase/genética , Ribonucleotídeo Redutases/metabolismo , Ribonucleotídeo Redutases/antagonistas & inibidores , Sinergismo Farmacológico , Animais
10.
PLoS Genet ; 20(5): e1011148, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38776358

RESUMO

The helicase MCM and the ribonucleotide reductase RNR are the complexes that provide the substrates (ssDNA templates and dNTPs, respectively) for DNA replication. Here, we demonstrate that MCM interacts physically with RNR and some of its regulators, including the kinase Dun1. These physical interactions encompass small subpopulations of MCM and RNR, are independent of the major subcellular locations of these two complexes, augment in response to DNA damage and, in the case of the Rnr2 and Rnr4 subunits of RNR, depend on Dun1. Partial disruption of the MCM/RNR interactions impairs the release of Rad52 -but not RPA-from the DNA repair centers despite the lesions are repaired, a phenotype that is associated with hypermutagenesis but not with alterations in the levels of dNTPs. These results suggest that a specifically regulated pool of MCM and RNR complexes plays non-canonical roles in genetic stability preventing persistent Rad52 centers and hypermutagenesis.


Assuntos
Proteínas de Ciclo Celular , Dano ao DNA , Reparo do DNA , Replicação do DNA , Instabilidade Genômica , Proteína Rad52 de Recombinação e Reparo de DNA , Ribonucleotídeo Redutases , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Replicação do DNA/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Dano ao DNA/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Ribonucleotídeo Redutases/genética , Ribonucleotídeo Redutases/metabolismo , Reparo do DNA/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas de Manutenção de Minicromossomo/genética , Proteína de Replicação A/metabolismo , Proteína de Replicação A/genética , Ribonucleosídeo Difosfato Redutase/genética , Ribonucleosídeo Difosfato Redutase/metabolismo
11.
Cancer Lett ; 596: 216993, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38801884

RESUMO

Ribonucleotide Reductase (RNR) is a rate-limiting enzyme in the production of deoxyribonucleoside triphosphates (dNTPs), which are essential substrates for DNA repair after radiation damage. We explored the radiosensitization property of RNR and investigated a selective RRM2 inhibitor, 3-AP, as a radiosensitizer in the treatment of metastatic pNETs. We investigated the role of RNR subunit, RRM2, in pancreatic neuroendocrine (pNET) cells and responses to radiation in vitro. We also evaluated the selective RRM2 subunit inhibitor, 3-AP, as a radiosensitizer to treat pNET metastases in vivo. Knockdown of RNR subunits demonstrated that RRM1 and RRM2 subunits, but not p53R3, play significant roles in cell proliferation. RRM2 inhibition activated DDR pathways through phosphorylation of ATM and DNA-PK protein kinases but not ATR. RRM2 inhibition also induced Chk1 and Chk2 phosphorylation, resulting in G1/S phase cell cycle arrest. RRM2 inhibition sensitized pNET cells to radiotherapy and induced apoptosis in vitro. In vivo, we utilized pNET subcutaneous and lung metastasis models to examine the rationale for RNR-targeted therapy and 3-AP as a radiosensitizer in treating pNETs. Combination treatment significantly increased apoptosis of BON (human pNET) xenografts and significantly reduced the burden of lung metastases. Together, our results demonstrate that selective RRM2 inhibition induced radiosensitivity of metastatic pNETs both in vitro and in vivo. Therefore, treatment with the selective RRM2 inhibitor, 3-AP, is a promising radiosensitizer in the therapeutic armamentarium for metastatic pNETs.


Assuntos
Apoptose , Proliferação de Células , Camundongos Nus , Neoplasias Pancreáticas , Tolerância a Radiação , Radiossensibilizantes , Ribonucleosídeo Difosfato Redutase , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/radioterapia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/enzimologia , Ribonucleosídeo Difosfato Redutase/genética , Ribonucleosídeo Difosfato Redutase/antagonistas & inibidores , Ribonucleosídeo Difosfato Redutase/metabolismo , Animais , Linhagem Celular Tumoral , Radiossensibilizantes/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Tolerância a Radiação/efeitos dos fármacos , Fosforilação , Tumores Neuroendócrinos/patologia , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/radioterapia , Tumores Neuroendócrinos/tratamento farmacológico , Tumores Neuroendócrinos/enzimologia , Tumores Neuroendócrinos/metabolismo , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Transdução de Sinais/efeitos dos fármacos , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Quinase 1 do Ponto de Checagem/metabolismo , Quinase 1 do Ponto de Checagem/genética , Camundongos , Quinase do Ponto de Checagem 2/metabolismo , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/antagonistas & inibidores , Feminino , Interferência de RNA , Proteína Quinase Ativada por DNA
12.
Cancer Biomark ; 40(2): 171-184, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38517779

RESUMO

INTRODUCTION: GINS2 exerts a carcinogenic effect in multiple human malignancies, while it is still unclear that the potential roles and underlying mechanisms of GINS2 in HNSCC. METHODS: TCGA database was used to screen out genes with significant differences in expression in HNSCC. Immunohistochemistry and qRT-PCR were used to measure the expression of GINS2 in HNSCC tissues and cells. GINS2 was detected by qRT-PCR or western blot after knockdown or overexpression. Celigo cell counting, MTT, colony formation, and flow cytometric assay were used to check the ability of proliferation and apoptosis. Bioinformatics and microarray were used to screen out the downstream genes of GINS2. RESULTS: GINS2 in HNSCC tissues and cells was up-regulated, which was correlated with poor prognosis. GINS2 gene expression was successfully inhibited and overexpressed in HNSCC cells. Knockdown of GINS2 could inhibit proliferation and increase apoptosis of cells. Meanwhile, overexpression of GINS2 could enhance cell proliferation and colony formation. Knockdown of RRM2 may inhibit HNSCC cell proliferation, while overexpression of RRM2 rescued the effect of reducing GINS2 expression. CONCLUSION: Our study reported the role of GINS2 in HNSCC for the first time. The results demonstrated that in HNSCC cells, GINS2 promoted proliferation and inhibited apoptosis via altering RRM2 expression. Therefore, GINS2 might play a carcinogen in HNSCC, and become a specific promising therapeutic target.


Assuntos
Apoptose , Proliferação de Células , Proteínas Cromossômicas não Histona , Regulação Neoplásica da Expressão Gênica , Ribonucleosídeo Difosfato Redutase , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proliferação de Células/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Ribonucleosídeo Difosfato Redutase/genética , Ribonucleosídeo Difosfato Redutase/metabolismo , Linhagem Celular Tumoral , Apoptose/genética , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/metabolismo , Progressão da Doença , Prognóstico , Feminino , Masculino , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo
13.
Inflamm Res ; 73(3): 459-473, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286859

RESUMO

OBJECTIVE: Sepsis and sepsis-associated organ failure are devastating conditions for which there are no effective therapeutic agent. Several studies have demonstrated the significance of ferroptosis in sepsis. The study aimed to identify ferroptosis-related genes (FRGs) in sepsis, providing potential therapeutic targets. METHODS: The weighted gene co-expression network analysis (WGCNA) was utilized to screen sepsis-associated genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to explore gene functions. Three machine learning methods were employed to identify sepsis-related hub genes. Survival and multivariate Cox regression analysis allowed further screening for the key gene RRM2 associated with prognosis. The immune infiltration analysis of the screened sepsis key genes was performed. Additionally, a cecum ligation and puncture (CLP)-induced mouse sepsis model was constructed to validate the expression of key gene in the sepsis. RESULTS: Six sepsis-associated differentially expressed FRGs (RRM2, RPL7A, HNRNPA1, PEBP1, MYL8B and TXNIP) were screened by WGCNA and three machine learning methods analysis. Survival analysis and multivariate Cox regression analysis showed that RRM2 was a key gene in sepsis and an independent prognostic factor associated with clinicopathological and molecular features of sepsis. Immune cell infiltration analysis demonstrated that RRM2 had a connection to various immune cells, such as CD4 T cells and neutrophils. Furthermore, animal experiment demonstrated that RRM2 was highly expressed in CLP-induced septic mice, and the use of Fer-1 significantly inhibited RRM2 expression, inhibited serum inflammatory factor TNF-α, IL-6 and IL-1ß expression, ameliorated intestinal injury and improved survival in septic mice. CONCLUSION: RRM2 plays an important role in sepsis and may contribute to sepsis through the ferroptosis pathway. This study provides potential therapeutic targets for sepsis.


Assuntos
Ferroptose , Ribonucleosídeo Difosfato Redutase , Sepse , Animais , Camundongos , Linfócitos T CD4-Positivos , Ceco , Modelos Animais de Doenças , Ferroptose/genética , Sepse/genética , Fator de Necrose Tumoral alfa , Ribonucleosídeo Difosfato Redutase/metabolismo
14.
J Virol ; 97(8): e0026723, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37582207

RESUMO

Avian leukemia virus subgroup J (ALV-J) causes various diseases associated with tumor formation and decreased fertility and induced immunosuppressive disease, resulting in significant economic losses in the poultry industry globally. Virus usually exploits the host cellular machinery for their replication. Although there are increasing evidences for the cellular proteins involving viral replication, the interaction between ALV-J and host proteins leading to the pivotal steps of viral life cycle are still unclear. Here, we reported that ribonucleoside-diphosphate reductase subunit M2 (RRM2) plays a critical role during ALV-J infection by interacting with capsid protein P27 and activating Wnt/ß-catenin signaling. We found that the expression of RRM2 is effectively increased during ALV-J infection, and that RRM2 facilitates ALV-J replication by interacting with viral capsid protein P27. Furthermore, ALV-J P27 activated Wnt/ß-catenin signaling by promoting ß-catenin entry into the nucleus, and RRM2 activated Wnt/ß-catenin signaling by enhancing its phosphorylation at Ser18 during ALV-J infection. These data suggest that the upregulation of RRM2 expression by ALV-J infection favors viral replication in host cells via activating Wnt/ß-catenin signaling. IMPORTANCE Our results revealed a novel mechanism by which RRM2 facilitates ALV-J growth. That is, the upregulation of RRM2 expression by ALV-J infection favors viral replication by interacting with capsid protein P27 and activating Wnt/ß-catenin pathway in host cells. Furthermore, the phosphorylation of serine at position 18 of RRM2 was verified to be the important factor regulating the activation of Wnt/ß-catenin signaling. This study provides insights for further studies of the molecular mechanism of ALV-J infection.


Assuntos
Vírus da Leucose Aviária , Leucose Aviária , Ribonucleosídeo Difosfato Redutase , Via de Sinalização Wnt , Animais , Vírus da Leucose Aviária/metabolismo , beta Catenina/metabolismo , Proteínas do Capsídeo/metabolismo , Galinhas , Ribonucleosídeo Difosfato Redutase/metabolismo
15.
Oxid Med Cell Longev ; 2023: 3878796, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36713030

RESUMO

Background: Ribonucleotide reductase (RR) consists of two subunits, the large subunit RRM1 and the small subunit (RRM2 or RRM2B), which is essential for DNA replication. Dysregulations of RR were implicated in multiple types of cancer. However, the abnormal expressions and biologic functions of RR subunits in liver cancer remain to be elucidated. Methods: TCGA, HCCDB, CCLE, HPA, cBioPortal, and GeneMANIA were utilized to perform bioinformatics analysis of RR subunits in the liver cancer. GO, KEGG, and GSEA were used for enrichment analysis. Results: The expressions of RRM1, RRM2, and RRM2B were remarkably upregulated among liver cancer tissue both in mRNA and protein levels. High expression of RRM1 and RRM2 was notably associated with high tumor grade, high stage, short overall survival, and disease-specific survival. Enrichment analyses indicated that RRM1 and RRM2 were related to DNA replication, cell cycle, regulation of nuclear division, DNA repair, and DNA recombination. Correlation analysis indicated that RRM1 and RRM2 were significantly associated with several subsets of immune cell, including Th2 cells, cytotoxic cells, and neutrophils. RRM2B expression was positively associated with immune score and stromal score. Chemosensitivity analysis revealed that sensitivity of nelarabine was positively associated with high expressions of RRM1 and RRM2. The sensitivity of rapamycin was positively associated with high expressions of RRM2B. Conclusion: Our findings demonstrated high expression profiles of RR subunits in liver cancer, which may provide novel insights for predicting the poor prognosis and increased chemosensitivity of liver cancer in clinic.


Assuntos
Neoplasias Hepáticas , Ribonucleotídeo Redutases , Humanos , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ribonucleosídeo Difosfato Redutase/genética , Ribonucleosídeo Difosfato Redutase/metabolismo , Prognóstico , Ribonucleotídeo Redutases/genética , Ribonucleotídeo Redutases/metabolismo , Neoplasias Hepáticas/genética , Linhagem Celular Tumoral
16.
Pharmazie ; 77(7): 224-229, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36199183

RESUMO

Pancreatic cancer is one of the most common malignancies with very poor prognosis due to its broad resistance to chemotherapy. ARID1A, a subunit of SWI/SNF complex, is involved in pancreatic carcinogenesis through epigenetic silencing of oncogenes. In this study, we aimed to explore whether ARID1A was implicated in the gemcitabine resistance in pancreatic cancer patients via regulating RRM2. We examined the effect of ARID1A depletion on the gemcitabine sensitivity in pancreatic cancer cells and explored the role of RRM2 in ARID1A-mediated pancreatic cancer cells chemosensitivity to gemcitabine. We found that Knockout of ARID1A led to gemcitabine resistance in pancreatic cancer cells, effect of which could be reversed by RRM2, a gemcitabine resistance related gene. ARID1A decreased the transcription of RRM2, and directly bound to the promoter of RRM2. Moreover, expression of RRM2 was negatively correlated with ARID1A in pancreatic cancer tissues. Thus, ARID1A-mediated RRM2 epigenetic suppression is crucial for enhancement of pancreatic cancer chemosensitivity to gemcitabine, and ARID1A could be used as a biomarker to guide the gemcitabine chemotherapy of pancreatic cancer.


Assuntos
Neoplasias Pancreáticas , Ribonucleosídeo Difosfato Redutase , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Epigênese Genética/genética , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Ribonucleosídeo Difosfato Redutase/genética , Ribonucleosídeo Difosfato Redutase/metabolismo , Fatores de Transcrição/genética , Gencitabina , Neoplasias Pancreáticas
17.
Aging (Albany NY) ; 14(19): 7890-7905, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36202136

RESUMO

Ribonucleotide reductase (RNR) small subunit M2 (RRM2) levels are known to regulate the activity of RNR, a rate-limiting enzyme in the synthesis of deoxyribonucleotide triphosphates (dNTPs) and essential for both DNA replication and repair. The high expression of RRM2 enhances the proliferation of cancer cells, thereby implicating its role as an anti-cancer agent. However, little research has been performed on its role in the prognosis of different types of cancers. This pan-cancer study aimed to evaluate the effect of high expression of RRM2 the tumor prognosis based on clinical information collected from The Cancer Genome Atlas (TCGA) and The Genotype-Tissue Expression (GTEx) databases. We found RRM2 gene was highly expressed in 30 types of cancers. And we performed a pan-cancer analysis of the genetic alteration status and methylation of RRM2. Results indicated that RRM2 existed hypermethylation, associated with m6A, m1A, and m5C related genes. Subsequently, we explored the microRNAs (miRNA), long non-coding RNAs (lncRNA), and the transcription factors responsible for the high expression of RRM2 in cancer cells. Results indicated that has-miR-125b-5p and has-miR-30a-5p regulated the expression of RRM2 along with transcription factors, such as CBFB, E2F1, and FOXM. Besides, we established the competing endogenous RNA (ceRNA) diagram of lncRNAs-miRNAs-circular RNAs (circRNA) involved in the regulation of RRM2 expression. Meanwhile, our study demonstrated that high-RRM2 levels correlated with patients' worse prognosis survival and immunotherapy effects through the consensus clustering and risk scores analysis. Finally, we found RRM2 regulated the resistance of immune checkpoint inhibitors through the PI3K-AKT single pathways. Collectively, our findings elucidated that high expression of RRM2 correlates with prognosis and tumor immunotherapy in pan-cancer. Moreover, these findings may provide insights for further investigation of the RRM2 gene as a biomarker in predicting immunotherapy's response and therapeutic target.


Assuntos
MicroRNAs , Neoplasias , RNA Longo não Codificante , Humanos , Ribonucleosídeo Difosfato Redutase/genética , Ribonucleosídeo Difosfato Redutase/metabolismo , RNA Longo não Codificante/genética , RNA Circular , Biologia Computacional , Inibidores de Checkpoint Imunológico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Prognóstico , MicroRNAs/genética , Neoplasias/genética , Neoplasias/terapia , Imunoterapia , Fatores de Transcrição/metabolismo , Desoxirribonucleotídeos , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral
18.
Lung Cancer ; 171: 103-114, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35933914

RESUMO

INTRODUCTION: Echinoderm microtubule-associated protein-like 4 (EML4)-Anaplastic Lymphoma Kinase (ALK) rearrangements occur in 3% to 7% of lung adenocarcinomas and are targets for treatment with tyrosine kinase inhibitors (TKIs). Here we have developed three novel EML4-ALK-positive patient-derived Non-Small-Cell-Lung-Cancer (NSCLC) cancer cell lines, CUTO8 (variant 1), CUTO9 (variant 1) and CUTO29 (variant 3) and included a fourth ALK-positive cell line YU1077 (variant 3) to study ALK-positive signaling and responses. Variants 1 and 3 are the most common EML4-ALK variants expressed in ALK-positive NSCLC, and currently cell lines representing these EML4-ALK variants are limited. MATERIALS AND METHODS: Resazurin assay was performed to evaluate cell viability. Protein levels were determined using western blotting. RNA sequencing was performed in all four cell lines to identify differentially expressed genes. Whole-genome sequencing was performed to determine the presence of EML4-ALK fusion and ALK tyrosine kinase inhibitor resistance mutations. RESULTS: In this study, we have confirmed expression of the corresponding ALK fusion protein and assessed their sensitivity to a range of ALK tyrosine kinase inhibitors. These patient derived cell lines exhibit differential sensitivity to lorlatinib, brigatinib and alectinib, with EML4-ALK variant 3 containing cell lines exhibiting increased sensitivity to lorlatinib and brigatinib as compared to alectinib. These cell lines were further characterized by whole genome sequencing and RNA-seq analysis that identified the ribonucleotide reductase regulatory subunit 2 (RRM2) as a downstream and potential therapeutic target in ALK-positive NSCLC. CONCLUSION: We provide a characterization of four novel EML4-ALK-positive NSCLC cell lines, highlighting genomic heterogeneity and differential responses to ALK TKI treatment. The RNA-Seq characterization of ALK-positive NSCLC CUTO8, CUTO9, CUTO29 and YU1077 cell lines reported here, has been compiled in an interactive ShinyApp resource for public data exploration (https://ccgg.ugent.be/shiny/nsclc_rrm2_2022/).


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Ribonucleosídeo Difosfato Redutase , Quinase do Linfoma Anaplásico/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas de Fusão Oncogênica/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Ribonucleosídeo Difosfato Redutase/metabolismo
19.
Med Oncol ; 39(9): 124, 2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35716217

RESUMO

Both pro-oncogenic and anti-oncogenic effects of E2F2 have been revealed in different malignancies. However, the precise role of E2F2 in pancreatic cancer, in particular in relation to therapeutic intervention with gemcitabine, remains unclear. In this study, the effect of E2F2 on the proliferation and cell cycle modulation of pancreatic cancer cells, and whether E2F2 plays a role in the treatment of pancreatic cancer cells by gemcitabine, were investigated. The expression of E2F2 in pancreatic cancer was assessed by various methods including bioinformatics prediction, Western blotting, and real-time PCR. The effect of E2F2 on the proliferation and cell cycling of pancreatic cancer cells was analyzed by tissue culture and flow cytometry. In addition, the effect of E2F2 on the intervention of pancreatic cancer by gemcitabine was investigated using both in vitro and in vivo approaches. The expression of E2F2 was found to be significantly increased in pancreatic cancer tissues and cell lines. The pathogenic capacity of E2F2 lied in the fact that this transcription factor promoted the transformation of pancreatic cancer cell cycle from G1-phase to S-phase, thus enhancing the proliferation of pancreatic cancer cells. Furthermore, the expression of E2F2 was increased in pancreatic cancer cells in the presence of gemcitabine, and the augmented expression of E2F2 upregulated the gemcitabine resistance-related gene RRM2 and its downstream signaling molecule deoxycytidine kinase (DCK). The resistance of pancreatic cancer cells to gemcitabine was confirmed using both in vitro and in vivo models. In this study, E2F2 has been demonstrated for the first time to play a pro-oncogenic role in pancreatic cancer by promoting the transition of the cell cycle from G1-phase to S-phase and, therefore, enhancing the proliferation of pancreatic cancer cells. E2F2 has also been demonstrated to enhance the chemotherapy resistance of pancreatic cancer cells to gemcitabine by upregulating the expression of RRM2 and DCK that is downstream of RRM2.


Assuntos
Desoxicitidina , Resistencia a Medicamentos Antineoplásicos , Fator de Transcrição E2F2 , Neoplasias Pancreáticas , Antimetabólitos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Fator de Transcrição E2F2/genética , Fator de Transcrição E2F2/metabolismo , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Ribonucleosídeo Difosfato Redutase/biossíntese , Ribonucleosídeo Difosfato Redutase/genética , Ribonucleosídeo Difosfato Redutase/metabolismo , Regulação para Cima/efeitos dos fármacos , Gencitabina
20.
J Clin Invest ; 132(13)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35617047

RESUMO

Mitochondrial DNA (mtDNA) depletion/deletions syndromes (MDDS) encompass a clinically and etiologically heterogenous group of mitochondrial disorders caused by impaired mtDNA maintenance. Among the most frequent causes of MDDS are defects in nucleoside/nucleotide metabolism, which is critical for synthesis and homeostasis of the deoxynucleoside triphosphate (dNTP) substrates of mtDNA replication. A central enzyme for generating dNTPs is ribonucleotide reductase, a critical mediator of de novo nucleotide synthesis composed of catalytic RRM1 subunits in complex with RRM2 or p53R2. Here, we report 5 probands from 4 families who presented with ptosis and ophthalmoplegia as well as other clinical manifestations and multiple mtDNA deletions in muscle. We identified 3 RRM1 loss-of-function variants, including a dominant catalytic site variant (NP_001024.1: p.N427K) and 2 homozygous recessive variants at p.R381, which has evolutionarily conserved interactions with the specificity site. Atomistic molecular dynamics simulations indicate mechanisms by which RRM1 variants affect protein structure. Cultured primary skin fibroblasts of probands manifested mtDNA depletion under cycling conditions, indicating impaired de novo nucleotide synthesis. Fibroblasts also exhibited aberrant nucleoside diphosphate and dNTP pools and mtDNA ribonucleotide incorporation. Our data reveal that primary RRM1 deficiency and, by extension, impaired de novo nucleotide synthesis are causes of MDDS.


Assuntos
Doenças Mitocondriais , Ribonucleotídeo Redutases , Replicação do DNA , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Humanos , Doenças Mitocondriais/genética , Nucleosídeos , Nucleotídeos/genética , Ribonucleosídeo Difosfato Redutase/genética , Ribonucleosídeo Difosfato Redutase/metabolismo , Ribonucleotídeo Redutases/genética , Ribonucleotídeo Redutases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...