Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 851
Filtrar
1.
Bioorg Chem ; 150: 107532, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38852312

RESUMO

Staphylococcus aureus is considered to be an extracellular pathogen. However, survival of S.aureus within host cells may cause long-term colonization and clinical failure. Current treatments have poor efficacy in clearing intracellular bacteria. Antibody-antibiotic conjugates (AACs) is a novel strategy for eliminating intracellular bacteria. Herein, we use KRM-1657 as payload of AAC for the first time, and we conjugate it with anti S. aureus antibody via a dipeptide linker (Valine-Alanine) to obtain a novel AAC (ASAK-22). The ASAK-22 exhibits good in vitro pharmacokinetic properties and inhibitory activity against intracellular MRSA, with 100 µg/mL of ASAK-22 capable of eliminating intracellular MRSA to the detection limit. Furthermore, the in vivo results demonstrate that a single administration of ASAK-22 significantly reduces the bacterial burden in the bacteremia model, which is superior to the vancomycin treatment.


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Testes de Sensibilidade Microbiana , Animais , Humanos , Camundongos , Antibacterianos/farmacologia , Antibacterianos/química , Relação Dose-Resposta a Droga , Imunoconjugados/química , Imunoconjugados/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Infecções Estafilocócicas/tratamento farmacológico , Relação Estrutura-Atividade , Rifamicinas/química , Rifamicinas/farmacologia
2.
Microbiol Spectr ; 12(7): e0103424, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38864598

RESUMO

Since 1999, doxycycline and hydroxychloroquine have been the recommended treatment for chronic Q fever, a life-threatening disease caused by the bacterial pathogen, Coxiella burnetii. Despite the duration of its use, the treatment is not ideal due to the lengthy treatment time, high mortality rate, resistant strains, and the potential for contraindicated usage. A literature search was conducted to identify studies that screened large panels of drugs against C. burnetii to identify novel targets with potential efficacy against C. burnetii. Twelve candidate antimicrobials approved for use in humans by the US Food and Drug Administration were selected and minimum inhibitory concentrations (MICs) were determined against the low virulence strain Nine Mile phase II. Rifabutin and rifaximin were the best performing antibiotics tested with MICs of ≤0.01 µg mL-1. Further screening of these top candidates was conducted alongside two drugs from the same class, rifampin, well-characterized, and rifapentine, not previously reported against C. burnetii. These were screened against virulent strains of C. burnetii representing three clinically relevant genotypes. Rifapentine was the most effective in the human monocytic leukemia cell line, THP-1, with a MIC ≤0.01 µg mL-1. In the human kidney epithelial cell line, A-498, efficacy of rifapentine, rifampin, and rifabutin varied across C. burnetii strains with MICs between ≤0.001 and 0.01 µg mL-1. Rifampin, rifabutin, and rifapentine were all bactericidal against C. burnetii; however, rifabutin and rifapentine demonstrated impressive bactericidal activity as low as 0.1 µg mL-1 and should be further explored as alternative Q fever treatments given their efficacy in vitro. IMPORTANCE: This work will help inform investigators and physicians about potential alternative antimicrobial therapies targeting the causative agent of Q fever, Coxiella burnetii. Chronic Q fever is difficult to treat, and alternative antimicrobials are needed. This manuscript explores the efficacy of rifamycin antibiotics against virulent strains of C. burnetii representing three clinically relevant genotypes in vitro. Importantly, this study determines the susceptibility of C. burnetii to rifapentine, which has not been previously reported. Evaluation of the bactericidal activity of the rifamycins reveals that rifabutin and rifapentine are bactericidal at low concentrations, which is unusual for antibiotics against C. burnetii.


Assuntos
Antibacterianos , Coxiella burnetii , Testes de Sensibilidade Microbiana , Febre Q , Rifampina , Rifamicinas , Humanos , Rifampina/farmacologia , Rifampina/análogos & derivados , Antibacterianos/farmacologia , Coxiella burnetii/efeitos dos fármacos , Coxiella burnetii/genética , Rifamicinas/farmacologia , Febre Q/tratamento farmacológico , Febre Q/microbiologia , Rifabutina/farmacologia , Rifabutina/análogos & derivados , Linhagem Celular
3.
J Nat Prod ; 87(5): 1321-1329, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38647518

RESUMO

Ansamycins, represented by the antituberculosis drug rifamycin, are an important family of natural products. To obtain new ansamycins, Streptomyces rapamycinicus IMET 43975 harboring an ansamycin biosynthetic gene cluster was fermented in a 50 L scale, and subsequent purification work led to the isolation of five known and four new analogues, where hygrocin W (2) belongs to benzoquinonoid ansamycins, and the other three hygrocins, hygrocins X-Z (6-8), are new seco-hygrocins. The structures of ansamycins (1-8) were determined by the analysis of spectroscopic (1D/2D NMR and ECD) and MS spectrometric data. The Baeyer-Villiger enzyme which catalyzed the ester formation in the ansa-ring was confirmed through in vivo CRISPR base editing. The discovery of these compounds further enriches the structural diversity of ansamycins.


Assuntos
Streptomyces , Streptomyces/genética , Streptomyces/química , Estrutura Molecular , Rifabutina/análogos & derivados , Rifabutina/química , Rifabutina/farmacologia , Família Multigênica , Rifamicinas/química , Rifamicinas/farmacologia
4.
Biomater Adv ; 161: 213862, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38678666

RESUMO

The emergence of antibiotic resistance makes the treatment of bacterial infections difficult and necessitates the development of alternative strategies. Targeted drug delivery systems are attracting great interest in overcoming the limitations of traditional antibiotics. Here, we aimed for targeted delivery of rifaximin (RFX) by decorating RFX-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) with synthetic P6.2 peptide, which was used as a targeting agent for the first time. Our results showed that encapsulation of RFX into NPs increased its antibacterial activity by improving its solubility and providing controlled release, while P6.2 modification allowed targeting of NPs to S. aureus bacterial cells. A promising therapeutic approach for bacterial infections, these P6.2-conjugated RFX-loaded PLGA NPs (TR-NP) demonstrated potent antibacterial activity against both strains of S. aureus. The antibacterial activity of RFX-loaded PLGA NPs (R-NP) showed significant results with an increase of 8 and 16-fold compared to free RFX against S. aureus and MRSA, respectively. Moreover, the activity of targeted nanoparticles was found to be increased 32 or 16-fold with an MBC value of 0.0078 µg/mL. All nanoparticles were found to be biocompatible at doses where they showed antimicrobial activity. Finally, it revealed that P6.2-conjugated targeted nanoparticles extremely accumulated in S. aureus rather than E. coli.


Assuntos
Antibacterianos , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Rifaximina , Infecções Estafilocócicas , Staphylococcus aureus , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Rifaximina/farmacologia , Rifaximina/química , Nanopartículas/química , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/administração & dosagem , Infecções Estafilocócicas/tratamento farmacológico , Testes de Sensibilidade Microbiana , Humanos , Rifamicinas/farmacologia , Rifamicinas/química , Rifamicinas/administração & dosagem , Animais , Sistemas de Liberação de Medicamentos/métodos , Portadores de Fármacos/química
5.
mBio ; 15(2): e0205123, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38126769

RESUMO

The emergence of multidrug-resistant Gram-negative bacteria underscores the need to define genetic vulnerabilities that can be therapeutically exploited. The Gram-negative pathogen, Acinetobacter baumannii, is considered an urgent threat due to its propensity to evade antibiotic treatments. Essential cellular processes are the target of existing antibiotics and a likely source of new vulnerabilities. Although A. baumannii essential genes have been identified by transposon sequencing, they have not been prioritized by sensitivity to knockdown or antibiotics. Here, we take a systems biology approach to comprehensively characterize A. baumannii essential genes using CRISPR interference (CRISPRi). We show that certain essential genes and pathways are acutely sensitive to knockdown, providing a set of vulnerable targets for future therapeutic investigation. Screening our CRISPRi library against last-resort antibiotics uncovered genes and pathways that modulate beta-lactam sensitivity, an unexpected link between NADH dehydrogenase activity and growth inhibition by polymyxins, and anticorrelated phenotypes that may explain synergy between polymyxins and rifamycins. Our study demonstrates the power of systematic genetic approaches to identify vulnerabilities in Gram-negative pathogens and uncovers antibiotic-essential gene interactions that better inform combination therapies.IMPORTANCEAcinetobacter baumannii is a hospital-acquired pathogen that is resistant to many common antibiotic treatments. To combat resistant A. baumannii infections, we need to identify promising therapeutic targets and effective antibiotic combinations. In this study, we comprehensively characterize the genes and pathways that are critical for A. baumannii viability. We show that genes involved in aerobic metabolism are central to A. baumannii physiology and may represent appealing drug targets. We also find antibiotic-gene interactions that may impact the efficacy of carbapenems, rifamycins, and polymyxins, providing a new window into how these antibiotics function in mono- and combination therapies. Our studies offer a useful approach for characterizing interactions between drugs and essential genes in pathogens to inform future therapies.


Assuntos
Acinetobacter baumannii , Rifamicinas , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Genes Essenciais , Polimixinas/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Rifamicinas/metabolismo , Rifamicinas/farmacologia , Testes de Sensibilidade Microbiana
6.
Clin Microbiol Rev ; 36(4): e0003923, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-37971270

RESUMO

Rifaximin-α is a gut-targeted antibiotic indicated for numerous gastrointestinal and liver diseases. Its multifaceted mechanism of action goes beyond direct antimicrobial effects, including alterations in bacterial virulence, cytoprotective effects on host epithelial cells, improvement of impaired intestinal permeability, and reduction of proinflammatory cytokine expression via activation of the pregnane X receptor. Rifaximin-α is virtually non-absorbed, with low systemic drug levels contributing to its excellent safety profile. While there are high concentrations of drug in the colon, low water solubility leads to low colonic drug bioavailability, protecting the gut microbiome. Rifaximin-α appears to be more active in the bile-rich small bowel. Its important biologic effects are largely at sub-inhibitory concentration. Although in vitro testing of clinical isolates from rifaximin recipients has revealed rifaximin-resistant strains in some studies, the risk of emergent rifaximin-α resistance appears to be lower than for many other antibiotics. Rifaximin-α has been used for many years for traveler's diarrhea with no apparent increase in resistance levels in causative pathogens. Further, rifaximin-α retains its efficacy after long-term and recurrent usage in chronic gastrointestinal disorders. There are numerous reasons why the risk of microbial resistance to rifaximin-α may be lower than that for other agents, including low intestinal bioavailability in the aqueous colon, the mechanisms of action of rifaximin-α not requiring inhibitory concentrations of drug, and the low risk of cross transmission of rifaximin-α resistance between bacterial species. Reported emergence of vancomycin-resistant Enterococcus in liver-disease patients maintained on rifaximin needs to be actively studied. Further studies are required to assess the possible correlation between in vitro resistance and rifaximin-α efficacy.


Assuntos
Rifamicinas , Humanos , Rifaximina/uso terapêutico , Rifamicinas/farmacologia , Rifamicinas/uso terapêutico , Diarreia/tratamento farmacológico , Viagem , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
7.
Sci Rep ; 13(1): 18933, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919333

RESUMO

Tuberculosis (TB) preventive therapy (TPT) is an effective strategy to eliminate TB in low-incidence settings. Shorter TPT regimens incorporating the antimicrobial class of rifamycins are designed to improve adherence and completion rates but carry the risk of modifications to the gut microbiota. We enrolled six subjects diagnosed with latent TB infection (LTBI) who accepted to initiate TPT. We also enrolled six healthy volunteers unexposed to the rifamycins. We profiled the gut microbiota using 16S rRNA amplicon sequencing (V1-V2 region) to document the immediate effect of rifamycin-based TPT on the gut microbiota composition and tracked recovery to baseline two months after TPT. Overall, TPT accounted for 17% of the variance in gut microbial community dissimilarity. This rifamycin-based TPT induced dysbiosis was characterized by a depletion of butyrate-producing taxa (Clostridium-XIVa and Roseburia) and expansion of potentially pathogenic taxa within the Firmicutes and Proteobacteria phyla. Recovery of the gut microbial composition was incomplete two months after TPT. Robust clinical studies are necessary to comprehensively catalogue TPT-induced gut microbiota dysbiosis to inform strategies to mitigate potential long-term sequelae of this important TB control intervention.


Assuntos
Microbioma Gastrointestinal , Tuberculose Latente , Rifamicinas , Humanos , Microbioma Gastrointestinal/genética , Disbiose , RNA Ribossômico 16S/genética , Rifamicinas/farmacologia , Rifamicinas/uso terapêutico , Tuberculose Latente/tratamento farmacológico
8.
PLoS One ; 18(6): e0287102, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37310985

RESUMO

Recently, we reported rifabutin hyper-activity against Acinetobacter baumannii. We sought to characterize if any additional rifamycins (n = 22) would also display hyper-activity when tested in iron-limited media against A. baumannii, K. pneumoniae, and E. coli. MICs were determined against representative clinical isolates using the iron-limited media RPMI-1640. Only rifabutin was hyperactive against A. baumannii.


Assuntos
Acinetobacter baumannii , Rifamicinas , Rifamicinas/farmacologia , Escherichia coli , Klebsiella pneumoniae , Rifabutina , Ferro/farmacologia , Testes de Sensibilidade Microbiana
9.
Angew Chem Int Ed Engl ; 62(29): e202303140, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37212460

RESUMO

Cytotrienin A, an ansamycin-class antibiotic, exhibits potent apoptosis-inducing activity and has attracted much attention as a lead compound for anticancer drugs. Herein, we report a new asymmetric synthetic route to cytotrienin A, employing an unexplored approach involving the late-stage installation of a C11 side chain onto the macrolactam core. In this strategy, we utilized the redox properties of hydroquinone and installed a side chain on the sterically hindered C11 hydroxy group by the traceless Staudinger reaction. This study also demonstrated that the boron-Wittig/iterative Suzuki-Miyaura cross-coupling sequence was effective for the concise and selective construction of the (E,E,E)-conjugated triene moiety. The developed route opens new opportunities for the structure-activity relationship studies of the side chains of these ansamycin antibiotics and the preparation of other synthetic analogs and chemical probes for further biological studies.


Assuntos
Rifamicinas , Lactamas Macrocíclicas/farmacologia , Rifamicinas/farmacologia , Relação Estrutura-Atividade , Oxirredução
10.
Sensors (Basel) ; 23(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36679772

RESUMO

This review summarizes the literature data reported from 2000 up to the present on the development of various electrochemical (voltammetric, amperometric, potentiometric and photoelectrochemical), optical (UV-Vis and IR) and luminescence (chemiluminescence and fluorescence) methods and the corresponding sensors for rifamycin antibiotics analysis. The discussion is focused mainly on the foremost compound of this class of macrocyclic drugs, namely rifampicin (RIF), which is a first-line antituberculosis agent derived from rifampicin SV (RSV). RIF and RSV also have excellent therapeutic action in the treatment of other bacterial infectious diseases. Due to the side-effects (e.g., prevalence of drug-resistant bacteria, hepatotoxicity) of long-term RIF intake, drug monitoring in patients is of real importance in establishing the optimum RIF dose, and therefore, reliable, rapid and simple methods of analysis are required. Based on the studies published on this topic in the last two decades, the sensing principles, some examples of sensors preparation procedures, as well as the performance characteristics (linear range, limits of detection and quantification) of analytical methods for RIF determination, are compared and correlated, critically emphasizing their benefits and limitations. Examples of spectrometric and electrochemical investigations of RIF interaction with biologically important molecules are also presented.


Assuntos
Mycobacterium tuberculosis , Rifamicinas , Humanos , Rifampina/farmacologia , Rifampina/uso terapêutico , Rifamicinas/farmacologia , Antituberculosos
11.
Angew Chem Int Ed Engl ; 61(45): e202211498, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36222275

RESUMO

Rifamycin antibiotics are a valuable class of antimicrobials for treating infections by mycobacteria and other persistent bacteria owing to their potent bactericidal activity against replicating and non-replicating pathogens. However, the clinical utility of rifamycins against Mycobacterium abscessus is seriously compromised by a novel resistance mechanism, namely, rifamycin inactivation by ADP-ribosylation. Using a structure-based approach, we rationally redesign rifamycins through strategic modification of the ansa-chain to block ADP-ribosylation while preserving on-target activity. Validated by a combination of biochemical, structural, and microbiological studies, the most potent analogs overcome ADP-ribosylation, restored their intrinsic low nanomolar activity and demonstrated significant in vivo antibacterial efficacy. Further optimization by tuning drug disposition properties afforded a preclinical candidate with remarkable potency and an outstanding pharmacokinetic profile.


Assuntos
Mycobacterium , Rifamicinas , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Rifamicinas/farmacologia , Rifamicinas/química , ADP-Ribosilação
12.
Mol Cell ; 82(17): 3166-3177.e5, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35905736

RESUMO

Rifampicin (RIF), the frontline drug against M. tuberculosis, is completely ineffective against M. abscessus, partially due to the presence of an ADP-ribosyltransferase (Arr) that inactivates RIF. Using RNA-seq, we show that exposure of M. abscessus to sublethal doses of RIF and Rifabutin (RBT), a close analog of RIF, results in an ∼25-fold upregulation of Mab_helR in laboratory and clinical isolates. An isogenic deletion in Mab_helR results in RIF/RBT hypersensitivity, and overexpression of Mab_helR confers RIF tolerance in M. tuberculosis. We demonstrate an increased HelR-RNAP association in RIF-exposed bacteria and a MabHelR-mediated dissociation of RNAP from stalled initiation complexes in vitro. Finally, we show that the tip of the PCh-loop of Mab_helR, present in proximity to RIF, is critical for conferring RIF resistance but dispensable for dissociation of stalled RNAP complexes, suggesting that HelR-mediated RIF resistance requires a step in addition to displacement of RIF-stalled RNAP.


Assuntos
Mycobacterium abscessus , Mycobacterium tuberculosis , Rifamicinas , Tuberculose , RNA Polimerases Dirigidas por DNA/genética , Farmacorresistência Bacteriana/genética , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Rifabutina/farmacologia , Rifampina/farmacologia , Rifamicinas/farmacologia , Tuberculose/microbiologia
13.
Mol Cell ; 82(17): 3151-3165.e9, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35907401

RESUMO

Rifamycin antibiotics such as rifampin are potent inhibitors of prokaryotic RNA polymerase (RNAP) used to treat tuberculosis and other bacterial infections. Although resistance arises in the clinic principally through mutations in RNAP, many bacteria possess highly specific enzyme-mediated resistance mechanisms that modify and inactivate rifamycins. The expression of these enzymes is controlled by a 19-bp cis-acting rifamycin-associated element (RAE). Guided by the presence of RAE sequences, we identify a helicase-like protein, HelR, in Streptomyces venezuelae that confers broad-spectrum rifamycin resistance. We show that HelR also promotes tolerance to rifamycins, enabling bacterial evasion of the toxic properties of these antibiotics. HelR forms a complex with RNAP and rescues transcription inhibition by displacing rifamycins from RNAP, thereby providing resistance by target protection . Furthermore, HelRs are broadly distributed in Actinobacteria, including several opportunistic Mycobacterial pathogens, offering yet another challenge for developing new rifamycin antibiotics.


Assuntos
Rifamicinas , Tuberculose , Antibacterianos/farmacologia , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Humanos , Rifampina/metabolismo , Rifampina/farmacologia , Rifamicinas/farmacologia , Streptomyces/enzimologia
14.
ACS Infect Dis ; 8(8): 1408-1421, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35772743

RESUMO

Tuberculosis (TB) is one of the most significant world health problems, responsible for 1.5 M deaths in 2020, and yet, current treatments rely largely on 40 year old paradigms. Although the rifamycins (RIFs), best exemplified by the drug rifampin (RMP), represent a well-studied and therapeutically effective chemotype that targets the bacterial RNA polymerase (RNAP), these agents still suffer from serious drawbacks including the following: 3-9 month treatment times; cytochrome P450 (Cyp450) induction [particularly problematic for human immunodeficiency virus-Mycobacterium tuberculosis (MTB) co-infection]; and the existence of RIF-resistant (RIFR) MTB strains. We have utilized a structure-based drug design approach to synthesize and test 15 benzoxazinorifamycins (bxRIFs), congeners of the clinical candidate rifalazil, to minimize human pregnane X receptor (hPXR) activation while improving potency against MTB. We have determined the compounds' activation of the hPXR [responsible for inducing Cyp450 3A4 (CYP3A4)]. Compound IC50s have been determined against the wild-type and the most prevalent RIFR (ß-S450L) mutant MTB RNAPs. We have also determined their bactericidal activity against "normal" replicating MTB and a model for non-replicating, persister MTB. We have identified a minimal substitution and have probed larger substitutions that exhibit negligible hPXR activation (1.2-fold over the dimethyl sulfoxide control), many of which are 5- to 10-fold more potent against RNAPs and MTB than RMP. Importantly, we have analogues that are essentially equipotent against replicating MTB and non-replicating persister MTB, a property that is correlated with faster kill rates and may lead to shorter treatment durations. This work provides a proof of principle that the ansamycin core remains an attractive and effective scaffold for novel and dramatically improved RIFs.


Assuntos
Infecções por HIV , Rifamicinas , Tuberculose , Adulto , Infecções por HIV/tratamento farmacológico , Humanos , Receptor de Pregnano X , Rifampina/farmacologia , Rifampina/uso terapêutico , Rifamicinas/farmacologia , Rifamicinas/uso terapêutico , Tuberculose/tratamento farmacológico
15.
ACS Infect Dis ; 8(8): 1422-1438, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35772744

RESUMO

Rifampin (RMP), a very potent inhibitor of the Mycobacterium tuberculosis (MTB) RNA polymerase (RNAP), remains a keystone in the treatment of tuberculosis since its introduction in 1965. However, rifamycins suffer from serious drawbacks, including 3- to 9-month treatment times, Cyp450 induction (particularly problematic for HIV-MTB coinfection), and resistant mutations within RNAP that yield RIF-resistant (RIFR) MTB strains. There is a clear and pressing need for improved TB therapies. We have utilized a structure-based drug design approach to synthesize and test novel benzoxazinorifamycins (bxRIF), congeners of the clinical candidate rifalazil. Our goal is to gain binding interactions that will compensate for the loss of RIF-binding affinity to the (RIFR) MTB RNAP and couple those with substitutions that we have previously found that essentially eliminate Cyp450 induction. Herein, we report a systematic exploration of 42 substituted bxRIFs that have yielded an analogue (27a) that has an excellent in vitro activity (MTB RNAP inhibition, MIC, MBC), enhanced (∼30-fold > RMP) activity against RIFR MTB RNAP, negligible hPXR activation, good mouse pharmacokinetics, and excellent activity with no observable adverse effects in an acute mouse TB model. In a time-kill study, 27a has a 7 day MBC that is ∼10-fold more potent than RMP. These results suggest that 27a may exhibit a faster kill rate than RMP, which could possibly reduce the clinical treatment time. Our synthetic protocol enabled the synthesis of ∼2 g of 27a at >95% purity in 3 months, demonstrating the feasibility of scale-up synthesis of bxRIFs for preclinical and clinical studies.


Assuntos
Mycobacterium tuberculosis , Rifamicinas , Tuberculose , Animais , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Farmacorresistência Bacteriana , Camundongos , Rifampina/farmacologia , Rifamicinas/farmacologia , Tuberculose/tratamento farmacológico
16.
Bioorg Med Chem Lett ; 57: 128484, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34861348

RESUMO

Bacterial resistance threatens the utility of currently available antibiotics. Rifampicin, a cornerstone in the treatment of persistent Gram-positive infections, is prone to the development of resistance resulting from single point mutations in the antibiotic's target, RNA polymerase. One strategy to circumvent resistance is the use of 'hybrid' antibiotics consisting of two covalently linked antibiotic entities. These compounds generally have two distinct cellular targets, reducing the probability of resistance development and potentially providing simplified pharmacological properties compared to combination therapies using the individual antibiotics. Here we evaluate a series of semi-synthetic hybrid antibiotics formed by linking kanglemycin A (Kang A), a rifampicin analog, and a collection of fluoroquinolones. Kang A is a natural product antibiotic which contains a novel dimethyl succinic acid moiety that offers a new attachment point for the synthesis of hybrid antibiotics. We compare the activity of the Kang A hybrids generated via the acid attachment point to a series of hybrids linked at the compound's naphthoquinone ring system. Several hybrids exhibit activity against bacteria resistant to Kang A via the action of the partnered antibiotic, suggesting that the Kang scaffold may provide new avenues for generating antibiotics effective against drug-resistant infections.


Assuntos
Antibacterianos/farmacologia , Fluoroquinolonas/farmacologia , Rifamicinas/farmacologia , Antibacterianos/síntese química , Antibacterianos/toxicidade , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Fluoroquinolonas/síntese química , Fluoroquinolonas/toxicidade , Células HEK293 , Humanos , Testes de Sensibilidade Microbiana , Rifamicinas/síntese química , Rifamicinas/toxicidade , Staphylococcus aureus/efeitos dos fármacos
17.
J Glob Antimicrob Resist ; 28: 43-48, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34920175

RESUMO

OBJECTIVES: We conducted an in vitro investigation of the activity of rifamycins against planktonic and biofilm states of Staphylococcus aureus and Staphylococcus epidermidis isolates from patients with prosthetic joint infections (PJIs), characterised their rpoB gene mutations, and analysed the clinical outcomes of rifampicin-resistant isolates. METHODS: A total of 110 staphylococcal isolates were collected from patients with PJI. Antimicrobials tested using the broth microdilution method included rifampicin, rifabutin, rifapentine and rifaximin. We evaluated rpoB gene mutations to identify rifampicin resistance mechanisms. Clinical outcomes were assessed in rifampicin-resistant isolates. RESULTS: The 110 staphylococcal isolates included 85 S. aureus (55% methicillin-resistant) and 25 S. epidermidis (100% methicillin-resistant). Seven S. aureus isolates and two S. epidermidis isolates were resistant to rifampicin [minimum inhibitory concentration (MIC) ≥2 µg/mL] and these isolates exhibited rpoB gene mutations. Among the 78 rifampicin-susceptible S. aureus isolates and 23 S. epidermidis isolates, 76 S. aureus isolates (97.4%) and all S. epidermidis isolates (100%) were highly susceptible (MIC ≤ 0.06 µg/mL) to other rifamycins. The minimum biofilm bactericidal concentrations for ≥50% of isolates (MBBC50) to rifampicin, rifabutin, rifapentine and rifaximin were 4, 1, 2 and 4 µg/mL for S. aureus and 1, 0.125, 0.25 and 0.5 µg/mL for S. epidermidis, respectively, among rifampicin-susceptible isolates. Among nine patients bearing rifampicin-resistant isolates, only three (33%) had successful outcomes. CONCLUSION: Rifamycins other than rifampicin show promising antistaphylococcal activity, including antibiofilm activity. Rifamycin-resistant staphylococci exhibit rpoB gene mutations.


Assuntos
Rifamicinas , Staphylococcus , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Humanos , Mutação , Rifabutina/farmacologia , Rifampina/farmacologia , Rifamicinas/farmacologia , Rifaximina , Staphylococcus/genética , Staphylococcus aureus/genética , Staphylococcus epidermidis/genética
19.
Antimicrob Agents Chemother ; 65(12): e0086421, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34606341

RESUMO

Rifamycins, such as rifampicin (Rif), are potent inhibitors of bacterial RNA polymerase (RNAP) and are widely used antibiotics. Rifamycin resistance is usually associated with mutations in RNAP that preclude rifamycin binding. However, some bacteria have a type of ADP-ribosyl transferases, Arr, which ADP-ribosylate rifamycin molecules, thus inactivating their antimicrobial activity. Here, we directly show that ADP-ribosylation abolishes inhibition of transcription by rifampicin, the most widely used rifamycin antibiotic. We also show that a natural rifamycin, kanglemycin A (KglA), which has a unique sugar moiety at the ansa chain close to the Arr modification site, does not bind to Arr from Mycobacterium smegmatis and thus is not susceptible to inactivation. We, found, however, that kanglemycin A can still be ADP-ribosylated by the Arr of an emerging pathogen, Mycobacterium abscessus. Interestingly, the only part of Arr that exhibits no homology between the species is the part that sterically clashes with the sugar moiety of kanglemycin A in M. smegmatis Arr. This suggests that M. abscessus has encountered KglA or rifamycin with a similar sugar modification in the course of evolution. The results show that KglA could be an effective antimicrobial against some of the Arr-encoding bacteria.


Assuntos
Rifamicinas , ADP-Ribosilação , Testes de Sensibilidade Microbiana , Rifampina/farmacologia , Rifamicinas/farmacologia
20.
Ann Clin Microbiol Antimicrob ; 20(1): 59, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34479551

RESUMO

BACKGROUND: Chlamydiae are intracellular bacteria that cause various severe diseases in humans and animals. The common treatment for chlamydia infections are antibiotics. However, when antibiotics are misused (overuse or self-medication), this may lead to resistance of a number of chlamydia species, causing a real public health problem worldwide. MATERIALS AND METHODS: In the present work, a comprehensive literature search was conducted in the following databases: PubMed, Google Scholar, Cochrane Library, Science direct and Web of Science. The primary purpose is to analyse a set of data describing the genes and mutations involved in Chlamydiae resistance to antibiotic mechanisms. In addition, we proceeded to a filtration process among 704 retrieved articles, then finished by focusing on 24 studies to extract data that met our requirements. RESULTS: The present study revealed that Chlamydia trachomatis may develop resistance to macrolides via mutations in the 23S rRNA, rplD, rplV genes, to rifamycins via mutations in the rpoB gene, to fluoroquinolones via mutations in the gyrA, parC and ygeD genes, to tetracyclines via mutations in the rpoB gene, to fosfomycin via mutations in the murA gene, to MDQA via mutations in the secY gene. Whereas, Chlamydia pneumoniae may develop resistance to rifamycins via mutations in the rpoB gene, to fluoroquinolones via mutations in the gyrA gene. Furthermore, the extracted data revealed that Chlamydia psittaci may develop resistance to aminoglycosides via mutations in the 16S rRNA and rpoB genes, to macrolides via mutations in the 23S rRNA gene. Moreover, Chlamydia suis can become resistance to tetracyclines via mutations in the tet(C) gene. In addition, Chlamydia caviae may develop resistance to macrolides via variations in the 23S rRNA gene. The associated mechanisms of resistance are generally: the inhibition of bacteria's protein synthesis, the inhibition of bacterial enzymes' action and the inhibition of bacterial transcription process. CONCLUSION: This literature review revealed the existence of diverse mutations associated with resistance to antibiotics using molecular tools and targeting chlamydia species' genes. Furthermore, these mutations were shown to be associated with different mechanisms that led to resistance. In that regards, more mutations and information can be shown by a deep investigation using the whole genome sequencing. Certainly, this can help improving to handle chlamydia infections and healthcare improvement by decreasing diseases complications and medical costs.


Assuntos
Antibacterianos/farmacologia , Infecções por Chlamydia/tratamento farmacológico , Chlamydia trachomatis/efeitos dos fármacos , Chlamydia trachomatis/genética , Macrolídeos/farmacologia , RNA Ribossômico 16S/genética , Tetraciclinas/farmacologia , Infecções por Chlamydia/diagnóstico , Chlamydia trachomatis/isolamento & purificação , Fluoroquinolonas/farmacologia , Humanos , Mutação , RNA Ribossômico 23S/genética , Rifamicinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...