RESUMO
Dissolved copper and iron ions are regarded as friendly and economic catalysts for peroxymonosulfate (PMS) activation, however, neither Cu(II) nor Fe(III) shows efficient catalytic performance because of the slow rates of Cu(II)/Cu(I) and Fe(III)/Fe(II) cycles. Innovatively, we observed a significant enhancement on the degradation of organic contaminants when Cu(II) and Fe(III) were coupled to activate PMS in borate (BA) buffer. The degradation efficiency of Rhodamine B (RhB, 20 µmol/L) reached up to 96.3% within 10 min, which was higher than the sum of individual Cu(II)- and Fe(III)- activated PMS process. Sulfate radical, hydroxyl radical and high-valent metal ions (i.e., Cu(III) and Fe(IV)) were identified as the working reactive species for RhB removal in Cu(II)/Fe(III)/PMS/BA system, while the last played a predominated role. The presence of BA dramatically facilitated the reduction of Cu(II) to Cu(I) via chelating with Cu(II) followed by Fe(III) reduction by Cu(I), resulting in enhanced PMS activation by Cu(I) and Fe(II) as well as accelerated generation of reactive species. Additionally, the strong buffering capacity of BA to stabilize the solution pH was satisfying for the pollutants degradation since a slightly alkaline environment favored the PMS activation by coupling Cu(II) and Fe(III). In a word, this work provides a brand-new insight into the outstanding PMS activation by homogeneous bimetals and an expanded application of iron-based advanced oxidation processes in alkaline conditions.
Assuntos
Cobre , Peróxidos , Poluentes Químicos da Água , Cobre/química , Poluentes Químicos da Água/química , Peróxidos/química , Catálise , Ferro/química , Rodaminas/química , OxirreduçãoRESUMO
The design and development of fluorescent materials for detecting cancer-related enzymes are crucial for cancer diagnosis and treatment. Herein, we present a substituted rhodamine derivative for the chromogenic and fluorogenic detection of the cancer-relevant enzyme γ-glutamyltranspeptidase (GGT). Initially, the probe is non-chromic and non-emissive due to its spirolactam form, which hinders extensive electronic delocalization over broader pathway. However, selective enzymatic cleavage of the side-coupled group triggers spirolactam ring opening, resulting in electronic flow across the rhodamine skeleton, and reduces the band gap for low-energy electronic transitions. This transformation turns the reaction mixture from colorless to intense pink, with prominent UV and fluorescence bands. The sensor's selectivity was tested against various human enzymes, including urease, alkaline phosphatase, acetylcholinesterase, tyrosinase, and cyclooxygenase, and showed no response. Absorption and fluorescence titration analyses of the probe upon incremental addition of GGT into the probe solution revealed a consistent increase in both absorption and emission spectra, along with intensified pink coloration. The cellular toxicity of the receptor was evaluated using the MTT assay, and bioimaging analysis was performed on BHK-21 cells, which produced bright red fluorescence, demonstrating the probe's excellent cell penetration and digestion capabilities for intracellular analytical detection. Molecular docking results supported the fact that probe-4 made stable interactions with the GGT active site residues.
Assuntos
Corantes Fluorescentes , Neoplasias , gama-Glutamiltransferase , gama-Glutamiltransferase/metabolismo , gama-Glutamiltransferase/química , Corantes Fluorescentes/química , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/enzimologia , Simulação de Acoplamento Molecular , Espectrometria de Fluorescência/métodos , Rodaminas/química , AnimaisRESUMO
Green processes for synthesizing nanocomposites are a hot area of research today as traditional processes are expensive, inefficient, harmful for synthesizing organic and inorganic molecules, and unsuitable for large-scale operations. The present study investigates the capacity of green synthesized Calcium oxide nanoparticles (CaO NPs) for efficiently removing Rhodamine B. Chemical reduction was replaced with Mulberry (Morus nigera) leaf extract as an environmentally friendly reaction mechanism. CaO NPs are characterized by various analytical techniques including EDX, BET, SEM, FTIR, TGA, Zeta Potential, Point of Zero Charge (PZC), and XRD. Maximum adsorption of Rhodamine B by CaO NPs is revealed at an initial concentration of Rhodamine B of 80 ppm, a temperature of 343 K, and contact time of 60 min, 0.4 g of adsorbent at a pH value of 7. Maximum removal of Rhodamine B by CaO NPs was found to be 98.2% which is promising with this small amount of adsorbent (0.4 g). Diverse Kinetic and adsorption isotherms are employed in this study to determine the requirement and significance of the adsorption process. Various adsorption isotherms such as Freundlich, Temkin, Dubinin-Radushkevich (D-R), and Langmuir models have been employed. Among the kinetic adsorption isotherms Elovich, Intraparticle kinetic model, pseudo 1st order, and pseudo 2nd order models were applied. The current study investigates the thorough understanding of the Rhodamine B adsorption process including the mechanism of adsorption using condition optimization, characterization, and model applications. The proposed adsorbent can be employed for the green removal of Rhodamine B from wastewater of industry with maximum efficiency and favorable regeneration properties.
Assuntos
Compostos de Cálcio , Morus , Nanopartículas , Óxidos , Extratos Vegetais , Folhas de Planta , Rodaminas , Rodaminas/química , Morus/química , Compostos de Cálcio/química , Folhas de Planta/química , Folhas de Planta/metabolismo , Extratos Vegetais/química , Adsorção , Óxidos/química , Nanopartículas/química , Cinética , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/química , Química Verde/métodos , Purificação da Água/métodosRESUMO
Voltage imaging is an important complement to traditional methods for probing cellular physiology, such as electrode-based patch clamp techniques. Unlike the related Ca2+ imaging, voltage imaging provides a direct visualization of bioelectricity changes. We have been exploring the use of sulfonated silicon rhodamine dyes (Berkeley Red Sensor of Transmembrane potential, BeRST) for voltage imaging. In this study, we explore the effect of converting BeRST to diEt BeRST, by replacing the dimethyl aniline of BeRST with a diethyl aniline group. The new dye, diEt BeRST, has a voltage sensitivity of 40% ΔF/F per 100 mV, a 33% increase compared to the original BeRST dye, which has a sensitivity of 30% ΔF/F per 100 mV. In neurons, the cellular brightness of diEt BeRST is about 20% as bright as that of BeRST, which may be due to the lower solubility of diEt BeRST (300 µM) compared to that of BeRST (800 µM). Despite this lower cellular brightness, diEt BeRST is able to record spontaneous and evoked action potentials from multiple neurons simultaneously and in single trials. Far-red excitation and emission profiles enable diEt BeRST to be used alongside existing fluorescent indicators of cellular physiology, like Ca2+-sensitive Oregon Green BAPTA. In hippocampal neurons, simultaneous voltage and Ca2+ imaging reveals neuronal spiking patterns and frequencies that cannot be resolved with traditional Ca2+ imaging methods. This study represents a first step toward describing the structural features that define voltage sensitivity and brightness in silicon rhodamine-based BeRST indicators.
Assuntos
Corantes Fluorescentes , Potenciais da Membrana , Neurônios , Rodaminas , Animais , Corantes Fluorescentes/química , Neurônios/metabolismo , Rodaminas/química , Hipocampo , Compostos de Anilina/química , Cálcio/metabolismo , Cálcio/análise , Potenciais de Ação/efeitos dos fármacos , Ratos , HumanosRESUMO
Hydrogen peroxide-based Fenton reaction can effectively degrade many small-molecule fluorescent dyes, leading to notable alterations in fluorescence signals. Additionally, the two-dimensional black phosphorus/platinum nanocomposite (BP/Pt) demonstrates exceptional catalase (CAT) characteristics. Based on these, a colorimetric-fluorescence dual-mode signal output pattern based on BP/Pt-Fenton reaction-rhodamine B tandem reaction system is reported. The physical adsorption property of the BP/Pt nanozymes was utilized to couple with antibodies, thus constructing a novel dual-mode nanozyme-based immuno-sensing assay (NISA). By using the migratory antibiotic enrofloxacin (ENR) as the target, the NISA provided highly sensitive detection with the detection limits of 0.058 ng/mL for colorimetric-mode and 0.025 ng/mL for fluorescence-mode and achieved accurate quantitative detection in environmental water and crucian carp samples. This work provides an innovative design for monitoring antibiotics in the environment and broadens the idea for the application of nanozymes and Fenton systems in immunosensing assays.
Assuntos
Antibacterianos , Catalase , Enrofloxacina , Peróxido de Hidrogênio , Ferro , Limite de Detecção , Fósforo , Platina , Enrofloxacina/análise , Platina/química , Imunoensaio/métodos , Animais , Peróxido de Hidrogênio/química , Catalase/química , Ferro/química , Fósforo/química , Antibacterianos/análise , Antibacterianos/química , Rodaminas/química , Carpas , Nanocompostos/química , Colorimetria/métodos , Poluentes Químicos da Água/análise , Corantes Fluorescentes/química , Anticorpos Imobilizados/imunologiaRESUMO
Investigating blood-brain barrier (BBB) dysfunction has become a pre-clinical and clinical research focus as it accompanies many neurological disorders. Nevertheless, knowledge of how diagnostic BBB tracers cross the endothelium from blood-to-brain or vice versa often remains incomplete. In particular, brain-to-blood transport (efflux) may reduce tracer extravasation of intravascularly (i.v.) applied tracers. Conversely, impaired efflux could mimic phenotypic extravasation. Both processes would affect conclusions on BBB properties primarily attributed to blood-to-brain leakage. Here, we specifically investigated efflux of fluorescent BBB tracers, focusing on the most common non-toxic marker, sodium fluorescein, which is applicable in patients. We used acute neocortical slices from mice and applied fluorescein, sulforhodamine-B, rhodamine-123, FITC dextran to the artificial cerebrospinal fluid. Anionic low molecular weight (MW) fluorescein and sulforhodamine-B, but not ~ 10-fold larger FITC-dextran and cationic low MW rhodamine-123, showed efflux into the lumen of blood vessels. Our data suggest that fluorescein efflux depends on organic anion transporter polypeptides (Oatp) rather than P-glycoprotein. Furthermore, sodium-potassium ATPase inhibition and incomplete oxygen-glucose deprivation (OGD, 20% O2) reduced fluorescein efflux, while complete OGD (0% O2) abolished efflux. We provide evidence for active efflux of fluorescein in vitro. Impaired efflux of fluorescein could thus contribute to the frequently observed BBB dysfunction in neuropathologies in addition to blood-to-brain leakage.
Assuntos
Barreira Hematoencefálica , Fluoresceína , Animais , Barreira Hematoencefálica/metabolismo , Fluoresceína/metabolismo , Camundongos , Transporte Biológico , Rodamina 123/metabolismo , Rodaminas/metabolismo , Encéfalo/metabolismo , Encéfalo/irrigação sanguínea , Transportadores de Ânions Orgânicos/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Masculino , Camundongos Endogâmicos C57BLRESUMO
The field of environmental and water remediation faces a significant challenge in removing organic dyes from wastewater, particularly Rhodamine B (RhB), a stubborn dye used in various industries. Traditional treatment methods struggle with its resistance to decomposition, posing risks to water quality, human health, and aquatic life. This study demonstrates a novel approach to enhance photocatalytic efficiency for RhB degradation by constructing a MOF-5/g-C3N4 composite through a facile mechanical grinding method, which is unprecedented. The composite addresses the limitations of g-C3N4, such as rapid recombination of electron-hole pairs, low electron transfer rates, and small surface area, by forming a heterojunction with MOF-5. The composite exhibits enhanced photocatalytic efficiency for the degradation of RhB under sunlight, with a degradation of 91.5% achieved within 90 min. Optimization studies highlight the importance of pH and catalyst dosage in the degradation process. The reusability test shows consistent performance over five successive cycles, maintaining a degradation efficiency of over 90%. Total organic carbon (TOC) analyses confirm the mineralization of the dye solution to 82.05% after 90 min of irradiation, demonstrating the environmental benignity of the composite. Trapping experiments suggest the involvement of superoxide radicals, electrons, and holes in the photocatalytic mechanism. This study introduces a promising strategy for addressing challenges in dye degradation through innovative composite materials.
Assuntos
Nanocompostos , Rodaminas , Poluentes Químicos da Água , Rodaminas/química , Nanocompostos/química , Catálise , Poluentes Químicos da Água/química , Estruturas Metalorgânicas/química , Corantes/química , Águas Residuárias/químicaRESUMO
Minimally invasive surgery continues to prioritize patient safety by improving imaging techniques and tumor detection methods. In this work, an all-optical alternative to the current image based techniques for in vitro minimally invasive procedures has been explored. The technique uses a highly fluorescent marker for the surgical needle to be tracked inside simulated tissues. A series of markers were explored including inorganic (Perovskite and PbS) and organic (carbon dots) nanoparticles and organic dye (Rhodamine 6G) to identify layers of different stiffnesses within a tissue. Rhodamine 6G was chosen based on its high fluorescence signal to track 3D position of a surgical needle in a tissue. The needle was tracked inside homogeneous and inhomogeneous gelatin tissues successfully. This exploratory study of tissue characterization and needle tip tracking using fluorescent markers or photoluminescence technique show potential for real-time application of robot-assisted needle insertions during in vivo procedures.
Assuntos
Procedimentos Cirúrgicos Minimamente Invasivos , Agulhas , Rodaminas , Humanos , Nanopartículas , Corantes Fluorescentes , Compostos de Cálcio/química , Óxidos/química , Gelatina , TitânioRESUMO
A method for detecting methamphetamine (MET), ketamine (KET), and morphine (MOP) molecules is presented using a reusable substrate based on SERS. The SERS substrate was prepared by etching the Au/Ag alloy film to synthesize a nanoporous Au membrane (AuNPM). By optimizing the preparation conditions and using rhodamine 6G (R6G) as an analyte, the AuNPM exhibited good SERS performance with a limit of detection (LOD) of 10-9 mol L-1. A competitive immunoassay category has been applied to the detection of MET, KET, and MOP. The MET, KET, and MOP antigens were functionalized on the surface of the AuNPM to specifically bind to the related drug antibodies. The Au nanoparticles (AuNPs) modified with 4-mercaptobenzoic acid (4-MBA) and antibodies against MET, KET, and MOP were used as nanotags. The 4-MBA served as the reporting molecule and drug antibodies were used to bind to free drug molecules in the target solution. The mixture of nanotags and target solution was dropped onto the antigen-modified AuNPM (antigen/AuNPM), and the free nanotags bind to the antigen/AuNPM. By comparing the SERS intensity of 4-MBA with the presence or absence of drug molecules, the drugs were qualitatively and quantitatively identified. Through this category, the LODs for detecting MET, KET, and MOP were 0.1, 1, and 1 ng mL-1, respectively. This study proposes an effective method for constructing SERS-based detection of drug molecules with good potential for practical applications.
Assuntos
Ouro , Ketamina , Limite de Detecção , Nanopartículas Metálicas , Metanfetamina , Análise Espectral Raman , Ouro/química , Análise Espectral Raman/métodos , Nanopartículas Metálicas/química , Metanfetamina/análise , Metanfetamina/imunologia , Ketamina/análise , Ketamina/química , Morfina/análise , Morfina/imunologia , Morfina/química , Nanoporos , Prata/química , Rodaminas/química , Imunoensaio/métodos , Benzoatos , Compostos de SulfidrilaRESUMO
The fluorescence high-throughput screening method is of importance for new antioxidant drug candidate discovery for the treatment of serious hepatorenal syndrome, which displayed an obvious upregulated peroxynitrite level. However, most of the current ONOO- probes possessed incomplete fluorescence quenching efficiency, which can result in non-negligible probe inherent fluorescence. Hence, we utilized the probe conjugated structure disruption strategy to construct hydrogenation phosphorus-substituted rhodamine (H-PRh) with "zero" probe inherent fluorescence character. Based on the precursor, a series of natural products were screened for identifying antioxidant drug candidates. Luteolin was screened out by activating the Sirt1-Nrf2-HO-1 signaling pathway to regulate the accumulation of ONOO- in the hepatorenal syndrome. Overall, the "zero" probe inherent fluorescence ONOO- sensor constructed here applies for a promising and versatile toolbox for illuminating the ONOO--related pathological process in the hepatorenal syndrome. Besides, this strategy of constructing highly sensitive sensors could serve as a valuable reference for further fluorescent probes.
Assuntos
Antioxidantes , Corantes Fluorescentes , Ensaios de Triagem em Larga Escala , Ácido Peroxinitroso , Ácido Peroxinitroso/análise , Antioxidantes/química , Antioxidantes/farmacologia , Humanos , Ensaios de Triagem em Larga Escala/métodos , Corantes Fluorescentes/química , Fator 2 Relacionado a NF-E2/metabolismo , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Animais , Sirtuína 1/metabolismo , Heme Oxigenase-1/metabolismo , Rodaminas/química , Luteolina/química , Luteolina/farmacologia , Fluorescência , Transdução de Sinais/efeitos dos fármacosRESUMO
In this study, we present an innovative "click-to-release" strategy for the design of highly specific H2Sn bioorthogonal probes that undergo a specific click reaction with H2Sn and release fluorophores by a following rearrangement. A library of cyclooctyne derivatives was established and successfully demonstrated the availability of the release strategy. Then, a model probe CM-CT was synthesized, which can achieve effective fluorophore release (>80%) in the presence of a H2Sn donor. To further validate the application of this class of probes, a new probe QN-RHO-CT based on Rhodamine 110 was developed. This probe showed good water solubility (>160 µM) and fast release kinetics and can achieve selective H2Sn detection in living cells. We used this probe to study the process of H2S-mediated protein S-persulfidation and demonstrated that excess H2S would directly react with protein persulfides to generate H2S2 and reduce the persulfides to thiols. Additionally, we elucidated the click-to-release mechanism in our design through a detailed mechanistic study, confirming the generation of the key intermediate α, ß-unsaturated cyclooctanethione. This bioorthogonal click-to-release reaction provides a useful tool for investigating the function of H2Sn and paves the way for biological studies on H2Sn.
Assuntos
Química Click , Corantes Fluorescentes , Sulfetos , Sulfetos/química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Humanos , Células HeLa , Sulfeto de Hidrogênio/análise , Sulfeto de Hidrogênio/química , Rodaminas/químicaRESUMO
Super-resolution single-molecule localization microscopy (SMLM) of presynaptic active zones (AZs) and postsynaptic densities contributed to the observation of protein nanoclusters that are involved in defining functional characteristics and in plasticity of synaptic connections. Among SMLM techniques, direct stochastic optical reconstruction microscopy (dSTORM) depends on organic fluorophores that exert high brightness and reliable photoswitching. While multicolor imaging is highly desirable, the requirements necessary for high-quality dSTORM make it challenging to identify combinations of equally performing, spectrally separated dyes. Red-excited carbocyanine dyes, e.g., Alexa Fluor 647 (AF647) or Cy5, are currently regarded as "gold standard" fluorophores for dSTORM imaging. However, a recent study introduced a set of chemically modified rhodamine dyes, including CF583R, that promise to display similar performance in dSTORM. In this study, we defined CF583R's performance compared to AF647 and CF568 based on a nanoscopic analysis of Bruchpilot (Brp), a nanotopologically well-characterized scaffold protein at Drosophila melanogaster AZs. We demonstrate equal suitability of AF647, CF568 and CF583R for basal AZ morphometry, while in Brp subcluster analysis CF583R outperforms CF568 and is on par with AF647. Thus, the AF647/CF583R combination will be useful in future dSTORM-based analyses of AZs and other subcellularly located marker molecules and their role in physiological and pathophysiological contexts.
Assuntos
Drosophila melanogaster , Corantes Fluorescentes , Animais , Drosophila melanogaster/metabolismo , Corantes Fluorescentes/química , Processos Estocásticos , Proteínas de Drosophila/metabolismo , Microscopia de Fluorescência/métodos , Rodaminas/químicaRESUMO
Wastewater purification has evolved into a global problem in the face of increasing scarcity of freshwater resources. Photocatalysis technology possesses prominent advantages in treating pollutants in water because of its low cost and mild reaction conditions, which provides an effective way to treat multiple pollutants and reduce membrane fouling. Herein, we combine photocatalysis technology with filtration technology via in situ reduction Bi0 with Bi2SiO5 strategy incorporating a carbonized wood filter to synthesize carbon/Bi2SiO5@Bi bi-functional composite. Thus, simultaneous filtration and photocatalytic degradation of Rhodamine B and tetracycline were achieved. After filtrating for 30 min, the degradation rate of RhB and TC were 94.23 % and 81.39 %, respectively. Especially, the flux of RhB and TC were up to 2162.16 L m-2 h-1 and 1811.32 L m-2 h-1. In addition, the composite filter also has good recyclability and reusability, after 5 cycles, the degradation efficiency of RhB remains at 91 %. This study utilized photocatalytic technology combined with membrane filtration technology to successfully solve the contradiction between catalytic efficiency and water flux, which realized rapid and dynamic removal of organic pollutants from water. Besides, the use of carbonized wood-based materials provides a potential biomass technology for the preparation of bifunctional photocatalytic filters.
Assuntos
Filtração , Poluentes Químicos da Água , Purificação da Água , Madeira , Purificação da Água/métodos , Madeira/química , Filtração/métodos , Catálise , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Rodaminas/química , Rodaminas/isolamento & purificação , Tetraciclina/química , Tetraciclina/isolamento & purificação , Bismuto/química , Processos Fotoquímicos , Carbono/químicaRESUMO
Visible-light-driven photocatalysis is an eco-friendly technology for wastewater treatment, where TiO2-based photocatalysts displayed outstanding performance in this regard. Dye sensitization is a promising approach for overcoming the common drawbacks of TiO2via improving its photocatalytic performance and extending its activity to visible light. Herein, we demonstrate the synthesis of the Thiophene-Hydrazinyl-Thiazole (THT) derivative as a novel organic dye sensitizer to be employed as a visible-light antenna for TiO2 nanoparticles. The physicochemical characteristics of the as-synthesized TiO2-based nanoparticles are examined by different techniques, which revealed the successful fabrication of the proposed THT-TiO2 heterojunction. The incorporation of THT molecules on the TiO2 surface led to slight disorders and deformation in the crystal lattice of TiO2, a remarkable improvement of its absorption in the visible light as a perfect visible-light antenna in the whole visible region, and significant enhancement in the charge transfer. Rhodamine B (RhB) is used as an organic dye model to assess the photocatalytic efficiency of the as-fabricated THT-TiO2 photocatalyst which achieved almost complete degradation (>95% in 150 min) with an observed rate constant (kobs) of 0.0164 min-1; total organic carbon (TOC) measurements suggested â¼75% mineralization. THT-TiO2 achieved 2.1-fold enhancement in photodegradation% and 4.1-fold enhancement in kobs compared to the bare TiO2. THT showed good activity under visible-light irradiation (RhB degradation% was >66% in 150 min and kobs = 0.0085 min-1). The influence of the initial pH of the solution was investigated and pH 4 was the optimum pH value for suitable interaction between RhB and the surface of THT-TiO2. Radical quenching experiments were conducted to assess the crucial reactive species where the âOH and O2.- were the most reactive species. THT-TiO2 showed promising stability over three successive cycles. Finally, the improvement mechanism of the photocatalytic activity of THT-TiO2 was attributed to the electron injection from the excited THT (the dye sensitizer) to TiO2 and enhanced charge separation.
Assuntos
Corantes , Fotólise , Rodaminas , Tiofenos , Titânio , Poluentes Químicos da Água , Titânio/química , Rodaminas/química , Catálise , Poluentes Químicos da Água/química , Corantes/química , Tiofenos/química , Tiazóis/química , Luz , Nanopartículas/químicaRESUMO
Improving the charge separation, charge transfer, and effective utilization is crucial in a photocatalysis system. Herein, we prepared a novel direct Z-scheme NH2-MIL-125(Ti)@FeOCl (Ti-MOF@FeOCl) composite photocatalyst through a simple method. The prepared composite catalyst was utilized in the photo-Fenton degradation of Rhodamine B (RhB) and ciprofloxacin (CIP). The Ti-MOF@FeOCl (10FeTi-MOF) catalyst exhibited the highest catalytic performance and degraded 99.1 and 66% of RhB and CIP, respectively. However, the pure NH2-MIL-125(Ti) (Ti-MOF) and FeOCl catalysts achieved only 50 and 92% of RhB and 50 and 37% of CIP, respectively. The higher catalytic activities of the Ti-MOF@FeOCl composite catalyst could be due to the electronic structure improvements, photoinduced charge separations, and charge transfer abilities in the catalyst system. The composite catalysts have also enhanced adsorption and visible light-responsive properties, allowing for efficient degradation. Furthermore, the electron paramagnetic resonance (EPR) signals, the reactive species trapping experiments, and Mott-Schottky (M - S) measurements revealed that the photogenerated superoxide radical (â¢O2-), hydroxyl radical (â¢OH), and holes (h+) played a vital role in the degradation process. The results also demonstrated that the Ti-MOF@FeOCl heterojunction composite catalysts could be a promising photo-Fenton catalyst system for the environmental remediation. Environmental implications The discharging of toxic contaminants such as organic dyes, antibiotics, and other emerging pollutants to the environment deteriorates the ecosystem. Specifically, the residues of organic pollutants recognized as a threat to ecosystem and a cause for carcinogenic effects. Among them, ciprofloxacin is one of antibiotics which has biological resistance, and metabolize partially in the human or animal bodies. It is also difficult to degrade ciprofloxacin completely with traditional treatment methods. Similarly, organic dyes are also toxic and a cause for carcinogenic effects. Therefore, effective degradation of organic pollutants such as RhB and ciprofloxacin with appropriate method is crucial.
Assuntos
Luz , Rodaminas , Catálise , Rodaminas/química , Ciprofloxacina/química , Titânio/química , Estruturas Metalorgânicas/química , Poluentes Químicos da Água/química , Fotólise , Ferro/química , Peróxido de Hidrogênio/química , Adsorção , Processos FotoquímicosRESUMO
In this study, neodymium-doped titanium dioxide (Nd-TiO2) nanoparticles were synthesized via a hydrothermal method for the photocatalytic degradation of Rhodamine B (RhB) under UV and sunlight conditions. The properties of these NPs were comprehensively characterized. And optimization of RhB degradation was conducted using control-variable experiment and artificial neural networks (ANN) under various operational conditions and in the presence of competing compounds. The acute toxicity of both NPs, RhB, and the environmental impact of the photocatalytic treatment effluent on Danio rerio were evaluated. The Nd modification increased the catalyst's specific surface area and thermal stability. X-ray diffraction confirmed the tetragonal anatase phase in undoped TiO2, while Nd-doped TiO2 exhibited shifts in peaks and the presence of brookite and rutile phases. Nd (1 mol%) doped TiO2 demonstrated superior RhB photocatalytic degradation efficiency, achieving 95% degradation and 82% total organic carbon (TOC) removal within 60 min under UV irradiation. Optimization under sunlight conditions yielded 95.14% RhB removal with 0.28 g/L photocatalyst and 1% doping. Under UV light, 98.12% RhB removal was optimized with 0.97% doping, along with the presence of humic acid and CaCl2. ANN modeling achieved high precision (R2 of 0.99) in modeling environmental photocatalysis. Toxicity assessments indicated that the 96-h LC50 values were 681.59 mg L-1 for both NPs, and 23.02 mg L-1 for RhB. The treated dye solution exhibited a significant decline in toxicity, emphasizing the potential of 1% Nd-TiO2 in wastewater treatment.
Assuntos
Neodímio , Rodaminas , Titânio , Titânio/química , Titânio/toxicidade , Rodaminas/química , Neodímio/química , Catálise , Animais , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade , Peixe-Zebra , Raios UltravioletaRESUMO
In this study, horseradish peroxidase (HRP) enzyme was immobilized on Pd(II) containing polymeric microspheres by adsorption method and used for the decolourisation of Methyl Orange (MO) and Rhodamine B (RB) dyes. The synthesized microspheres were characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy-Energy Dispersive X-ray (SEM/EDX), Thermal Gravimetric Analysis (TGA). The effects of pH, dye concentration, temperature, and H2O2 concentration on the decolourisation of MO and RB were determined. According to the results of various parameters studied, when 2-AEPS-napht-HRP support was used, MO and RB were biodegraded to 69.72% and 80.65%, respectively, within 60 min. When 2-AEPS-napht-Pd-HRP support was used, MO and RB were biodegraded to 58.35% and 90.81%, respectively, under optimum conditions. When the reproducibility results of the immobilized supports were examined, it was observed that they remained efficient during the first five reusability cycles and even reached 65% decolourisation efficiency after the 9th reuse. The immobilized enzyme (2AEPS-npht-HRP and 2AEPS-npht-Pd-HRP) showed remarkable resistance to higher temperatures compared to the free enzyme.
Assuntos
Compostos Azo , Corantes , Enzimas Imobilizadas , Peroxidase do Rábano Silvestre , Microesferas , Rodaminas , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Corantes/química , Rodaminas/química , Compostos Azo/química , Concentração de Íons de Hidrogênio , Peróxido de Hidrogênio/química , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Poluentes Químicos da Água/química , Adsorção , Descoloração da Água/métodos , Polímeros/químicaRESUMO
Random lasing (RL) is an optical phenomenon that arises from the combination of light amplification with optical feedback through multiple scattering events. In this paper, we present our investigations of RL generation from human blood samples. We tested mixtures of rhodamine B dye solutions with different blood components, including platelets, lymphocytes, erythrocytes, and whole blood. Intense coherent RL was obtained in all cases at relatively low pump thresholds, except for erythrocytes. We also studied the potential of RL signal analysis for biosensing applications using blood samples from healthy individuals and patients suffering from Chronic Lymphocytic Leukemia (CLL). CLL is a blood disease characterized by a high count of lymphocytes with significant morphological changes. A statistical analysis of the RL spectra based on principal component and linear discriminant analyses was conducted for classification purposes. RL-based sample discrimination was conducted for whole blood, platelet, and lymphocyte samples, being especially successful (86.7%) for the latter. Our results highlight the potential of RL analysis as a sensing tool in blood.
Assuntos
Técnicas Biossensoriais , Humanos , Plaquetas , Leucemia Linfocítica Crônica de Células B/sangue , Linfócitos , Eritrócitos , RodaminasRESUMO
The Ti3C2 quantum dots (QDs)/oxygen-vacancy-rich BiOBr hollow microspheres composite photocatalyst was prepared using solvothermal synthesis and electrostatic self-assembly techniques. Together, Ti3C2QDs and oxygen vacancies (OVs) enhanced photocatalytic activity by broadening light absorption and improving charge transfer and separation processes, resulting in a significant performance boost. Meanwhile, the photocatalytic efficiency of Ti3C2 QDs/BiOBr-OVs is assessed to investigate its capability for oxygen evolution and degradation of tetracycline (TC) and Rhodamine B (RhB) under visible-light conditions. The rate of oxygen production is observed to be 5.1 times higher than that of pure BiOBr-OVs, while the photocatalytic degradation rates for TC and RhB is up to 97.27% and 99.8%, respectively. The synergistic effect between Ti3C2QDs and OVs greatly enhances charge separation, leading to remarkable photocatalytic activity. Furthermore, the hollow microsphere contributes to the enhanced photocatalytic performance by facilitating multiple light scatterings and providing ample surface-active sites. The resultant Ti3C2QDs/BiOBr-OVs composite photocatalyst demonstrates significant potential for environmental applications.
Assuntos
Bismuto , Microesferas , Oxigênio , Pontos Quânticos , Rodaminas , Tetraciclina , Titânio , Pontos Quânticos/química , Titânio/química , Rodaminas/química , Catálise , Oxigênio/química , Bismuto/química , Tetraciclina/química , Luz , Processos Fotoquímicos , FotóliseRESUMO
Herein, a novel graphite/sulfur iron tailing composite was applied as a peroxydisulfate (PDS) activator for rhodamine B (RhB) degradation in the water. The superior catalytic efficiency of graphite/sulfur iron tailing was achieved through radical (SO4â¢- and â¢OH) and non-radical (1O2) processes according to the radical quenching experiments and electron paramagnetic resonance analysis. The carbonyl group and Fe species were the main active sites on the surface of graphite/sulfur iron tailing, which was demonstrated by combining Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and reaction kinetic experiments, and a possible degradation mechanism was also proposed. Overall, activated with 0.30 g/L of C-1, PDS achieved a 94.8% removal rate for RhB and maintained a removal rate of over 85% even after five consecutive operation cycles, and this study will benefit the application of iron/carbon composite materials in practical water treatment.