Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
BMC Biol ; 21(1): 87, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069628

RESUMO

BACKGROUND: Two widely cultivated annual buckwheat crops, Fagopyrum esculentum and F. tataricum, differ from each other in both rutin concentration and reproductive system. However, the underlying genetic mechanisms remain poorly elucidated. RESULTS: Here, we report the first haplotype-resolved chromosome-level genome assemblies of the two species. Two haplotype genomes of F. esculentum were assembled as 1.23 and 1.19 Gb with N50 = 9.8 and 12.4 Mb, respectively; the two haplotype genomes of F. tataricum were 453.7 and 446.2 Mb with N50 = 50 and 30 Mb, respectively. We further annotated protein-coding genes of each haplotype genome based on available gene sets and 48 newly sequenced transcriptomes. We found that more repetitive sequences, especially expansion of long terminal repeat retrotransposons (LTR-RTs), contributed to the large genome size of F. esculentum. Based on the well-annotated sequences, gene expressions, and luciferase experiments, we identified the sequence mutations of the promoter regions of two key genes that are likely to have greatly contributed to the high rutin concentration and selfing reproduction in F. tartaricum. CONCLUSIONS: Our results highlight the importance of high-quality genomes to identify genetic mutations underlying phenotypic differences between closely related species. F. tataricum may have been experienced stronger selection than F. esculentum through choosing these two non-coding alleles for the desired cultivation traits. These findings further suggest that genetic manipulation of the non-coding promoter regions could be widely employed for breeding buckwheat and other crops.


Assuntos
Fagopyrum , Rutina , Rutina/genética , Rutina/metabolismo , Fagopyrum/genética , Fagopyrum/metabolismo , Haplótipos , Melhoramento Vegetal , Genitália/metabolismo
2.
In Vitro Cell Dev Biol Anim ; 57(4): 448-456, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33909255

RESUMO

Rutin is well known for its anti-inflammatory and antioxidant properties against oxidative stress. However, its protective function in nucleus pulposus cells (NPCs) remains unclear. This study was aimed to explore the effects of rutin on oxidative stress in NPCs. Primary NPCs were obtained from 1-mo-old SD rats. The NPCs were treated with tert-butyl hydrogen peroxide (TBHP) to obtain the oxidative stress, and different concentrations of rutin were used to observe its influence on the oxidative stress in NPCs. Fluorescent probe DCFH-DA was used to detect reactive oxide species (ROS). The antioxidant proteins and genes of heat shock protein 70 (HSP70), manganese superoxide dismutase (Mn-SOD), catalase, aggrecan and collagen II in NPCs were measured by western blot and real-time PCR. With the stimulation of TBHP, the content of ROS in NPCs increased significantly and showed solubility correlation. Rutin effectively reduced the accumulation of ROS in a dose-dependent manner. The antioxidant proteins of HSP70, Mn-SOD, and catalase and the matrix proteins of aggrecan and collagen II decreased remarkably with the stimulation of TBHP, while the matrix metalloproteinase-13 (MMP-13) significantly increased after TBHP intervention. Rutin boosted the expressions of the HSP70, Mn-SOD, and catalase, elevated the contents of aggrecan and collagen II, and inhibited the expression of MMP-13 in NPCs. The findings of this study suggested that rutin is able to reverse oxidative stress and maintain cellular function of NPCs, and it was indicated that rutin could be a possible therapeutic option for intervertebral disc degeneration.


Assuntos
Inflamação/genética , Núcleo Pulposo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Rutina/genética , terc-Butil Hidroperóxido/farmacologia , Agrecanas/genética , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Catalase/genética , Células Cultivadas , Colágeno Tipo II/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/genética , Humanos , Inflamação/patologia , Metaloproteinase 13 da Matriz/genética , Núcleo Pulposo/metabolismo , Oxirredução , Estresse Oxidativo/genética , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/genética
3.
Food Chem ; 318: 126478, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32126466

RESUMO

With people's increasing needs for health concern, rutin and emodin in tartary buckwheat have attracted much attention for their antioxidant, anti-diabetic and reducing weight function. However, the biosynthesis of rutin and emodin in tartary buckwheat is still unclear; especially their later glycosylation contributing to make them more stable and soluble is uncovered. Based on tartary buckwheat' genome, the gene structures of 106 UGTs were analyzed; 21 candidate FtUGTs were selected to enzymatic test by comparing their transcript patterns. Among them, FtUGT73BE5 and other 4 FtUGTs were identified to glucosylate flavonol or emodin in vitro; especially rFtUGT73BE5 could catalyze the glucosylation of all tested flavonoids and emodin. Furthermore, the identical in vivo functions of FtUGT73BE5 were demonstrated in tartary buckwheat hairy roots. The transcript profile of FtUGT73BE5 was consistent with the accumulation trend of rutin in plant; this gene may relate to anti-adversity for its transcripts were up-regulated by MeJA, and repressed by ABA.


Assuntos
Emodina/metabolismo , Fagopyrum/genética , Glucosiltransferases/genética , Rutina/biossíntese , Acetatos/farmacologia , Ciclopentanos/farmacologia , Fagopyrum/efeitos dos fármacos , Fagopyrum/metabolismo , Flavonoides/metabolismo , Flavonóis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genoma de Planta , Estudo de Associação Genômica Ampla , Glucosídeos/metabolismo , Glucosiltransferases/metabolismo , Oxilipinas/farmacologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Rutina/genética , Rutina/metabolismo
4.
Plant Physiol Biochem ; 143: 61-71, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31479883

RESUMO

Rutin and quercetin, abundant in tartary buckwheat, have physiological and pharmacological functions and play roles in abiotic stress tolerance in plant. Rutin degrading enzymes (RDE) are the key enzymes for rutin metabolism. However, the RDE coding sequence information has not been available. In this study, a 1515-bp coding sequence of RDE was cloned from tartary buckwheat (named FtRDE) using 5' and 3' RACE, based on the FtRDE protein sequence. The recombinant RDE (rRDE) expressed in P.pastoris with glycosylation modification degraded rutin into quercetin and the Glu171 and Glu382 were indispensable residues for catalytic activity. FtRDE was highly expressed in seed filling stage and response to ABA and MeJA, confirmed by qRT-PCR and FtRDE promoter activity analysis in mesophyll protoplast. This study provided a new approach for the large-scale preparation of RDE by heterologous expression and production of quercetin by hydrolyzing rutin, and could be helpful for understanding the FtRDE function under stress conditions.


Assuntos
Fagopyrum/metabolismo , Rutina/metabolismo , Fagopyrum/genética , Células do Mesofilo/metabolismo , Regiões Promotoras Genéticas/genética , Rutina/genética
5.
PLoS One ; 14(7): e0219973, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31329616

RESUMO

Garden asparagus (Asparagus officinalis L.) is a popular vegetable cultivated worldwide. The secondary metabolites in its shoot are helpful for human health. We analyzed A. officinalis transcriptomes and identified differentially expressed genes (DEGs) involved in the biosynthesis of rutin and protodioscin, which are health-promoting functional compounds, and determined their association with stem color. We sequenced the complete mRNA transcriptome using the Illumina high-throughput sequencing platform in one white, three green, and one purple asparagus cultivars. A gene set was generated by de novo assembly of the transcriptome sequences and annotated using a BLASTx search. To investigate the relationship between the contents of rutin and protodioscin and their gene expression levels, rutin and protodioscin were analyzed using high-performance liquid chromatography. A secondary metabolite analysis using high-performance liquid chromatography showed that the rutin content was higher in green asparagus, while the protodioscin content was higher in white asparagus. We studied the genes associated with the biosynthesis of the rutin and protodioscin. The transcriptomes of the five cultivars generated 336 599 498 high-quality clean reads, which were assembled into 239 873 contigs with an average length of 694 bp, using the Trinity v2.4.0 program. The green and white asparagus cultivars showed 58 932 DEGs. A comparison of rutin and protodioscin biosynthesis genes revealed that 12 of the 57 genes associated with rutin and two of the 50 genes associated with protodioscin showed more than four-fold differences in expression. These DEGs might have caused a variation in the contents of these two metabolites between green and white asparagus. The present study is possibly the first to report transcriptomic gene sets in asparagus. The DEGs putatively involved in rutin and protodioscin biosynthesis might be useful for molecular engineering in asparagus.


Assuntos
Asparagus/genética , Diosgenina/análogos & derivados , Rutina/biossíntese , Saponinas/biossíntese , Transcriptoma , Asparagus/metabolismo , Genes de Plantas , Rutina/genética , Saponinas/genética
6.
Food Chem ; 295: 51-57, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31174789

RESUMO

To discriminate the trace-rutinosidase variety of Tartary buckwheat 'Manten-Kirari', we developed DNA markers based on RNA polymorphism. Specifically, we mapped 17.76 GB RNA sequences, obtained using HiSeq2000, to create 11,358 large contigs constructed de novo from 'Manten-Kirari' RNA derived from GS-FLX+ titanium. From these, we developed eight DNA markers corresponding to single- to four-nucleotide polymorphisms between 'Manten-Kirari' and 'Hokkai T8', which is representative of normal rutinosidase content varieties in Japan. Using these markers, 'Manten-Kirari' was discriminated from 'Hokkai T8' by eight markers, from major Tartary buckwheat varieties by three markers, and from common buckwheats by two markers. We also performed direct PCR from flour and dried noodle made with 'Manten-Kirari' and 'Hokkai T8'. Based on the results, the DNA markers developed are promising for discriminating 'Manten-Kirari'. This is the first study to develop a DNA marker to discriminate varieties in the Polygonaceae family including buckwheat species.


Assuntos
Fagopyrum/genética , Análise de Alimentos/métodos , Marcadores Genéticos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Fagopyrum/metabolismo , Glicosídeo Hidrolases/genética , Japão , Proteínas de Plantas/genética , Polimorfismo Genético , RNA de Plantas , Rutina/genética , Rutina/metabolismo
7.
New Phytol ; 216(3): 814-828, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28722263

RESUMO

Little is known about the molecular mechanism of the R2R3-MYB transcriptional repressors involved in plant phenylpropanoid metabolism. Here, we describe one R2R3-type MYB repressor, FtMYB11 from Fagopyrum tataricum. It contains the SID-like motif GGDFNFDL and it is regulated by both the importin protein 'Sensitive to ABA and Drought 2' (SAD2) and the jasmonates signalling cascade repressor JAZ protein. Yeast two hybrid and bimolecular fluorescence complementation assays demonstrated that FtMYB11 interacts with SAD2 and FtJAZ1. Protoplast transactivation assays demonstrated that FtMYB11 acts synergistically with FtSAD2 or FtJAZ1 and directly represses its target genes via the MYB-core element AATAGTT. Changing the Asp122 residue to Asn in the SID-like motif results in cytoplasmic localization of FtMYB11 because of loss of interaction with SAD2, while changing the Asp126 residue to Asn results in the loss of interaction with FtJAZ1. Overexpression of FtMYB11or FtMYB11D126N in F. tataricum hairy roots resulted in reduced accumulation of rutin, while overexpression of FtMYB11D122N in hairy roots did not lead to such a change. The results indicate that FtMYB11 acts as a regulator via interacting with FtSAD2 or FtJAZ1 to repress phenylpropanoid biosynthesis, and this repression depends on two conserved Asp residues of its SID-like motif.


Assuntos
Fagopyrum/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Motivos de Aminoácidos , Arabidopsis/genética , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Citoplasma/metabolismo , Fagopyrum/genética , Teste de Complementação Genética , Mutação , Fenilpropionatos/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Rutina/biossíntese , Rutina/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Plant Cell Rep ; 31(10): 1867-76, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22733206

RESUMO

UNLABELLED: Flavonoids synthesized by the phenylpropanoid pathway participate in a number of physiological and biochemical processes in plants. Flavonols, among flavonoids, are considered as health-protective components in functional foods and they protect plants against certain insect pests. There have been efforts to develop strategies for the enhanced production of flavonols in plants, but limited success was achieved due to complex regulation and poor substrate availability. In the present study, we have developed and optimized method for callus cultures for transgenic tobacco line expressing a flavonol-specific transcription factor, AtMYB12, with an objective to use callus as an alternative source of rutin. Transgenic callus displayed enhanced expression of genes related to biosynthetic pathway leading to increased accumulation of flavonols, especially rutin. At each time point of callus growth, the rutin content of transgenic callus was several folds higher than that of wild-type tobacco callus. Supplementation of semi-synthetic diet with extract from transgenic callus as well as purified rutin led to mortality and growth reduction in the Spodoptera litura and Helicoverpa armigera larvae. This study suggests the biotechnological potential of AtMYB12-expressing callus cultures for the production of rutin, which can be used for biopesticide formulations against insect pests. KEY MESSAGE: Tobacco callus cultures expressing AtMYB12 accumulate enhanced content of rutin and can be used as a potential alternative source of rutin as well as biopesticides against insect pests.


Assuntos
Proteínas de Arabidopsis/metabolismo , Técnicas de Cultura de Células/métodos , Nicotiana/metabolismo , Rutina/biossíntese , Spodoptera/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Engenharia Genética/métodos , Larva/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Rutina/genética , Rutina/farmacologia , Nicotiana/genética , Fatores de Transcrição/genética , Transformação Genética
9.
Fitoterapia ; 83(6): 1131-7, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22561081

RESUMO

In light of the economic importance of buckwheat as well as existence of enormous accessions of Fagopyrum species in the Himalayan regions of India, the characterization of tartary buckwheat for rutin content variation vis-à-vis DNA fingerprinting was undertaken so as to identify fingerprint profiles unique to high rutin content accessions. Rutin content analysis in mature seeds of 195 accessions of Fagopyrum tataricum showed a wide range of variation (6 µg/mg to 30 µg/mg D.W.) with most of the accessions (81%) containing 10-16 µg/mg of rutin followed by 14% accessions with significantly higher rutin content (17 µg/mg to 30 µg/mg) and 5% accessions with low rutin content (≤10 µg/mg). AFLP fingerprinting of 18 accessions having high (≥17 µg/mg) and low rutin content (≤10 µg/mg) with 19 EcoRI/MseI primer combinations yielded 136 polymorphic fragments out of total 907. The hierarchical and model-based cluster analyses of AFLP data strongly suggested that the 18 populations of F. tataricum were clustered into two separate groups. The high and low rutin content accessions were clustered into two separate groups based on AFLP fingerprinting. The AFLP fingerprints associated with high rutin content accessions of F. tataricum are expected to be useful for evaluation, conservation and genetic improvement of buckwheat.


Assuntos
Fagopyrum/genética , Polimorfismo Genético , Rutina/genética , Sementes/química , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados/métodos , Análise por Conglomerados , Impressões Digitais de DNA/métodos , Primers do DNA , Índia , Rutina/análise
10.
J Plant Physiol ; 168(17): 2117-23, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21872967

RESUMO

Buckwheat is one of the field crops with the highest concentration of rutin, an important flavonoid of medicinal value. Two species of buckwheat, Fagopyrum esculentum and Fagopyrum tataricum, are the major sources of rutin. Seeds of latter contain 40-50× higher rutin compared to the former. The physiological and molecular bases of rutin content variation between Fagopyrum species are not known. The current study investigated the differences in rutin content in seeds and in other tissues and growth stages of two Fagopyrum species, and also correlated those differences with the expression of flavonoid pathway genes. The analysis of rutin content dynamics at different growth stages, S1-S9 (from seed germination to mature seed formation) of Fagopyrum species revealed that rutin content was higher during seedling stages of F. tataricum (3.5 to 4.6-fold) compared to F. esculentum and then increased exponentially from stages S3 to S6 (different leaf maturing stages and inflorescence) of F. esculentum, whereas it fluctuated in F. tataricum. The rutin content was highest in the inflorescence stage (S6) of both species, with a relatively higher biosynthesis and accumulation during post-flowering stages of F. tataricum compared to F. esculentum. The expression of flavonoid pathway genes, through qRT-PCR, in different growth stages vis-à-vis rutin content variation showed differential expression for four genes, PAL, CHS, CHI and FLS with the amounts of transcripts relatively higher in F. tataricum compared to F. esculentum, thereby, correlating these genes with the biosynthesis and accumulation of rutin. The expression of PAL was highest, 7.69 and 8.96-fold in Stages 2 (seedling stage) and 9 (fully developed seeds) of F. tataricum compared to F. esculentum, respectively. The expression of the CHS gene correlated with the rutin content because it was highest in the flowers (S6) and fully developed seeds (S9) of both Fagopyrum species, with relatively higher transcript amounts (2.13 and 3.19-fold, respectively) in F. tataricum (IC-329457) compared to F. esculentum (IC-540858). This study provides useful information on molecular and physiological dynamics of rutin biosynthesis and accumulation in Fagopyrum species and the correlation of expression of flavonoid biosynthesis genes with the rutin content can be useful in planning for genetic improvement.


Assuntos
Fagopyrum/química , Fagopyrum/genética , Regulação da Expressão Gênica de Plantas/genética , Rutina/biossíntese , Cromatografia Líquida de Alta Pressão , DNA de Plantas/genética , Fagopyrum/crescimento & desenvolvimento , Flores/química , Flores/genética , Genes de Plantas/genética , Extratos Vegetais/química , Folhas de Planta/química , Folhas de Planta/genética , RNA Mensageiro/genética , RNA de Plantas/genética , Rutina/análise , Rutina/genética , Plântula/química , Plântula/genética , Sementes/química , Sementes/genética , Análise de Sequência de DNA
11.
Free Radic Res ; 39(9): 1005-16, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16087482

RESUMO

There is increasing interest in the ability of diets rich in polyphenols to modulate age-related diseases and promote healthy ageing. We have conducted a pilot experiment with eight tomato varieties to correlate the total antioxidant capacity of the tomato variants with the specific constituent flavonoids present. A strong correlation was observed with the flavonol rhamnoglucoside rutin but not with other flavonoids, such as naringenin chalcone, or hydroxycinnamates, such as chlorogenic, which are also present in the tomato. To test the rigor of this correlation a second study was undertaken with a further 37 tomato varieties selected for low, medium and high rutin levels. We show that the flavonol rutin contributes to the greatest extent to the antioxidant capacity of tomatoes and suggest that this flavonoid may be a useful target for up-regulation in tomatoes in order to improve their antioxidant status.


Assuntos
Antioxidantes/farmacologia , Rutina/farmacologia , Solanum lycopersicum , Cromatografia Líquida de Alta Pressão , Solanum lycopersicum/química , Solanum lycopersicum/genética , Espectrometria de Massas/métodos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Rutina/genética , Rutina/isolamento & purificação , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...