Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.118
Filtrar
1.
Stem Cell Res Ther ; 15(1): 160, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38835014

RESUMO

BACKGROUND: Metabolic syndrome (MetS) is a significant epidemiological problem worldwide. It is a pre-morbid, chronic and low-grade inflammatory disorder that precedes many chronic diseases. Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) could be used to treat MetS because they express high regenerative capacity, strong immunomodulatory properties and allogeneic biocompatibility. This study aims to investigate WJ-MSCs as a therapy against MetS in a rat model. METHODS: Twenty-four animals were fed with high-fat high-fructose (HFHF) diet ad libitum. After 16 weeks, the animals were randomised into treatment groups (n = 8/group) and received a single intravenous administration of vehicle, that is, 3 × 106 cells/kg or 10 × 106 cells/kg of WJ-MSCs. A healthy animal group (n = 6) fed with a normal diet received the same vehicle as the control (CTRL). All animals were periodically assessed (every 4 weeks) for physical measurements, serum biochemistry, glucose tolerance test, cardiovascular function test and whole-body composition. Post-euthanasia, organs were weighed and processed for histopathology. Serum was collected for C-reactive protein and inflammatory cytokine assay. RESULTS: The results between HFHF-treated groups and healthy or HFHF-CTRL did not achieve statistical significance (α = 0.05). The effects of WJ-MSCs were masked by the manifestation of different disease subclusters and continuous supplementation of HFHF diet. Based on secondary analysis, WJ-MSCs had major implications in improving cardiopulmonary morbidities. The lungs, liver and heart show significantly better histopathology in the WJ-MSC-treated groups than in the untreated CTRL group. The cells produced a dose-dependent effect (high dose lasted until week 8) in preventing further metabolic decay in MetS animals. CONCLUSIONS: The establishment of safety and therapeutic proof-of-concept encourages further studies by improving the current therapeutic model.


Assuntos
Modelos Animais de Doenças , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Síndrome Metabólica , Geleia de Wharton , Animais , Síndrome Metabólica/terapia , Síndrome Metabólica/patologia , Síndrome Metabólica/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Ratos , Geleia de Wharton/citologia , Transplante de Células-Tronco Mesenquimais/métodos , Masculino , Injeções Intravenosas , Humanos , Dieta Hiperlipídica/efeitos adversos
2.
Front Endocrinol (Lausanne) ; 15: 1393253, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38800473

RESUMO

Metabolic syndrome (MetS) and cognitive dysfunction pose significant challenges to global health and the economy. Systemic inflammation, endocrine disruption, and autoregulatory impairment drive neurodegeneration and microcirculatory damage in MetS. Due to their unique anatomy and function, astrocytes sense and integrate multiple metabolic signals, including peripheral endocrine hormones and nutrients. Astrocytes and synapses engage in a complex dialogue of energetic and immunological interactions. Astrocytes act as a bridge between MetS and cognitive dysfunction, undergoing diverse activation in response to metabolic dysfunction. This article summarizes the alterations in astrocyte phenotypic characteristics across multiple pathological factors in MetS. It also discusses the clinical value of astrocytes as a critical pathologic diagnostic marker and potential therapeutic target for MetS-associated cognitive dysfunction.


Assuntos
Astrócitos , Disfunção Cognitiva , Síndrome Metabólica , Humanos , Astrócitos/metabolismo , Astrócitos/patologia , Síndrome Metabólica/metabolismo , Síndrome Metabólica/fisiopatologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia , Animais
3.
Cardiovasc Toxicol ; 24(6): 576-586, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38691302

RESUMO

Hypertension is a pathological state of the metabolic syndrome that increases the risk of cardiovascular disease. Managing hypertension is challenging, and we aimed to identify the pathogenic factors and discern therapeutic targets for metabolic hypertension (MHR). An MHR rat model was established with the combined treatment of a high-sugar, high-fat diet and ethanol. Histopathological observations were performed using hematoxylin-eosin and Sirius Red staining. Transcriptome sequencing was performed to screen differentially expressed genes. The role of ubiquitin-specific protease 18 (USP18) in the proliferation, apoptosis, and oxidative stress of HUVECs was explored using Cell Counting Kit-8, flow cytometry, and enzyme-linked immunosorbent assays. Moreover, USP18 downstream signaling pathways in MHR were screened, and the effects of USP18 on these signaling pathways were investigated by western blotting. In the MHR model, total cholesterol and low-density lipoprotein levels increased, while high-density lipoprotein levels decreased. Moreover, high vessel thickness and percentage of collagen were noted along with increased malondialdehyde, decreased superoxide dismutase and catalase levels. The staining results showed that the MHR model exhibited an irregular aortic intima and disordered smooth muscle cells. There were 78 differentially expressed genes in the MHR model, and seven hub genes, including USP18, were identified. USP18 overexpression facilitated proliferation and reduced apoptosis and oxidative stress in HUVECs treated with Ang in vitro. In addition, the JAK/STAT pathway was identified as a USP18 downstream signaling pathway, and USP18 overexpression inhibited the expression of JAK/STAT pathway-related proteins. Conclusively, USP18 restrained MHR progression by promoting cell proliferation, reversing apoptosis and oxidative stress, and suppressing the JAK/STAT pathway.


Assuntos
Apoptose , Proliferação de Células , Modelos Animais de Doenças , Células Endoteliais da Veia Umbilical Humana , Hipertensão , Janus Quinases , Síndrome Metabólica , Estresse Oxidativo , Transdução de Sinais , Ubiquitina Tiolesterase , Animais , Humanos , Masculino , Ratos , Apoptose/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Progressão da Doença , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/enzimologia , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Hipertensão/patologia , Hipertensão/enzimologia , Janus Quinases/metabolismo , Síndrome Metabólica/metabolismo , Síndrome Metabólica/patologia , Síndrome Metabólica/enzimologia , Músculo Liso Vascular/patologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/enzimologia , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Fatores de Transcrição STAT/metabolismo , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Remodelação Vascular/efeitos dos fármacos
4.
Int J Mol Sci ; 25(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38791493

RESUMO

Metabolic syndrome represents a cluster of conditions, such as abdominal obesity, hypertension, dyslipidemia, and hyperglycemia, that are highly prevalent in developed countries because of unhealthy lifestyles [...].


Assuntos
Síndrome Metabólica , Síndrome Metabólica/metabolismo , Humanos , Animais
5.
PLoS One ; 19(5): e0304410, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38809924

RESUMO

The association between Alzheimer's disease and metabolic disorders as significant risk factors is widely acknowledged. However, the intricate molecular mechanism intertwining these conditions remains elusive. To address this knowledge gap, we conducted a thorough investigation using a bioinformatics method to illuminate the molecular connections and pathways that provide novel perspectives on these disorders' pathological and clinical features. Microarray datasets (GSE5281, GSE122063) from the Gene Expression Omnibus (GEO) database facilitated the way to identify genes with differential expression in Alzheimer's disease (141 genes). Leveraging CoreMine, CTD, and Gene Card databases, we extracted genes associated with metabolic conditions, including hypertension, non-alcoholic fatty liver disease, and diabetes. Subsequent analysis uncovered overlapping genes implicated in metabolic conditions and Alzheimer's disease, revealing shared molecular links. We utilized String and HIPPIE databases to visualize these shared genes' protein-protein interactions (PPI) and constructed a PPI network using Cytoscape and MCODE plugin. SPP1, CD44, IGF1, and FLT1 were identified as crucial molecules in the main cluster of Alzheimer's disease and metabolic syndrome. Enrichment analysis by the DAVID dataset was employed and highlighted the SPP1 as a novel target, with its receptor CD44 playing a significant role in the inflammatory cascade and disruption of insulin signaling, contributing to the neurodegenerative aspects of Alzheimer's disease. ECM-receptor interactions, focal adhesion, and the PI3K/Akt pathways may all mediate these effects. Additionally, we investigated potential medications by repurposing the molecular links using the DGIdb database, revealing Tacrolimus and Calcitonin as promising candidates, particularly since they possess binding sites on the SPP1 molecule. In conclusion, our study unveils crucial molecular bridges between metabolic syndrome and AD, providing insights into their pathophysiology for therapeutic interventions.


Assuntos
Doença de Alzheimer , Reposicionamento de Medicamentos , Síndrome Metabólica , Mapas de Interação de Proteínas , Biologia de Sistemas , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Humanos , Síndrome Metabólica/metabolismo , Síndrome Metabólica/genética , Biologia de Sistemas/métodos , Redes Reguladoras de Genes , Biologia Computacional/métodos , Transdução de Sinais , Bases de Dados Genéticas , Perfilação da Expressão Gênica
6.
Pharmacol Res ; 204: 107207, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734193

RESUMO

In recent years several experimental observations demonstrated that the gut microbiome plays a role in regulating positively or negatively metabolic homeostasis. Indole-3-propionic acid (IPA), a Tryptophan catabolic product mainly produced by C. Sporogenes, has been recently shown to exert either favorable or unfavorable effects in the context of metabolic and cardiovascular diseases. We performed a study to delineate clinical and multiomics characteristics of human subjects characterized by low and high IPA levels. Subjects with low IPA blood levels showed insulin resistance, overweight, low-grade inflammation, and features of metabolic syndrome compared to those with high IPA. Metabolomics analysis revealed that IPA was negatively correlated with leucine, isoleucine, and valine metabolism. Transcriptomics analysis in colon tissue revealed the enrichment of several signaling, regulatory, and metabolic processes. Metagenomics revealed several OTU of ruminococcus, alistipes, blautia, butyrivibrio and akkermansia were significantly enriched in highIPA group while in lowIPA group Escherichia-Shigella, megasphera, and Desulfovibrio genus were more abundant. Next, we tested the hypothesis that treatment with IPA in a mouse model may recapitulate the observations of human subjects, at least in part. We found that a short treatment with IPA (4 days at 20/mg/kg) improved glucose tolerance and Akt phosphorylation in the skeletal muscle level, while regulating blood BCAA levels and gene expression in colon tissue, all consistent with results observed in human subjects stratified for IPA levels. Our results suggest that treatment with IPA may be considered a potential strategy to improve insulin resistance in subjects with dysbiosis.


Assuntos
Microbioma Gastrointestinal , Humanos , Masculino , Animais , Feminino , Pessoa de Meia-Idade , Resistência à Insulina , Indóis , Camundongos Endogâmicos C57BL , Metabolômica , Camundongos , Adulto , Síndrome Metabólica/sangue , Síndrome Metabólica/metabolismo , Síndrome Metabólica/microbiologia , Comorbidade , Músculo Esquelético/metabolismo , Músculo Esquelético/microbiologia , Multiômica
7.
Lipids Health Dis ; 23(1): 139, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741154

RESUMO

INTRODUCTION: Although previous studies have linked obesity and erectile dysfunction, the novel surrogate indicators of adipose accumulation are more essential and dependable factors to consider. Therefore, the primary objective of the current investigation was to examine and clarify the association between metabolic score for visceral fat (METS-VF) and erectile dysfunction. METHODS: Firstly, multivariate logistic regression analysis, smoothed curve fitting, and threshold effect analysis were employed to investigate the association between METS-VF and erectile dysfunction. Mediation analysis was also performed to evaluate the mediating role of homocysteine and inflammation. After that, subgroup analysis was carried out to examine the stability of the correlation of METS-VF with erectile dysfunction in various population settings. Furthermore, the area under the receiver operating characteristic (ROC) curve and eXtreme Gradient Boosting (XGBoost) algorithm were utilized to assess the capability of identifying METS-VF in comparison to the other four obesity-related indicators in identifying erectile dysfunction. RESULTS: After adjusting for all confounding factors, METS-VF was strongly and favourablely correlated with erectile dysfunction. With each additional unit rise in METS-VF, the prevalence of erectile dysfunction increased by 141%. A J-shaped relationship between METS-VF and erectile dysfunction was discovered through smoothed curve fitting. Marital status, physical activity, and smoking status can potentially modify this association. This finding of the ROC curve suggests that METS-VF had a powerful identifying capacity for erectile dysfunction (AUC = 0.7351). Homocysteine and inflammation mediated 4.24% and 2.81%, respectively. CONCLUSION: The findings of the current investigation suggest that METS-VF can be considered a dependable identifying indicator of erectile dysfunction.


Assuntos
Disfunção Erétil , Curva ROC , Masculino , Disfunção Erétil/metabolismo , Disfunção Erétil/fisiopatologia , Humanos , Pessoa de Meia-Idade , Gordura Intra-Abdominal/metabolismo , Gordura Intra-Abdominal/patologia , Biomarcadores/metabolismo , Adulto , Homocisteína/sangue , Homocisteína/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Idoso , Fatores de Risco , Síndrome Metabólica/complicações , Síndrome Metabólica/metabolismo , Modelos Logísticos
8.
Front Endocrinol (Lausanne) ; 15: 1388361, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745946

RESUMO

Introduction: The pathogenesis of Post-Transplant Diabetes Mellitus (PTDM) is complex and multifactorial and it resembles that of Type-2 Diabetes Mellitus (T2DM). One risk factor specific to PTDM differentiates both entities: the use of immunosuppressive therapy. Specifically, Tacrolimus interacts with obesity and insulin resistance (IR) in accelerating the onset of PTDM. In a genotypic model of IR, the obese Zucker rats, Tacrolimus is highly diabetogenic by promoting the same changes in beta-cell already modified by IR. Nevertheless, genotypic animal models have their limitations and may not resemble the real pathophysiology of diabetes. In this study, we have evaluated the interaction between beta-cell damage and Tacrolimus in a non-genotypic animal model of obesity and metabolic syndrome. Methods: Sprague Dawley rats were fed a high-fat enriched diet during 45 days to induce obesity and metabolic dysregulation. On top of this established obesity, the administration of Tacrolimus (1mg/kg/day) during 15 days induced severe hyperglycaemia and changes in morphological and structural characteristics of the pancreas. Results: Obese animals administered with Tacrolimus showed increased size of islets of Langerhans and reduced beta-cell proliferation without changes in apoptosis. There were also changes in beta-cell nuclear factors such as a decrease in nuclear expression of MafA and a nuclear overexpression of FoxO1A, PDX-1 and NeuroD1. These animals also showed increased levels of pancreatic insulin and glucagon. Discussion: This model could be evidence of the relationship between the T2DM and PTDM physiopathology and, eventually, the model may be instrumental to study the pathogenesis of T2DM.


Assuntos
Modelos Animais de Doenças , Síndrome Metabólica , Obesidade , Ratos Sprague-Dawley , Tacrolimo , Animais , Tacrolimo/farmacologia , Síndrome Metabólica/metabolismo , Síndrome Metabólica/patologia , Síndrome Metabólica/induzido quimicamente , Obesidade/metabolismo , Obesidade/patologia , Ratos , Masculino , Imunossupressores/efeitos adversos , Imunossupressores/farmacologia , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Células Secretoras de Insulina/efeitos dos fármacos , Fenótipo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/metabolismo , Resistência à Insulina , Dieta Hiperlipídica/efeitos adversos
9.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732139

RESUMO

The plant-derived α-linolenic acid (ALA) is an essential n-3 acid highly susceptible to oxidation, present in oils of flaxseeds, walnuts, canola, perilla, soy, and chia. After ingestion, it can be incorporated in to body lipid pools (particularly triglycerides and phospholipid membranes), and then endogenously metabolized through desaturation, elongation, and peroxisome oxidation to eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), with a very limited efficiency (particularly for DHA), beta-oxidized as an energy source, or directly metabolized to C18-oxilipins. At this moment, data in the literature about the effects of ALA supplementation on metabolic syndrome (MetS) in humans are inconsistent, indicating no effects or some positive effects on all MetS components (abdominal obesity, dyslipidemia, impaired insulin sensitivity and glucoregulation, blood pressure, and liver steatosis). The major effects of ALA on MetS seem to be through its conversion to more potent EPA and DHA, the impact on the n-3/n-6 ratio, and the consecutive effects on the formation of oxylipins and endocannabinoids, inflammation, insulin sensitivity, and insulin secretion, as well as adipocyte and hepatocytes function. It is important to distinguish the direct effects of ALA from the effects of EPA and DHA metabolites. This review summarizes the most recent findings on this topic and discusses the possible mechanisms.


Assuntos
Síndrome Metabólica , Ácido alfa-Linolênico , Síndrome Metabólica/metabolismo , Humanos , Ácido alfa-Linolênico/metabolismo , Ácido alfa-Linolênico/administração & dosagem , Animais , Ácidos Graxos Insaturados/metabolismo , Suplementos Nutricionais , Resistência à Insulina
10.
Int J Mol Sci ; 25(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38732245

RESUMO

Oxidative stress and inflammation are recognized as pivotal contributors and common features of several chronic degenerative diseases, including cancer, metabolic syndrome, type 2 diabetes, cardiovascular diseases and neurodegenerative disorders, affecting a high percentage of the population [...].


Assuntos
Inflamação , Doenças Neurodegenerativas , Estresse Oxidativo , Humanos , Inflamação/metabolismo , Doenças Neurodegenerativas/metabolismo , Doença Crônica , Diabetes Mellitus Tipo 2/metabolismo , Doenças Cardiovasculares/metabolismo , Animais , Síndrome Metabólica/metabolismo
11.
Biomed Pharmacother ; 175: 116688, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692060

RESUMO

Metabolic syndrome (MetS) is characterized by insulin resistance, hyperglycemia, excessive fat accumulation and dyslipidemia, and is known to be accompanied by neuropathological symptoms such as memory loss, anxiety, and depression. As the number of MetS patients is rapidly increasing globally, studies on the mechanisms of metabolic imbalance-related neuropathology are emerging as an important issue. Ca2+/calmodulin-dependent kinase II (CaMKII) is the main Ca2+ sensor and contributes to diverse intracellular signaling in peripheral organs and the central nervous system (CNS). CaMKII exerts diverse functions in cells, related to mechanisms such as RNA splicing, reactive oxygen species (ROS) generation, cytoskeleton, and protein-protein interactions. In the CNS, CaMKII regulates vascular function, neuronal circuits, neurotransmission, synaptic plasticity, amyloid beta toxicity, lipid metabolism, and mitochondrial function. Here, we review recent evidence for the role of CaMKII in neuropathologic issues associated with metabolic disorders.


Assuntos
Peptídeos beta-Amiloides , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Metabolismo dos Lipídeos , Doenças do Sistema Nervoso , Plasticidade Neuronal , Humanos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Plasticidade Neuronal/fisiologia , Animais , Metabolismo dos Lipídeos/fisiologia , Peptídeos beta-Amiloides/metabolismo , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/fisiopatologia , Síndrome Metabólica/metabolismo , Síndrome Metabólica/fisiopatologia
12.
Front Endocrinol (Lausanne) ; 15: 1369600, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711979

RESUMO

Background: The Metabolic Score for Insulin Resistance (METS-IR) offers a promising and reliable non-insulin-based approach to assess insulin resistance and evaluate cardiometabolic risk. However, evidence for the association between METS-IR and hypertension was still limited. Methods: Participants from the National Health and Nutrition Examination Survey (NHANES) database from 2007-2016 were selected for weighted multivariable regression analyses, subgroup analyses and restricted cubic spline (RCS) modeling to assess the association between the METS-IR and hypertension, as well as systolic blood pressure (SBP) and diastolic blood pressure (DBP). Results: This study enrolled 7,721 adults aged ≥20 years, 2,926 (34.03%) of whom was diagnosed as hypertension. After adjusting for all potential covariates, an increased METS-IR (log2 conversion, denoted as log2METS-IR) was independently associated with a higher prevalence of hypertension (odd ratio [OR] 3.99, 95% confidence interval [CI] 3.19~5.01). The OR for hypertension in subjects with the highest quartile of METS-IR was 3.89-fold (OR 3.89, 95% CI 3.06~4.94) higher than that in those with the lowest quartile of METS-IR. This positive correlation became more significant as METS-IR increased (p for trend < 0.001). Log2METS-IR was significantly correlated with increase in SBP (ß 6.75, 95% CI 5.65~7.85) and DBP (ß 5.59, 95% CI 4.75~6.43) in a fully adjusted model. Consistent results were obtained in subgroup analyses. Hypertension, SBP and DBP all exhibited a non-linear increase with the rise in METS-IR. The minimal threshold for the beneficial association of METS-IR with hypertension, SBP and DBP were all identified to be 46.88. Conclusion: The findings of this study revealed a significant positive association between METS-IR and hypertension among US adults, suggesting METS-IR as a potential tool for assessing hypertension risk.


Assuntos
Hipertensão , Resistência à Insulina , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Pressão Sanguínea/fisiologia , Estudos Transversais , Síndrome Metabólica/metabolismo , Inquéritos Nutricionais , Prevalência , Fatores de Risco , Estados Unidos
13.
Diabetes Obes Metab ; 26(7): 2554-2566, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38699780

RESUMO

Fibrosis is a common feature of more than 50 different diseases and the cause of more than 35% of deaths worldwide, of which liver, kidney, skin, heart and, recently, lungs are receiving the most attention. Tissue changes, resulting in loss of organ function, are both a cause and consequence of disease and outcome. Fibrosis is caused by an excess deposition of extracellular matrix proteins, which over time results in impaired organ function and organ failure, and the pathways leading to increased fibroblast activation are many. This narrative review investigated the common denominator of fibrosis, fibroblasts, and the activation of fibroblasts, in response to excess energy consumption in liver, kidney, heart, skin and lung fibrosis. Fibroblasts are the main drivers of organ function loss in lung, liver, skin, heart and kidney disease. Fibroblast activation in response to excess energy consumption results in the overproduction of a range of collagens, of which types I, III and VI seem to be the essential drivers of disease progression. Fibroblast activation may be quantified in serum, enabling profiling and selection of patients. Activation of fibroblasts results in the overproduction of collagens, which deteriorates organ function. Patient profiling of fibroblast activities in serum, quantified as collagen production, may identify an organ death trajectory, better enabling identification of the right treatment for use in different metabolic interventions. As metabolically activated patients have highly elevated risk of kidney, liver and heart failure, it is essential to identify which organ to treat first and monitor organ status to correct treatment regimes. In direct alignment with this, it is essential to identify the right patients with the right organ deterioration trajectory for enrolment in clinical studies.


Assuntos
Fibroblastos , Fibrose , Síndrome Metabólica , Humanos , Fibroblastos/metabolismo , Síndrome Metabólica/metabolismo , Esclerose , Nefropatias/fisiopatologia , Colágeno/metabolismo
14.
Front Endocrinol (Lausanne) ; 15: 1382844, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38689728

RESUMO

Equine metabolic syndrome (EMS) is a critical endocrine condition in horses, characterized by hyperinsulinemia, hyperlipidemia, and insulin resistance, posing a significant threat to their health. This study investigates the efficacy of supplementing EMS-affected horses with Arthrospira platensis enriched with Cr(III), Mg(II), and Mn(II) ions using biosorption process in improving insulin sensitivity and glucose tolerance, reducing inflammation, and mitigating obesity-related fat accumulation. Our results demonstrate that Arthrospira supplementation reduces baseline insulin and glucose levels, contributing to decreased adipose tissue inflammation. Furthermore, Arthrospira supplementation results in a decrease in body weight and improvements in overall body condition scores and cresty neck scores. Additionally, administration of Arthrospira leads to reduced levels of triglycerides and aspartate aminotransferase, indicating a decrease in hepatic adiposity and inflammation. These findings suggest that Arthrospira, enriched with essential micro- and macroelements, can be an advanced feed additive to enhance insulin sensitivity, promote weight reduction, and alleviate inflammatory processes, thereby improving the overall condition of horses affected by EMS. The use of Arthrospira as a feed additive has the potential to complement conventional management strategies for EMS.


Assuntos
Ração Animal , Cromo , Suplementos Nutricionais , Doenças dos Cavalos , Inflamação , Resistência à Insulina , Magnésio , Manganês , Síndrome Metabólica , Spirulina , Animais , Cavalos , Inflamação/metabolismo , Síndrome Metabólica/veterinária , Síndrome Metabólica/metabolismo , Doenças dos Cavalos/metabolismo , Doenças dos Cavalos/prevenção & controle , Ração Animal/análise , Magnésio/metabolismo , Masculino , Feminino
15.
Sci Rep ; 14(1): 11313, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760452

RESUMO

Physical activity promotes various metabolic benefits by balancing pro and anti-inflammatory adipokines. Recent studies suggest that asprosin might be involved in progression of metabolic syndrome (MetS), however, the underlying mechanisms have not been understood yet. This study aimed to evaluate the effects of high-intensity interval training (HIIT), moderate-intensity continuous training (MICT), and further detraining on MetS indices, insulin resistance, serum and the liver levels of asprosin, and AMP-activated protein kinase (AMPK) pathway in menopause-induced MetS model of rats. A total of 64 Wistar rats were used in this study and divided into eight groups: Sham1, OVX1 (ovariectomized), Sham2, OVX2, OVX + HIIT, OVX + MICT, OVX + HIIT + Det (detraining), and OVX + MICT + Det. Animals performed the protocols, and then serum concentrations of asprosin, TNF-α, insulin, fasting blood glucose, and lipid profiles (TC, LDL, TG, and HDL) were assessed. Additionally, the liver expression of asprosin, AMPK, and P-AMPK was measured by western blotting. Both HIIT and MICT caused a significant decrease in weight, waist circumference, BMI (P = 0.001), and serum levels of glucose, insulin, asprosin (P = 0.001), triglyceride, total cholesterol, low-density lipoprotein (LDL), and TNF-α (P = 0.001), but an increase in the liver AMPK, P-AMPK, and P-AMPK/AMPK (P = 0.001), compared with OVX2 noexercised group. MICT was superior to HIIT in reducing serum asprosin, TNF-a, TG, LDL (P = 0.001), insulin, fasting blood glucose, HOMA-IR, and QUEKI index (P = 0.001), but an increase in the liver AMPK, and p-AMPK (P = 0.001). Although after two months of de-training almost all indices returned to the pre exercise values (P < 0.05). The findings suggest that MICT effectively alleviates MetS induced by menopause, at least partly through the activation of liver signaling of P-AMPK and the reduction of asprosin and TNF-α. These results have practical implications for the development of exercise interventions targeting MetS in menopausal individuals, emphasizing the potential benefits of MICT in mitigating MetS-related complications.


Assuntos
Proteínas Quinases Ativadas por AMP , Modelos Animais de Doenças , Fibrilina-1 , Síndrome Metabólica , Condicionamento Físico Animal , Ratos Wistar , Transdução de Sinais , Animais , Fibrilina-1/metabolismo , Síndrome Metabólica/metabolismo , Síndrome Metabólica/terapia , Ratos , Feminino , Proteínas Quinases Ativadas por AMP/metabolismo , Treinamento Intervalado de Alta Intensidade/métodos , Fígado/metabolismo , Resistência à Insulina , Glicemia/metabolismo , Insulina/sangue , Insulina/metabolismo , Fragmentos de Peptídeos/sangue , Fragmentos de Peptídeos/metabolismo
16.
Front Endocrinol (Lausanne) ; 15: 1335269, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559697

RESUMO

Objective: To identify plasma lipid characteristics associated with premetabolic syndrome (pre-MetS) and metabolic syndrome (MetS) and provide biomarkers through machine learning methods. Methods: Plasma lipidomics profiling was conducted using samples from healthy individuals, pre-MetS patients, and MetS patients. Orthogonal partial least squares-discriminant analysis (OPLS-DA) models were employed to identify dysregulated lipids in the comparative groups. Biomarkers were selected using support vector machine recursive feature elimination (SVM-RFE), random forest (rf), and least absolute shrinkage and selection operator (LASSO) regression, and the performance of two biomarker panels was compared across five machine learning models. Results: In the OPLS-DA models, 50 and 89 lipid metabolites were associated with pre-MetS and MetS patients, respectively. Further machine learning identified two sets of plasma metabolites composed of PS(38:3), DG(16:0/18:1), and TG(16:0/14:1/22:6), TG(16:0/18:2/20:4), and TG(14:0/18:2/18:3), which were used as biomarkers for the pre-MetS and MetS discrimination models in this study. Conclusion: In the initial lipidomics analysis of pre-MetS and MetS, we identified relevant lipid features primarily linked to insulin resistance in key biochemical pathways. Biomarker panels composed of lipidomics components can reflect metabolic changes across different stages of MetS, offering valuable insights for the differential diagnosis of pre-MetS and MetS.


Assuntos
Síndrome Metabólica , Humanos , Síndrome Metabólica/metabolismo , Lipidômica/métodos , Lipídeos , Aprendizado de Máquina , Biomarcadores
17.
Cell Metab ; 36(4): 745-761.e5, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38569471

RESUMO

There is considerable heterogeneity in the cardiometabolic abnormalities associated with obesity. We evaluated multi-organ system metabolic function in 20 adults with metabolically healthy obesity (MHO; normal fasting glucose and triglycerides, oral glucose tolerance, intrahepatic triglyceride content, and whole-body insulin sensitivity), 20 adults with metabolically unhealthy obesity (MUO; prediabetes, hepatic steatosis, and whole-body insulin resistance), and 15 adults who were metabolically healthy lean. Compared with MUO, people with MHO had (1) altered skeletal muscle biology (decreased ceramide content and increased expression of genes involved in BCAA catabolism and mitochondrial structure/function); (2) altered adipose tissue biology (decreased expression of genes involved in inflammation and extracellular matrix remodeling and increased expression of genes involved in lipogenesis); (3) lower 24-h plasma glucose, insulin, non-esterified fatty acids, and triglycerides; (4) higher plasma adiponectin and lower plasma PAI-1 concentrations; and (5) decreased oxidative stress. These findings provide a framework of potential mechanisms responsible for MHO and the metabolic heterogeneity of obesity. This study was registered at ClinicalTrials.gov (NCT02706262).


Assuntos
Doenças Cardiovasculares , Resistência à Insulina , Síndrome Metabólica , Obesidade Metabolicamente Benigna , Adulto , Humanos , Obesidade/metabolismo , Triglicerídeos , Síndrome Metabólica/metabolismo , Índice de Massa Corporal , Fatores de Risco
18.
World J Gastroenterol ; 30(15): 2081-2086, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38681989

RESUMO

Over recent years, the nomenclature of non-alcoholic fatty liver disease has undergone significant changes. Indeed, in 2020, an expert consensus panel proposed the term "Metabolic (dysfunction) associated fatty liver disease" (MAFLD) to underscore the close association of fatty liver with metabolic abnormalities, thereby highlighting the cardiometabolic risks (such as metabolic syndrome, type 2 diabetes, insulin resistance, and cardiovascular disease) faced by these patients since childhood. More recently, this term has been further replaced with metabolic associated steatotic liver disease. It is worth noting that emerging evidence not only supports a close and independent association of MAFLD with chronic kidney disease in adults but also indicates its interplay with metabolic impairments. However, comparable pediatric data remain limited. Given the progressive and chronic nature of both diseases and their prognostic cardiometabolic implications, this editorial aims to provide a pediatric perspective on the intriguing relationship between MAFLD and renal function in childhood.


Assuntos
Rim , Síndrome Metabólica , Hepatopatia Gordurosa não Alcoólica , Insuficiência Renal Crônica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Criança , Rim/fisiopatologia , Rim/metabolismo , Síndrome Metabólica/metabolismo , Síndrome Metabólica/fisiopatologia , Síndrome Metabólica/diagnóstico , Síndrome Metabólica/complicações , Insuficiência Renal Crônica/fisiopatologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/diagnóstico , Resistência à Insulina , Fígado/metabolismo , Fígado/fisiopatologia , Prognóstico , Fatores de Risco Cardiometabólico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/fisiopatologia
19.
Biomolecules ; 14(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38672484

RESUMO

A detailed phytochemical investigation has been carried out on the aerial parts of G. foetida leading to the isolation of 29 pure compounds, mainly belonging to the amorfrutin and polyphenol classes. Among them, the new amorfrutin N (5) and exiguaflavone L (21) were isolated and their structures elucidated by means of HR-ESIMS and NMR. All the isolated compounds were investigated for modulation of mitochondrial activity and stimulation of glucose uptake via GLUT transporters, two metabolic processes involved in intracellular glucose homeostasis, which, therefore, correlate with the incidence of metabolic syndrome. These experiments revealed that amorfrutins were active on both targets, with amorfrutin M (17) and decarboxyamorfrutin A (2) emerging as mitochondrial stimulators, and amorfrutin 2 (12) as a glucose uptake promoter. However, members of the rich chalcone/flavonoid fraction also proved to contribute to this activity.


Assuntos
Glucose , Síndrome Metabólica , Componentes Aéreos da Planta , Síndrome Metabólica/metabolismo , Síndrome Metabólica/tratamento farmacológico , Componentes Aéreos da Planta/química , Humanos , Glucose/metabolismo , Glycyrrhiza/química , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Flavonoides/química , Flavonoides/farmacologia , Flavonoides/isolamento & purificação , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/genética
20.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38673991

RESUMO

This review examines the impact of obesity on the pathophysiology of heart failure with preserved ejection fraction (HFpEF) and focuses on novel mechanisms for HFpEF prevention using a glucagon-like peptide-1 receptor agonism (GLP-1 RA). Obesity can lead to HFpEF through various mechanisms, including low-grade systemic inflammation, adipocyte dysfunction, accumulation of visceral adipose tissue, and increased pericardial/epicardial adipose tissue (contributing to an increase in myocardial fat content and interstitial fibrosis). Glucagon-like peptide 1 (GLP-1) is an incretin hormone that is released from the enteroendocrine L-cells in the gut. GLP-1 reduces blood glucose levels by stimulating insulin synthesis, suppressing islet α-cell function, and promoting the proliferation and differentiation of ß-cells. GLP-1 regulates gastric emptying and appetite, and GLP-1 RA is currently indicated for treating type 2 diabetes (T2D), obesity, and metabolic syndrome (MS). Recent evidence indicates that GLP-1 RA may play a significant role in preventing HFpEF in patients with obesity, MS, or obese T2D. This effect may be due to activating cardioprotective mechanisms (the endogenous counter-regulatory renin angiotensin system and the AMPK/mTOR pathway) and by inhibiting deleterious remodeling mechanisms (the PKA/RhoA/ROCK pathway, aldosterone levels, and microinflammation). However, there is still a need for further research to validate the impact of these mechanisms on humans.


Assuntos
Diabetes Mellitus Tipo 2 , Receptor do Peptídeo Semelhante ao Glucagon 1 , Insuficiência Cardíaca , Síndrome Metabólica , Volume Sistólico , Humanos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Síndrome Metabólica/metabolismo , Síndrome Metabólica/tratamento farmacológico , Volume Sistólico/efeitos dos fármacos , Animais , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Obesidade/metabolismo , Obesidade/complicações , Obesidade/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA