Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 582
Filtrar
1.
Semin Immunopathol ; 46(3-4): 5, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012374

RESUMO

The advent of chimeric antigen receptor T cells (CAR-T) has been a paradigm shift in cancer immunotherapeutics, with remarkable outcomes reported for a growing catalog of malignancies. While CAR-T are highly effective in multiple diseases, salvaging patients who were considered incurable, they have unique toxicities which can be life-threatening. Understanding the biology and risk factors for these toxicities has led to targeted treatment approaches which can mitigate them successfully. The three toxicities of particular interest are cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), and immune effector cell-associated hemophagocytic lymphohistiocytosis (HLH)-like syndrome (IEC-HS). Each of these is characterized by cytokine storm and hyperinflammation; however, they differ mechanistically with regard to the cytokines and immune cells that drive the pathophysiology. We summarize the current state of the field of CAR-T-associated toxicities, focusing on underlying biology and how this informs toxicity management and prevention. We also highlight several emerging agents showing promise in preclinical models and the clinic. Many of these established and emerging agents do not appear to impact the anti-tumor function of CAR-T, opening the door to additional and wider CAR-T applications.


Assuntos
Síndrome da Liberação de Citocina , Citocinas , Imunoterapia Adotiva , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Síndrome da Liberação de Citocina/etiologia , Síndrome da Liberação de Citocina/terapia , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias/etiologia , Citocinas/metabolismo , Animais , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/terapia , Gerenciamento Clínico , Linfo-Histiocitose Hemofagocítica/terapia , Linfo-Histiocitose Hemofagocítica/etiologia , Linfo-Histiocitose Hemofagocítica/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
2.
Cancer Med ; 13(12): e7372, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38923216

RESUMO

BACKGROUND: Chimeric antigen receptor T (CAR-T) cell therapy has emerged as a potent treatment for relapsed or refractory multiple myeloma, demonstrating significant clinical efficacy. Despite these advances, treatment-related toxicities, particularly infections, pose a significant challenge to patient safety. METHODS: This review synthesizes current knowledge on the mechanisms underlying post-CAR-T therapy infections, focusing on the interplay between immune dysfunction, host factors, and treatment-induced toxicity. It provides a comprehensive analysis of the temporal and individual variability in infection characteristics and the confounding clinical presentation of cytokine release syndrome. RESULTS: The review identifies that patients receiving CAR-T cells are at increased risk of concurrent infections due to the heterogeneity in infection characteristics across different time periods, individuals, and patient groups. It highlights the diagnostic and therapeutic complexities introduced by the overlapping symptoms of infection and cytokine release syndrome. CONCLUSION: To enhance the infection control post-CAR-T therapy, this review proposes preventive strategies tailored to the early and long-term management of patients. It underscores the need for a nuanced understanding of infection mechanisms and the importance of personalized prevention plans to improve clinical outcomes in multiple myeloma treatment.


Assuntos
Imunoterapia Adotiva , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/terapia , Mieloma Múltiplo/imunologia , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Síndrome da Liberação de Citocina/etiologia , Síndrome da Liberação de Citocina/prevenção & controle , Receptores de Antígenos Quiméricos/imunologia , Infecções/etiologia , Fatores de Risco
3.
Blood Rev ; 66: 101218, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38852017

RESUMO

Patients with multiple myeloma (MM) were among the groups impacted more severely by the COVID-19 pandemic, with higher rates of severe disease and COVID-19-related mortality. MM and COVID-19, plus post-acute sequelae of SARS-CoV-2 infection, are associated with endothelial dysfunction and injury, with overlapping inflammatory pathways and coagulopathies. Existing treatment options for MM, notably high-dose therapy with autologous stem cell transplantation and novel chimeric antigen receptor (CAR) T-cell therapies and bispecific T-cell engaging antibodies, are also associated with endothelial cell injury and mechanism-related toxicities. These pathologies include cytokine release syndrome (CRS) and neurotoxicity that may be exacerbated by underlying endotheliopathies. In the context of these overlapping risks, prophylaxis and treatment approaches mitigating the inflammatory and pro-coagulant effects of endothelial injury are important considerations for patient management, including cytokine receptor antagonists, thromboprophylaxis with low-molecular-weight heparin and direct oral anticoagulants, and direct endothelial protection with defibrotide in the appropriate clinical settings.


Assuntos
COVID-19 , Mieloma Múltiplo , Polidesoxirribonucleotídeos , SARS-CoV-2 , Humanos , Mieloma Múltiplo/terapia , Mieloma Múltiplo/complicações , Mieloma Múltiplo/imunologia , COVID-19/complicações , COVID-19/imunologia , Polidesoxirribonucleotídeos/uso terapêutico , Polidesoxirribonucleotídeos/farmacologia , Imunoterapia/métodos , Síndrome da Liberação de Citocina/etiologia , Síndrome da Liberação de Citocina/terapia , Síndrome da Liberação de Citocina/prevenção & controle , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/imunologia
4.
Int J Hematol ; 120(1): 3-5, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38861242

RESUMO

The introduction of immunotherapies has led to remarkable progress in the treatment of hematological malignancies, including B-cell malignancies such as B-cell lymphoma and multiple myeloma (MM). Although conventional therapeutic antibodies are effective as immunotherapy for newly diagnosed and relapsed/refractory B-cell lymphoma and MM, some cases are resistant. Chimeric antigen receptor (CAR) T-cell therapies targeting B-cell lymphoma and MM have progressed through several generations, and have improved treatment strategies for relapsed/refractory disease. In addition to conventional therapeutic antibodies, bispecific antibodies targeting both tumor cells and T cells have been developed for MM. Both CAR T-cell therapies and bispecific antibodies are effective for heavily treated patients with relapsed/refractory disease. However, most patients treated with these therapies relapse, and serious adverse events like cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) are problematic. This Progress in Hematology, "Novel treatment strategies for hematological malignancies in the immunotherapy era," focuses on such limitations and the future outlook for CAR T-cell therapies and bispecific antibodies for B-cell malignancies. The role of NK cells in anti-tumor immunity for AML and various therapeutic strategies for NK-cell therapy in AML is also discussed.


Assuntos
Anticorpos Biespecíficos , Neoplasias Hematológicas , Imunoterapia Adotiva , Humanos , Anticorpos Biespecíficos/uso terapêutico , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/imunologia , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfoma de Células B/terapia , Linfoma de Células B/imunologia , Mieloma Múltiplo/terapia , Mieloma Múltiplo/imunologia , Síndrome da Liberação de Citocina/etiologia , Síndrome da Liberação de Citocina/terapia
5.
Intern Med ; 63(13): 1863-1872, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38945932

RESUMO

Objective Chimeric antigen receptor (CAR) T cell therapy is an emerging and effective therapy for relapsed or refractory diffuse large B cell lymphoma (R/R DLBCL). The characteristic toxicities of CAR T cell therapy include cytokine release syndrome (CRS) and prolonged cytopenia. We investigated the factors associated with these complications after CAR T cell therapy by analyzing lymphocyte subsets following CAR T cell infusion. Methods We retrospectively analyzed peripheral blood samples on days 7, 14, and 28 after tisagenlecleucel (tisa-cel) infusion by flow cytometry at our institution between June 2020 and September 2022. Patients Thirty-five patients with R/R DLBCL who received tisa-cel therapy were included. Results A flow cytometry-based analysis of blood samples from these patients revealed that the proportion of CD4+CD25+CD127+ T cells (hereafter referred to as "activated CD4+ T cells" ) among the total CD4+ T cells on day 7 after tisa-cel infusion correlated with the duration of CRS (r=0.79, p<0.01). In addition, a prognostic analysis of the overall survival (OS) using time-dependent receiver operating characteristic curves indicated a significantly more favorable OS and progression-free survival of patients with a proportion of activated CD4+ T cells among the total CD4+ T cells <0.73 (p=0.01, and p<0.01, respectively). Conclusion These results suggest that the proportion of activated CD4+ T cells on day 7 after tisa-cel infusion correlates with the CRS duration and predicts clinical outcomes after CAR T cell therapy. Further studies with a larger number of patients are required to validate these observations.


Assuntos
Linfócitos T CD4-Positivos , Síndrome da Liberação de Citocina , Imunoterapia Adotiva , Linfoma Difuso de Grandes Células B , Humanos , Masculino , Feminino , Síndrome da Liberação de Citocina/sangue , Síndrome da Liberação de Citocina/etiologia , Síndrome da Liberação de Citocina/terapia , Síndrome da Liberação de Citocina/imunologia , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Pessoa de Meia-Idade , Linfoma Difuso de Grandes Células B/terapia , Linfoma Difuso de Grandes Células B/sangue , Linfoma Difuso de Grandes Células B/imunologia , Idoso , Estudos Retrospectivos , Linfócitos T CD4-Positivos/imunologia , Adulto , Resultado do Tratamento , Receptores de Antígenos Quiméricos/imunologia , Prognóstico , Receptores de Antígenos de Linfócitos T
6.
Clin Chim Acta ; 559: 119704, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38697457

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR) T cell therapy is an immunotherapy that has resulted in tremendous progress in the treatment of patients with B cell malignancies. However, significant toxicities may also be associated with such therapy. Here we report extremely high ferritin in a male patient after such therapy. CASE PRESENTATION: We present a case of a 52 year old male with a history of B-cell acute lymphoblastic leukemia who received chimeric antigen receptor T-cell (CAR-T) therapy with rapcabtagene autoleucel (carvykti). The patient subsequently developed cytokine release syndrome (CRS) which during its resolution results in a hemophagocytic lymphohistiocytosis (HLH)-like syndrome that fell short of being diagnostic. This syndrome tracked closely with the onset and resolution of immune-effector cell-associated neurotoxicity syndrome (ICANS), with close correlation between the severity of laboratory abnormalities, particularly extremely high ferritin (peak value: 81,540 µg/L), and clinical encephalopathy. CONCLUSIONS: Cytokine release syndrome after experimental (CAR) T cell therapy may cause extremely elevated ferritin and hemophagocytic lymphohistiocytosis -like syndrome.


Assuntos
Síndrome da Liberação de Citocina , Ferritinas , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Humanos , Masculino , Síndrome da Liberação de Citocina/etiologia , Síndrome da Liberação de Citocina/terapia , Pessoa de Meia-Idade , Imunoterapia Adotiva/efeitos adversos , Receptores de Antígenos Quiméricos/imunologia , Neoplasias Hematológicas/terapia , Linfo-Histiocitose Hemofagocítica/terapia , Linfo-Histiocitose Hemofagocítica/imunologia
8.
Int J Hematol ; 120(1): 15-22, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38777913

RESUMO

Currently available chimeric antigen receptor (CAR)-engineered T-cell therapies targeting B-cell maturation antigen (BCMA), namely, idecabtagene vicleucel and ciltacabtagene autoleucel, have shown marked efficacy against relapsed and refractory multiple myeloma. However, further improvement in CAR-T-cell function is warranted as most patients treated with these products eventually relapse due to various mechanisms such as antigen loss and T-cell dysfunction or disappearance. Strategies for improving CAR-T-cell function include targeting of dual antigens, enhancing cell longevity through genetic modification, and eliminating the immunosuppressive tumor microenvironment. Serious side effects can also occur after CAR-T-cell infusions. Although understanding of the molecular pathogenesis of cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome is growing, the unique movement disorder caused by BCMA-targeted therapy is less understood, and its molecular mechanisms must be further elucidated to establish better management strategies. In this article, we will review the current status of BCMA-targeting CAR-T-cell therapy. We will also highlight progress in the development of CAR-T cells targeting other antigens, as well as universal allogeneic CAR-T cells and bispecific antibodies.


Assuntos
Antígeno de Maturação de Linfócitos B , Imunoterapia Adotiva , Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Mieloma Múltiplo/terapia , Mieloma Múltiplo/imunologia , Imunoterapia Adotiva/métodos , Imunoterapia Adotiva/efeitos adversos , Antígeno de Maturação de Linfócitos B/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Linfócitos T/transplante , Microambiente Tumoral/imunologia , Síndrome da Liberação de Citocina/etiologia , Síndrome da Liberação de Citocina/terapia
9.
Radiographics ; 44(6): e230069, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38696321

RESUMO

Cytokines are small secreted proteins that have specific effects on cellular interactions and are crucial for functioning of the immune system. Cytokines are involved in almost all diseases, but as microscopic chemical compounds they cannot be visualized at imaging for obvious reasons. Several imaging manifestations have been well recognized owing to the development of cytokine therapies such as those with bevacizumab (antibody against vascular endothelial growth factor) and chimeric antigen receptor (CAR) T cells and the establishment of new disease concepts such as interferonopathy and cytokine release syndrome. For example, immune effector cell-associated neurotoxicity is the second most common form of toxicity after CAR T-cell therapy toxicity, and imaging is recommended to evaluate the severity. The emergence of COVID-19, which causes a cytokine storm, has profoundly impacted neuroimaging. The central nervous system is one of the systems that is most susceptible to cytokine storms, which are induced by the positive feedback of inflammatory cytokines. Cytokine storms cause several neurologic complications, including acute infarction, acute leukoencephalopathy, and catastrophic hemorrhage, leading to devastating neurologic outcomes. Imaging can be used to detect these abnormalities and describe their severity, and it may help distinguish mimics such as metabolic encephalopathy and cerebrovascular disease. Familiarity with the neuroimaging abnormalities caused by cytokine storms is beneficial for diagnosing such diseases and subsequently planning and initiating early treatment strategies. The authors outline the neuroimaging features of cytokine-related diseases, focusing on cytokine storms, neuroinflammatory and neurodegenerative diseases, cytokine-related tumors, and cytokine-related therapies, and describe an approach to diagnosing cytokine-related disease processes and their differentials. ©RSNA, 2024 Supplemental material is available for this article.


Assuntos
Síndrome da Liberação de Citocina , Neuroimagem , Humanos , COVID-19/diagnóstico por imagem , Síndrome da Liberação de Citocina/diagnóstico por imagem , Síndrome da Liberação de Citocina/etiologia , Citocinas , SARS-CoV-2
10.
Nat Rev Clin Oncol ; 21(7): 501-521, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38769449

RESUMO

Chimeric antigen receptor (CAR) T cell therapy has revolutionized the treatment of several haematological malignancies and is being investigated in patients with various solid tumours. Characteristic CAR T cell-associated toxicities such as cytokine-release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) are now well-recognized, and improved supportive care and management with immunosuppressive agents has made CAR T cell therapy safer and more feasible than it was when the first regulatory approvals of such treatments were granted in 2017. The increasing clinical experience with these therapies has also improved recognition of previously less well-defined toxicities, including movement disorders, immune effector cell-associated haematotoxicity (ICAHT) and immune effector cell-associated haemophagocytic lymphohistiocytosis-like syndrome (IEC-HS), as well as the substantial risk of infection in patients with persistent CAR T cell-induced B cell aplasia and hypogammaglobulinaemia. A more diverse selection of immunosuppressive and supportive-care pharmacotherapies is now being utilized for toxicity management, yet no universal algorithm for their application exists. As CAR T cell products targeting new antigens are developed, additional toxicities involving damage to non-malignant tissues expressing the target antigen are a potential hurdle. Continued prospective evaluation of toxicity management strategies and the design of less-toxic CAR T cell products are both crucial for ongoing success in this field. In this Review, we discuss the evolving understanding and clinical management of CAR T cell-associated toxicities.


Assuntos
Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva/efeitos adversos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/uso terapêutico , Síndrome da Liberação de Citocina/etiologia , Síndrome da Liberação de Citocina/imunologia , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/imunologia , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Linfócitos T/imunologia
11.
BMJ ; 385: e075859, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38749554

RESUMO

In addition to conventional chemoradiation and targeted cancer therapy, the use of immune based therapies, specifically immune checkpoint inhibitors (ICIs) and chimeric antigen receptor T cell therapy (CAR-T), has increased exponentially across a wide spectrum of cancers. This has been paralleled by recognition of off-target immune related adverse events that can affect almost any organ system including the cardiovascular system. The use of ICIs has been associated with myocarditis, a less common but highly fatal adverse effect, pericarditis and pericardial effusions, vasculitis, thromboembolism, and potentially accelerated atherosclerosis. CAR-T resulting in a systemic cytokine release syndrome has been associated with myriad cardiovascular consequences including arrhythmias, myocardial infarction, and heart failure. This review summarizes the current state of knowledge regarding adverse cardiovascular effects associated with ICIs and CAR-T.


Assuntos
Inibidores de Checkpoint Imunológico , Imunoterapia Adotiva , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Inibidores de Checkpoint Imunológico/efeitos adversos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Doenças Cardiovasculares/induzido quimicamente , Cardiotoxicidade/etiologia , Miocardite/induzido quimicamente , Miocardite/terapia , Síndrome da Liberação de Citocina/etiologia , Pericardite/induzido quimicamente , Pericardite/terapia
13.
Front Immunol ; 15: 1412002, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779668

RESUMO

Chimeric Antigen Receptor T-cell (CAR-T) therapy has transformed the treatment landscape for hematological malignancies, showing high efficacy in patients with relapsed or refractory (R/R) disease and otherwise poor prognosis in the pre-CAR-T era. These therapies have been usually administered in the inpatient setting due to the risk of cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). However, there is a growing interest in the transition to outpatient administration due to multiple reasons. We review available evidence regarding safety and feasibility of outpatient administration of CD19 targeted and BCMA targeted CAR T-cell therapy with an emphasis on the implementation of outpatient CAR-T programs in community-based centers.


Assuntos
Imunoterapia Adotiva , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Pacientes Ambulatoriais , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/imunologia , Receptores de Antígenos Quiméricos/imunologia , Assistência Ambulatorial , Síndrome da Liberação de Citocina/terapia , Síndrome da Liberação de Citocina/etiologia , Antígenos CD19/imunologia , Centros Comunitários de Saúde
14.
BMC Bioinformatics ; 25(1): 197, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769505

RESUMO

BACKGROUND: CAR-T cell therapy represents a novel approach for the treatment of hematologic malignancies and solid tumors. However, its implementation is accompanied by the emergence of potentially life-threatening adverse events known as cytokine release syndrome (CRS). Given the escalating number of patients undergoing CAR-T therapy, there is an urgent need to develop predictive models for severe CRS occurrence to prevent it in advance. Currently, all existing models are based on decision trees whose accuracy is far from meeting our expectations, and there is a lack of deep learning models to predict the occurrence of severe CRS more accurately. RESULTS: We propose PrCRS, a deep learning prediction model based on U-net and Transformer. Given the limited data available for CAR-T patients, we employ transfer learning using data from COVID-19 patients. The comprehensive evaluation demonstrates the superiority of the PrCRS model over other state-of-the-art methods for predicting CRS occurrence. We propose six models to forecast the probability of severe CRS for patients with one, two, and three days in advance. Additionally, we present a strategy to convert the model's output into actual probabilities of severe CRS and provide corresponding predictions. CONCLUSIONS: Based on our findings, PrCRS effectively predicts both the likelihood and timing of severe CRS in patients, thereby facilitating expedited and precise patient assessment, thus making a significant contribution to medical research. There is little research on applying deep learning algorithms to predict CRS, and our study fills this gap. This makes our research more novel and significant. Our code is publicly available at https://github.com/wzy38828201/PrCRS . The website of our prediction platform is: http://prediction.unicar-therapy.com/index-en.html .


Assuntos
COVID-19 , Síndrome da Liberação de Citocina , Aprendizado Profundo , Imunoterapia Adotiva , Humanos , COVID-19/terapia , Síndrome da Liberação de Citocina/terapia , Síndrome da Liberação de Citocina/etiologia , Imunoterapia Adotiva/métodos , SARS-CoV-2 , Neoplasias/terapia
15.
Ann Med ; 56(1): 2349796, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38738799

RESUMO

BACKGROUND: Relapse/refractory B-cell acute lymphoblastic leukaemia (r/r B-ALL) represents paediatric cancer with a challenging prognosis. CAR T-cell treatment, considered an advanced treatment, remains controversial due to high relapse rates and adverse events. This study assessed the efficacy and safety of CAR T-cell therapy for r/r B-ALL. METHODS: The literature search was performed on four databases. Efficacy parameters included minimal residual disease negative complete remission (MRD-CR) and relapse rate (RR). Safety parameters constituted cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). RESULTS: Anti-CD22 showed superior efficacy with the highest MRD-CR event rate and lowest RR, compared to anti-CD19. Combining CAR T-cell therapy with haploidentical stem cell transplantation improved RR. Safety-wise, bispecific anti-CD19/22 had the lowest CRS rate, and anti-CD22 showed the fewest ICANS. Analysis of the costimulatory receptors showed that adding CD28ζ to anti-CD19 CAR T-cell demonstrated superior efficacy in reducing relapses with favorable safety profiles. CONCLUSION: Choosing a more efficacious and safer CAR T-cell treatment is crucial for improving overall survival in acute leukaemia. Beyond the promising anti-CD22 CAR T-cell, exploring costimulatory domains and new CD targets could enhance treatment effectiveness for r/r B-ALL.


Assuntos
Antígenos CD19 , Imunoterapia Adotiva , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/imunologia , Antígenos CD19/imunologia , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Receptores de Antígenos Quiméricos/imunologia , Criança , Resultado do Tratamento , Neoplasia Residual , Síndrome da Liberação de Citocina/etiologia , Recidiva , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/imunologia
16.
J Drugs Dermatol ; 23(5): e134-e136, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38709689

RESUMO

BACKGROUND: Hidradenitis suppurativa (HS) is a chronic inflammatory disease that generates multiple cytokines. Here, we present an example of the cytokines forming a cytokine storm and its effects on the patient. CASE PRESENTATION: We report the case of a 55-year-old man who had severe but stable HS. Serum samples were collected from the patient and extraordinarily elevated cytokine concentrations were identified in the patient's serum.  Conclusion: Cytokine storms may be a condition associated with HS posing additional risk to patient survival. J Drugs Dermatol. 2024;23(5):e134-e136.     doi:10.36849/JDD.7860R1e.


Assuntos
Síndrome da Liberação de Citocina , Hidradenite Supurativa , Humanos , Masculino , Pessoa de Meia-Idade , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/diagnóstico , Síndrome da Liberação de Citocina/etiologia , Síndrome da Liberação de Citocina/sangue , Citocinas/sangue , Hidradenite Supurativa/sangue , Hidradenite Supurativa/complicações , Hidradenite Supurativa/diagnóstico , Hidradenite Supurativa/imunologia , Índice de Gravidade de Doença
17.
Cell Biochem Funct ; 42(4): e4026, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38693631

RESUMO

This work investigates the efficiency of cholecalciferol and low dose gamma radiation in modulating cytokine storm through their impact on inflammatory and anti-inflammatory cytokine and protecting against lung and liver injuries. Male Swiss albino mice were exposed to 0.2 Gy gamma radiation/week for four consecutive weeks then injected intraperitoneally (i.p) with a single dose of 8.3 × 106 CFU Escherichia coli/g b.w. then injected i.p. with 1.0 mg/kg cholecalciferol (Vit D3) for 7 days starting 4 h after E. coli injection. The results revealed that Cholecalciferol and low dose gamma radiation caused significant depletion in the severity of E. coli infection (colony forming unit per milliliter), log10 of E. coli, Tumor necrosis factor alpha, Interleukin 6, VEGF, alanine aminotransferase, and aspartate aminotransferase levels and significant elevation in IL-10, IL-4, and HO-1. Immunohistochemical analysis of caspase-3 expression in lung tissue section showed low caspase-3 expression in cholecalciferol and low dose gamma radiation treated group. Histopathological examinations were performed in both lung and liver tissues which also emphasis the biochemical findings. Our results exhibit the importance of cholecalciferol and low dose gamma radiation in improving liver function and providing anti-inflammatory response in diseases causing cytokine storm.


Assuntos
Colecalciferol , Infecções por Escherichia coli , Escherichia coli , Raios gama , Animais , Camundongos , Colecalciferol/farmacologia , Masculino , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/patologia , Fígado/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Pulmão/patologia , Pulmão/metabolismo , Citocinas/metabolismo , Síndrome da Liberação de Citocina/patologia , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/etiologia , Aspartato Aminotransferases/sangue
18.
Eur J Cancer ; 205: 114075, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38733717

RESUMO

T-cell engagers (TCE) are cancer immunotherapies that have recently demonstrated meaningful benefit for patients with hematological malignancies and solid tumors. The anticipated widespread use of T cell engagers poses implementation challenges and highlights the need for guidance to anticipate, mitigate, and manage adverse events. By mobilizing T-cells directly at the contact of tumor cells, TCE mount an obligatory and immediate anti-tumor immune response that could result in diverse reactions and adverse events. Cytokine release syndrome (CRS) is the most common reaction and is largely confined to the first drug administrations during step-up dosage. Cytokine release syndrome should be distinguished from infusion related reaction by clinical symptoms, timing to occurrence, pathophysiological aspects, and clinical management. Other common reactions and adverse events with TCE are immune effector Cell-Associated Neurotoxicity Syndrome (ICANS), infections, tumor flare reaction and cytopenias. The toxicity profiles of TCE and CAR-T cells have commonalities and distinctions that we sum-up in this review. As compared with CAR-T cells, TCE are responsible for less frequently severe CRS or ICANS. This review recapitulates terminology, pathophysiology, severity grading system and management of reactions and adverse events related to TCE.


Assuntos
Imunoterapia Adotiva , Neoplasias , Linfócitos T , Humanos , Neoplasias/imunologia , Neoplasias/terapia , Linfócitos T/imunologia , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Síndrome da Liberação de Citocina/etiologia , Síndrome da Liberação de Citocina/imunologia , Receptores de Antígenos Quiméricos/imunologia
19.
Int J Mol Sci ; 25(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38732213

RESUMO

Multiple myeloma (MM), the second most common hematologic malignancy, remains incurable, and its incidence is rising. Chimeric Antigen Receptor T-cell (CAR-T cell) therapy has emerged as a novel treatment, with the potential to improve the survival and quality of life of patients with relapsed/refractory multiple myeloma (rrMM). In this systematic review and meta-analysis, conducted in accordance with PRISMA guidelines, we aim to provide a concise overview of the latest developments in CAR-T therapy, assess their potential implications for clinical practice, and evaluate their efficacy and safety outcomes based on the most up-to-date evidence. A literature search conducted from 1 January 2019 to 12 July 2023 on Medline/PubMed, Scopus, and Web of Science identified 2273 articles, of which 29 fulfilled the specified criteria for inclusion. Our results offer robust evidence supporting CAR-T cell therapy's efficacy in rrMM patients, with an encouraging 83.21% overall response rate (ORR). A generally safe profile was observed, with grade ≥ 3 cytokine release syndrome (CRS) at 7.12% and grade ≥ 3 neurotoxicity at 1.37%. A subgroup analysis revealed a significantly increased ORR in patients with fewer antimyeloma regimens, while grade ≥ 3 CRS was more common in those with a higher proportion of high-risk cytogenetics and prior exposure to BCMA therapy.


Assuntos
Imunoterapia Adotiva , Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Mieloma Múltiplo/terapia , Mieloma Múltiplo/imunologia , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Resultado do Tratamento , Qualidade de Vida , Recidiva Local de Neoplasia/terapia , Síndrome da Liberação de Citocina/etiologia
20.
Blood Adv ; 8(12): 3038-3044, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38598713

RESUMO

ABSTRACT: Teclistamab (Tec) is a first-in-class BCMA × CD3 bispecific T-cell engager antibody approved for treating multiple myeloma progressing after at least 4 lines of therapy. The objective of this study was to evaluate the rate of cytokine release syndrome (CRS) in patients who were treated with commercial Tec and had prior exposure to other T-cell redirection therapies. A retrospective chart review was performed to identify patients who completed the Tec step-up dosing phase between November 2022 and November 2023. Patients were divided into 2 cohorts based on prior exposure to T-cell redirection therapy (cohort 1: T-cell redirection therapy experienced; cohort 2: T-cell redirection therapy naïve). The primary objective was to compare the differences in the rates of CRS between the 2 cohorts. Univariate and multivariate logistic regression analyses were performed to assess the association between CRS rates with Tec and prior treatment with T-cell redirection therapy. A total of 72 patients were included in the analysis (27 in cohort 1 and 45 in cohort 2). The CRS rates were significantly lower in cohort 1 (37%, n = 10) compared with cohort 2 (80%, n = 36; P = .0004). Based on multivariate logistic regression analysis, patients without prior exposure to T-cell redirection therapy (cohort 2) had about a fourfold increase in the incidence of CRS (95% confidence interval, 1.40-14.90; P = .0002) with Tec. In our study, prior exposure to T-cell redirection therapy reduced the risk of CRS with Tec during the step-up dosing phase. This observation will allow for the optimization of CRS prophylactic strategies for Tec.


Assuntos
Síndrome da Liberação de Citocina , Mieloma Múltiplo , Linfócitos T , Humanos , Mieloma Múltiplo/terapia , Mieloma Múltiplo/tratamento farmacológico , Masculino , Feminino , Pessoa de Meia-Idade , Síndrome da Liberação de Citocina/etiologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Estudos Retrospectivos , Idoso , Anticorpos Biespecíficos/uso terapêutico , Antígeno de Maturação de Linfócitos B/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...