Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 798
Filtrar
1.
Mol Genet Genomic Med ; 12(7): e2482, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38958168

RESUMO

BACKGROUND: Marfan syndrome (MFS) is a hereditary connective tissue disorder involving multiple systems, including ophthalmologic abnormalities. Most cases are due to heterozygous mutations in the fibrillin-1 gene (FBN1). Other associated genes include LTBP2, MYH11, MYLK, and SLC2A10. There is significant clinical overlap between MFS and other Marfan-like disorders. PURPOSE: To expand the mutation spectrum of FBN1 gene and validate the pathogenicity of Marfan-related genes in patients with MFS and ocular manifestations. METHODS: We recruited 318 participants (195 cases, 123 controls), including 59 sporadic cases and 88 families. All patients had comprehensive ophthalmic examinations showing ocular features of MFS and met Ghent criteria. Additionally, 754 cases with other eye diseases were recruited. Panel-based next-generation sequencing (NGS) screened mutations in 792 genes related to inherited eye diseases. RESULTS: We detected 181 mutations with an 84.7% detection rate in sporadic cases and 87.5% in familial cases. The overall detection rate was 86.4%, with FBN1 accounting for 74.8%. In cases without FBN1 mutations, 23 mutations from seven Marfan-related genes were identified, including four pathogenic or likely pathogenic mutations in LTBP2. The 181 mutations included 165 missenses, 10 splicings, three frameshifts, and three nonsenses. FBN1 accounted for 53.0% of mutations. The most prevalent pathogenic mutation was FBN1 c.4096G>A. Additionally, 94 novel mutations were detected, with 13 de novo mutations in 14 families. CONCLUSION: We expanded the mutation spectrum of the FBN1 gene and provided evidence for the pathogenicity of other Marfan-related genes. Variants in LTBP2 may contribute to the ocular manifestations in MFS, underscoring its role in phenotypic diversity.


Assuntos
Fibrilina-1 , Sequenciamento de Nucleotídeos em Larga Escala , Síndrome de Marfan , Mutação , Humanos , Síndrome de Marfan/genética , Síndrome de Marfan/patologia , Feminino , Masculino , Fibrilina-1/genética , Adulto , Criança , Adolescente , Pessoa de Meia-Idade , Pré-Escolar , Oftalmopatias/genética , Oftalmopatias/patologia , Linhagem , População do Leste Asiático , Adipocinas
3.
Orphanet J Rare Dis ; 19(1): 209, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773661

RESUMO

BACKGROUND: Marfan syndrome (MFS) is an autosomal dominant connective tissue disease with wide clinical heterogeneity, and mainly caused by pathogenic variants in fibrillin-1 (FBN1). METHODS: A Chinese 4-generation MFS pedigree with 16 family members was recruited and exome sequencing (ES) was performed in the proband. Transcript analysis (patient RNA and minigene assays) and in silico structural analysis were used to determine the pathogenicity of the variant. In addition, germline mosaicism in family member (Ι:1) was assessed using quantitative fluorescent polymerase chain reaction (QF-PCR) and short tandem repeat PCR (STR) analyses. RESULTS: Two cis-compound benign intronic variants of FBN1 (c.3464-4 A > G and c.3464-5G > A) were identified in the proband by ES. As a compound variant, c.3464-5_3464-4delGAinsAG was found to be pathogenic and co-segregated with MFS. RNA studies indicated that aberrant transcripts were found only in patients and mutant-type clones. The variant c.3464-5_3464-4delGAinsAG caused erroneous integration of a 3 bp sequence into intron 28 and resulted in the insertion of one amino acid in the protein sequence (p.Ile1154_Asp1155insAla). Structural analyses suggested that p.Ile1154_Asp1155insAla affected the protein's secondary structure by interfering with one disulfide bond between Cys1140 and Cys1153 and causing the extension of an anti-parallel ß sheet in the calcium-binding epidermal growth factor-like (cbEGF)13 domain. In addition, the asymptomatic family member Ι:1 was deduced to be a gonadal mosaic as assessed by inconsistent results of sequencing and STR analysis. CONCLUSIONS: To our knowledge, FBN1 c.3464-5_3464-4delGAinsAG is the first identified pathogenic intronic indel variant affecting non-canonical splice sites in this gene. Our study reinforces the importance of assessing the pathogenic role of intronic variants at the mRNA level, with structural analysis, and the occurrence of mosaicism.


Assuntos
Fibrilina-1 , Íntrons , Síndrome de Marfan , Mosaicismo , Linhagem , Humanos , Fibrilina-1/genética , Síndrome de Marfan/genética , Síndrome de Marfan/patologia , Feminino , Masculino , Adulto , Íntrons/genética , Mutação INDEL/genética , Pessoa de Meia-Idade , Adipocinas
4.
Arterioscler Thromb Vasc Biol ; 44(7): 1540-1554, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38660802

RESUMO

BACKGROUND: Myxomatous valve disease (MVD) is the most common cause of mitral regurgitation, leading to impaired cardiac function and heart failure. MVD in a mouse model of Marfan syndrome includes valve leaflet thickening and progressive valve degeneration. However, the underlying mechanisms by which the disease progresses remain undefined. METHODS: Mice with Fibrillin 1 gene variant Fbn1C1039G/+ recapitulate histopathologic features of Marfan syndrome, and Wnt (Wingless-related integration site) signaling activity was detected in TCF/Lef-lacZ (T-cell factor/lymphoid enhancer factor-ß-galactosidase) reporter mice. Single-cell RNA sequencing was performed from mitral valves of wild-type and Fbn1C1039G/+ mice at 1 month of age. Inhibition of Wnt signaling was achieved by conditional induction of the secreted Wnt inhibitor Dkk1 (Dickkopf-1) expression in periostin-expressing valve interstitial cells of Periostin-Cre; tetO-Dkk1; R26rtTA; TCF/Lef-lacZ; Fbn1C1039G/+ mice. Dietary doxycycline was administered for 1 month beginning with MVD initiation (1-month-old) or MVD progression (2-month-old). Histological evaluation and immunofluorescence for ECM (extracellular matrix) and immune cells were performed. RESULTS: Wnt signaling is activated early in mitral valve disease progression, before immune cell infiltration in Fbn1C1039G/+ mice. Single-cell transcriptomics revealed similar mitral valve cell heterogeneity between wild-type and Fbn1C1039G/+ mice at 1 month of age. Wnt pathway genes were predominantly expressed in valve interstitial cells and valve endothelial cells of Fbn1C1039G/+ mice. Inhibition of Wnt signaling in Fbn1C1039G/+ mice at 1 month of age prevented the initiation of MVD as indicated by improved ECM remodeling and reduced valve leaflet thickness with decreased infiltrating macrophages. However, later, Wnt inhibition starting at 2 months did not prevent the progression of MVD. CONCLUSIONS: Wnt signaling is involved in the initiation of mitral valve abnormalities and inflammation but is not responsible for later-stage valve disease progression once it has been initiated. Thus, Wnt signaling contributes to MVD progression in a time-dependent manner and provides a promising therapeutic target for the early treatment of congenital MVD in Marfan syndrome.


Assuntos
Modelos Animais de Doenças , Progressão da Doença , Fibrilina-1 , Valva Mitral , Via de Sinalização Wnt , Animais , Fibrilina-1/genética , Fibrilina-1/metabolismo , Valva Mitral/metabolismo , Valva Mitral/patologia , Valva Mitral/efeitos dos fármacos , Camundongos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos Transgênicos , Síndrome de Marfan/genética , Síndrome de Marfan/complicações , Síndrome de Marfan/metabolismo , Síndrome de Marfan/patologia , Insuficiência da Valva Mitral/patologia , Insuficiência da Valva Mitral/metabolismo , Insuficiência da Valva Mitral/prevenção & controle , Insuficiência da Valva Mitral/genética , Camundongos Endogâmicos C57BL , Inflamação/metabolismo , Inflamação/patologia , Inflamação/prevenção & controle , Inflamação/genética , Masculino , Feminino , Moléculas de Adesão Celular , Adipocinas
5.
Am J Pathol ; 194(7): 1317-1328, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38548269

RESUMO

Two major constituents of exfoliation material, fibrillin-1 and lysyl oxidase-like 1 (encoded by FBN1 and LOXL1), are implicated in exfoliation glaucoma, yet their individual contributions to ocular phenotype are minor. To test the hypothesis that a combination of FBN1 mutation and LOXL1 deficiency exacerbates ocular phenotypes, the pan-lysyl oxidase inhibitor ß-aminopropionitrile (BAPN) was used to treat adult wild-type (WT) mice and mice heterozygous for a missense mutation in Fbn1 (Fbn1C1041G/+) for 8 weeks and their eyes were examined. Although intraocular pressure did not change and exfoliation material was not detected in the eyes, BAPN treatment worsened optic nerve and axon expansion in Fbn1C1041G/+ mice, an early sign of axonal damage in rodent models of glaucoma. Disruption of elastic fibers was detected only in Fbn1C1041G/+ mice, which increased with BAPN treatment, as shown by histologic and immunohistochemical staining of the optic nerve pia mater. Transmission electron microscopy showed that Fbn1C1041G/+ mice had fewer microfibrils, smaller elastin cores, and a lower density of elastic fibers compared with WT mice in control groups. BAPN treatment led to elastin core expansion in both WT and Fbn1C1041G/+ mice, but an increase in the density of elastic fiber was confined to Fbn1C1041G/+ mice. LOX inhibition had a stronger effect on optic nerve and elastic fiber parameters in the context of Fbn1 mutation, indicating the Marfan mouse model with LOX inhibition warrants further investigation for exfoliation glaucoma pathogenesis.


Assuntos
Aminopropionitrilo , Modelos Animais de Doenças , Fibrilina-1 , Síndrome de Marfan , Nervo Óptico , Proteína-Lisina 6-Oxidase , Animais , Camundongos , Adipocinas , Aminoácido Oxirredutases/metabolismo , Aminoácido Oxirredutases/antagonistas & inibidores , Aminoácido Oxirredutases/genética , Aminopropionitrilo/farmacologia , Tecido Elástico/patologia , Tecido Elástico/metabolismo , Tecido Elástico/ultraestrutura , Fibrilina-1/genética , Fibrilinas/metabolismo , Glaucoma/patologia , Pressão Intraocular , Síndrome de Marfan/patologia , Síndrome de Marfan/complicações , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Nervo Óptico/patologia , Nervo Óptico/ultraestrutura , Nervo Óptico/efeitos dos fármacos , Proteína-Lisina 6-Oxidase/metabolismo , Proteína-Lisina 6-Oxidase/antagonistas & inibidores
6.
J Med Genet ; 61(5): 469-476, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38458756

RESUMO

BACKGROUND: Marfan syndrome (MFS) is a multisystem disease with a unique combination of skeletal, cardiovascular and ocular features. Geleophysic/acromicric dysplasias (GPHYSD/ACMICD), characterised by short stature and extremities, are described as 'the mirror image' of MFS. The numerous FBN1 pathogenic variants identified in MFS are located all along the gene and lead to the same final pathogenic sequence. Conversely, in GPHYSD/ACMICD, the 28 known heterozygous FBN1 pathogenic variants all affect exons 41-42 encoding TGFß-binding protein-like domain 5 (TB5). METHODS: Since 1996, more than 5000 consecutive probands have been referred nationwide to our laboratory for molecular diagnosis of suspected MFS. RESULTS: We identified five MFS probands carrying distinct heterozygous pathogenic in-frame variants affecting the TB5 domain of FBN1. The clinical data showed that the probands displayed a classical form of MFS. Strikingly, one missense variant affects an amino acid that was previously involved in GPHYSD. CONCLUSION: Surprisingly, pathogenic variants in the TB5 domain of FBN1 can lead to two opposite phenotypes: GPHYSD/ACMICD and MFS, suggesting the existence of different pathogenic sequences with the involvement of tissue specificity. Further functional studies are ongoing to determine the precise role of this domain in the physiopathology of each disease.


Assuntos
Doenças do Desenvolvimento Ósseo , Deformidades Congênitas dos Membros , Síndrome de Marfan , Humanos , Doenças do Desenvolvimento Ósseo/genética , Fibrilina-1/genética , Síndrome de Marfan/genética , Síndrome de Marfan/patologia , Mutação
7.
Am J Med Genet A ; 194(6): e63556, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38348595

RESUMO

Phenotypic features of a hereditary connective tissue disorder, including craniofacial characteristics, hyperextensible skin, joint laxity, kyphoscoliosis, arachnodactyly, inguinal hernia, and diverticulosis associated with biallelic pathogenic variants in EFEMP1 have been previously described in four patients. Genome sequencing on a proband and her mother with comparable phenotypic features revealed that both patients were heterozygous for a stop-gain variant c.1084C>T (p.Arg362*). Complementary RNA-seq on fibroblasts revealed significantly reduced levels of mutant EFEMP1 transcript. Considering the absence of other molecular explanations, we extrapolated that EFEMP1 could be the cause of the patient's phenotypes. Furthermore, nonsense-mediated decay was demonstrated for the mutant allele as the principal mechanism for decreased levels of EFEMP1 mRNA. We provide strong clinical and genetic evidence for the haploinsufficiency of EFEMP1 due to nonsense-medicated decay to cause severe kyphoscoliosis, generalized hypermobility of joints, high and narrow arched palate, and potentially severe diverticulosis. To the best of our knowledge, this is the first report of an autosomal dominant EFEMP1-associated hereditary connective tissue disorder and therefore expands the phenotypic spectrum of EFEMP1 related disorders.


Assuntos
Doenças do Tecido Conjuntivo , Proteínas da Matriz Extracelular , Haploinsuficiência , Síndrome de Marfan , Fenótipo , Humanos , Haploinsuficiência/genética , Feminino , Síndrome de Marfan/genética , Síndrome de Marfan/patologia , Proteínas da Matriz Extracelular/genética , Doenças do Tecido Conjuntivo/genética , Doenças do Tecido Conjuntivo/patologia , Linhagem , Mutação/genética , Degradação do RNAm Mediada por Códon sem Sentido/genética , Masculino , Adulto , Alelos , Predisposição Genética para Doença , Criança
8.
Matrix Biol ; 126: 1-13, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185344

RESUMO

OBJECTIVE: Mouse models of Marfan syndrome (MFS) with Fibrillin 1 (Fbn1) variant C1041G exhibit cardiovascular abnormalities, including myxomatous valve disease (MVD) and aortic aneurism, with structural extracellular matrix (ECM) dysregulation. In this study, we examine the structure-function-mechanics relations of the mitral valve related to specific transitions in ECM composition and organization in progressive MVD in MFS mice from Postnatal day (P)7 to 1 year-of-age. APPROACH AND RESULTS: Mechanistic links between mechanical forces and biological changes in MVD progression were examined in Fbn1C1041G/+ MFS mice. By echocardiography, mitral valve dysfunction is prevalent at 2 months with a decrease in cardiac function at 6 months, followed by a preserved cardiac function at 12 months. Mitral valve (MV) regurgitation occurs in a subset of mice at 2-6 months, while progressive dilatation of the aorta occurs from 2 to 12 months. Mitral valve tissue mechanical assessments using a uniaxial Permeabilizable Fiber System demonstrate decreased stiffness of MFS MVs at all stages. Histological and microscopic analysis of ECM content, structure, and fiber orientation demonstrate that alterations in ECM mechanics, composition, and organization precede functional abnormalities in Fbn1C1041G/+MFS MVs. At 2 months, ECM abnormalities are detected with an increase in proteoglycans and decreased stiffness of the mitral valve. By 6-12 months, collagen fiber remodeling is increased with abnormal fiber organization in MFS mitral valve leaflets. At the same time, matrifibrocyte gene expression characteristic of collagen-rich connective tissue is increased, as detected by RNA in situ hybridization and qPCR. Together, these studies demonstrate early prevalence of proteoglycans at 2 months followed by upregulation of collagen structure and organization with age in MVs of MFS mice. CONCLUSIONS: Altogether, our data indicate dynamic regulation of mitral valve structure, tissue mechanics, and function that reflect changes in ECM composition, organization, and gene expression in progressive MVD. Notably, increased collagen fiber organization and orientation, potentially dependent on increased matrifibrocyte cell activity, is apparent with altered mitral valve mechanics and function in aging MFS mice.


Assuntos
Síndrome de Marfan , Camundongos , Animais , Síndrome de Marfan/genética , Síndrome de Marfan/patologia , Valva Mitral/metabolismo , Valva Mitral/patologia , Matriz Extracelular/metabolismo , Fibrilina-1/genética , Fibrilina-1/metabolismo , Colágeno/metabolismo , Proteoglicanas/metabolismo
9.
Ann Lab Med ; 44(3): 271-278, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37840311

RESUMO

Background: Marfan syndrome (MFS) is caused by fibrillin-1 gene (FBN1) variants. Mutational hotspots and/or well-established critical functional domains of FBN1 include cysteine residues, calcium-binding consensus sequences, and amino acids related to interdomain packaging. Previous guidelines for variant interpretation do not reflect the features of genes or related diseases. Using the Clinical Genome Resource (ClinGen) FBN1 variant curation expert panel (VCEP), we re-evaluated FBN1 germline variants reported as variants of uncertain significance (VUSs). Methods: We re-evaluated 26 VUSs in FBN1 reported in 161 patients with MFS. We checked the variants in the Human Genome Mutation Database, ClinVar, and VarSome databases and assessed their allele frequencies using the gnomAD database. Patients' clinical information was reviewed. Results: Four missense variants affecting cysteines (c.460T>C, c.1006T>C, c.5330G>C, and c.8020T>C) were reclassified as likely pathogenic and were assigned PM1_strong or PM1. Two intronic variants were reclassified as benign by granting BA1 (stand-alone). Four missense variants were reclassified as likely benign. BP5 criteria were applied in cases with an alternate molecular basis for disease, one of which (c.7231G>A) was discovered alongside a pathogenic de novo COL3A1 variant (c.1988G>T, p.Gly633Val). Conclusions: Considering the high penetrance of FBN1 variants and clinical variability of MFS, the detection of pathogenic variants is important. The ClinGen FBN1 VCEP encompasses mutational hotspots and/or well-established critical functional domains and adjusts the criteria specifically for MFS; therefore, it is beneficial not only for identifying pathogenic FBN1 variants but also for distinguishing these variants from those that cause other connective tissue disorders with overlapping clinical features.


Assuntos
Síndrome de Marfan , Humanos , Fibrilina-1/genética , Mutação , Síndrome de Marfan/diagnóstico , Síndrome de Marfan/genética , Síndrome de Marfan/patologia , Mutação de Sentido Incorreto , Frequência do Gene , Cisteína/genética
10.
Am J Med Genet A ; 194(2): 368-373, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37840436

RESUMO

Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder due to pathogenic variants in Fibrillin-1 (FBN1) affecting nearly one in every 10,000 individuals. We report a 16-month-old female with early-onset MFS heterozygous for an 11.2 kb de novo duplication within the FBN1 gene. Tandem location of the duplication was further confirmed by optical genome mapping in addition to genetic sequencing and chromosomal microarray. This is the third reported case of a large multi-exon duplication in FBN1, and the only one confirmed to be in tandem. As the vast majority of pathogenic variants associated with MFS are point mutations, this expands the landscape of known FBN1 pathogenic variants and supports consistent use of genetic testing strategies that can detect large, indel-type variants.


Assuntos
Síndrome de Marfan , Humanos , Feminino , Lactente , Fibrilina-1/genética , Mutação , Síndrome de Marfan/diagnóstico , Síndrome de Marfan/genética , Síndrome de Marfan/patologia , Testes Genéticos , Mutação Puntual , Fibrilinas/genética , Adipocinas/genética
11.
Matrix Biol ; 123: 17-33, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37683955

RESUMO

Although abnormal TGFß signaling is observed in several heritable forms of thoracic aortic aneurysms and dissections including Marfan syndrome, its precise role in aortic disease progression is still disputed. Using a mouse genetic approach and quantitative isobaric labeling proteomics, we sought to elucidate the role of TGFß signaling in three Fbn1 mutant mouse models representing a range of aortic disease from microdissection (without aneurysm) to aneurysm (without rupture) to aneurysm and rupture. Results indicated that reduced TGFß signaling and increased mast cell proteases were associated with microdissection. In contrast, increased abundance of extracellular matrix proteins, which could be reporters for positive TGFß signaling, were associated with aneurysm. Marked reductions in collagens and fibrillins, and increased TGFß signaling, were associated with aortic rupture. Our data indicate that TGFß signaling performs context-dependent roles in the pathogenesis of thoracic aortic disease.


Assuntos
Aneurisma da Aorta Torácica , Síndrome de Marfan , Humanos , Aneurisma da Aorta Torácica/genética , Fibrilina-1/genética , Fibrilinas , Síndrome de Marfan/genética , Síndrome de Marfan/patologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
12.
Arterioscler Thromb Vasc Biol ; 43(9): e358-e372, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37470181

RESUMO

BACKGROUND: Transmural failure of the aorta is responsible for substantial morbidity and mortality; it occurs when mechanical stress exceeds strength. The aortic root and ascending aorta are susceptible to dissection and rupture in Marfan syndrome, a connective tissue disorder characterized by a progressive reduction in elastic fiber integrity. Whereas competent elastic fibers endow the aorta with compliance and resilience, cross-linked collagen fibers confer stiffness and strength. We hypothesized that postnatal reductions in matrix cross-linking increase aortopathy when turnover rates are high. METHODS: We combined ex vivo biaxial mechanical testing with multimodality histological examinations to quantify expected age- and sex-dependent structural vulnerability of the ascending aorta in Fbn1C1041G/+ Marfan versus wild-type mice without and with 4-week exposures to ß-aminopropionitrile, an inhibitor of lysyl oxidase-mediated cross-linking of newly synthesized elastic and collagen fibers. RESULTS: We found a strong ß-aminopropionitrile-associated sexual dimorphism in aortic dilatation in Marfan mice and aortic rupture in wild-type mice, with dilatation correlating with compromised elastic fiber integrity and rupture correlating with compromised collagen fibril organization. A lower incidence of rupture of ß-aminopropionitrile-exposed Marfan aortas associated with increased lysyl oxidase, suggesting a compensatory remodeling of collagen that slows disease progression in the otherwise compromised Fbn1C1041G/+ aorta. CONCLUSIONS: Collagen fiber structure and function in the Marfan aorta are augmented, in part, by increased lysyl oxidase in female and especially male mice, which improves structural integrity, particularly via fibrils in the adventitia. Preserving or promoting collagen cross-linking may represent a therapeutic target for an otherwise vulnerable aorta.


Assuntos
Síndrome de Marfan , Animais , Feminino , Masculino , Camundongos , Aminopropionitrilo/toxicidade , Colágeno , Dilatação , Modelos Animais de Doenças , Matriz Extracelular/patologia , Fibrilina-1/genética , Síndrome de Marfan/complicações , Síndrome de Marfan/patologia , Camundongos Endogâmicos C57BL , Proteína-Lisina 6-Oxidase/genética
13.
Int J Mol Sci ; 24(14)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37511051

RESUMO

Redox stress is involved in the aortic aneurysm pathogenesis in Marfan syndrome (MFS). We recently reported that allopurinol, a xanthine oxidoreductase inhibitor, blocked aortopathy in a MFS mouse model acting as an antioxidant without altering uric acid (UA) plasma levels. Hyperuricaemia is ambiguously associated with cardiovascular injuries as UA, having antioxidant or pro-oxidant properties depending on the concentration and accumulation site. We aimed to evaluate whether hyperuricaemia causes harm or relief in MFS aortopathy pathogenesis. Two-month-old male wild-type (WT) and MFS mice (Fbn1C1041G/+) were injected intraperitoneally for several weeks with potassium oxonate (PO), an inhibitor of uricase (an enzyme that catabolises UA to allantoin). Plasma UA and allantoin levels were measured via several techniques, aortic root diameter and cardiac parameters by ultrasonography, aortic wall structure by histopathology, and pNRF2 and 3-NT levels by immunofluorescence. PO induced a significant increase in UA in blood plasma both in WT and MFS mice, reaching a peak at three and four months of age but decaying at six months. Hyperuricaemic MFS mice showed no change in the characteristic aortic aneurysm progression or aortic wall disarray evidenced by large elastic laminae ruptures. There were no changes in cardiac parameters or the redox stress-induced nuclear translocation of pNRF2 in the aortic tunica media. Altogether, the results suggest that hyperuricaemia interferes neither with aortopathy nor cardiopathy in MFS mice.


Assuntos
Aneurisma Aórtico , Hiperuricemia , Síndrome de Marfan , Camundongos , Masculino , Animais , Síndrome de Marfan/complicações , Síndrome de Marfan/patologia , Antioxidantes , Modelos Animais de Doenças , Alantoína , Hiperuricemia/complicações , Aneurisma Aórtico/complicações
14.
J Thorac Cardiovasc Surg ; 166(5): e332-e376, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37500053

RESUMO

OBJECTIVES: Patients with Loeys-Dietz syndrome demonstrate a heightened risk of distal thoracic aortic events after valve-sparing aortic root replacement. This study assesses the clinical risks and hemodynamic consequences of a prophylactic aortic arch replacement strategy in Loeys-Dietz syndrome and characterizes smooth muscle cell phenotype in Loeys-Dietz syndrome aneurysmal and normal-sized downstream aorta. METHODS: Patients with genetically confirmed Loeys-Dietz syndrome (n = 8) underwent prophylactic aortic arch replacement during valve-sparing aortic root replacement. Four-dimensional flow magnetic resonance imaging studies were performed in 4 patients with Loeys-Dietz syndrome (valve-sparing aortic root replacement + arch) and compared with patients with contemporary Marfan syndrome (valve-sparing aortic root replacement only, n = 5) and control patients (without aortopathy, n = 5). Aortic tissues from 4 patients with Loeys-Dietz syndrome and 2 organ donors were processed for anatomically segmented single-cell RNA sequencing and histologic assessment. RESULTS: Patients with Loeys-Dietz syndrome valve-sparing aortic root replacement + arch had no deaths, major morbidity, or aortic events in a median of 2 years follow-up. Four-dimensional magnetic resonance imaging demonstrated altered flow parameters in patients with postoperative aortopathy relative to controls, but no clear deleterious changes due to arch replacement. Integrated analysis of aortic single-cell RNA sequencing data (>49,000 cells) identified a continuum of abnormal smooth muscle cell phenotypic modulation in Loeys-Dietz syndrome defined by reduced contractility and enriched extracellular matrix synthesis, adhesion receptors, and transforming growth factor-beta signaling. These modulated smooth muscle cells populated the Loeys-Dietz syndrome tunica media with gradually reduced density from the overtly aneurysmal root to the nondilated arch. CONCLUSIONS: Patients with Loeys-Dietz syndrome demonstrated excellent surgical outcomes without overt downstream flow or shear stress disturbances after concomitant valve-sparing aortic root replacement + arch operations. Abnormal smooth muscle cell-mediated aortic remodeling occurs within the normal diameter, clinically at-risk Loeys-Dietz syndrome arch segment. These initial clinical and pathophysiologic findings support concomitant arch replacement in Loeys-Dietz syndrome.


Assuntos
Síndrome de Loeys-Dietz , Síndrome de Marfan , Humanos , Síndrome de Loeys-Dietz/complicações , Síndrome de Loeys-Dietz/diagnóstico por imagem , Síndrome de Loeys-Dietz/cirurgia , Aorta Torácica/diagnóstico por imagem , Aorta Torácica/cirurgia , Aorta/cirurgia , Síndrome de Marfan/patologia , Procedimentos Cirúrgicos Vasculares/métodos
15.
Artigo em Russo | MEDLINE | ID: mdl-37490659

RESUMO

Disturbances in the formation of connective tissue lead to significant pathological changes in both individual organs and tissues, and at the organismal level. The complexity of diagnostics is also connected with the fact that there is no single terminology, a single view of the diagnostic criteria, a single approach among doctors of different specialties. The prevalence of external phenotypic signs of connective dysplasia is quite high, which can lead to overdiagnosis. On the other hand, insufficient attention to the manifestations of dysplasia can lead to delayed diagnosis, which can cause adverse complications. The most studied are clinical manifestations in dysplastic changes in the cardiovascular system, musculoskeletal system. This article provides an overview of current data on changes in the nervous system. Sufficient attention was paid to the pathology of the nervous system in differentiated forms (Marfan syndrome, Ehlers-Danlos, etc.). Currently, the role of various vascular anomalies, aneurysms associated with undifferentiated forms of connective tissue dysplasia is widely discussed. Much attention is also paid to clinical manifestations of the autonomic nervous system: sympathicotonic manifestations predominate in connective tissue dysplasia. There is evidence of an association of headaches, musculoskeletal pain, and connective tissue dysplasia in both children and adults.


Assuntos
Sistema Cardiovascular , Doenças do Tecido Conjuntivo , Instabilidade Articular , Síndrome de Marfan , Criança , Humanos , Doenças do Tecido Conjuntivo/complicações , Síndrome de Marfan/complicações , Síndrome de Marfan/diagnóstico , Síndrome de Marfan/patologia , Tecido Conjuntivo/patologia , Cefaleia/complicações , Instabilidade Articular/complicações , Instabilidade Articular/diagnóstico , Instabilidade Articular/patologia
16.
BMC Med Genomics ; 16(1): 118, 2023 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-37245000

RESUMO

BACKGROUND: Marfan syndrome (MFS) is a rare autosomal dominant connective tissue disorder affecting the cardiovascular, skeletal, and ophthalmic systems. This report aimed to describe a novel genetic background and treatment prognosis of MFS. CASE PRESENTATION: A proband was initially diagnosed with bilateral pathologic myopia and suspected MFS. We performed whole exome sequencing and found a pathogenic nonsense FBN1 mutation in the proband, which confirmed the diagnosis of MFS. Notably, we identified a second pathogenic nonsense mutation in SDHB, which increased the risk of tumours. In addition, the proband karyotype was X trisomy, which may cause X trisomy syndrome. At the 6-month follow-up after posterior scleral reinforcement surgery, the proband's visual acuity improved significantly; however, myopia was still progressing. CONCLUSIONS: We report a rare case of MFS with a X trisomy genotype, a mutation in FBN1 and a mutation in SDHB for the first time, and our findings could be helpful for the clinical diagnosis and treatment of this disease.


Assuntos
Síndrome de Marfan , Miopia , Humanos , Síndrome de Marfan/genética , Síndrome de Marfan/diagnóstico , Síndrome de Marfan/patologia , Trissomia/genética , Fibrilina-1/genética , Mutação , Códon sem Sentido , Succinato Desidrogenase/genética
17.
JCI Insight ; 8(10)2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37022786

RESUMO

To improve our limited understanding of the pathogenesis of thoracic aortic aneurysm (TAA) that leads to acute aortic dissection, single-cell RNA sequencing (scRNA-seq) was employed to profile disease-relevant transcriptomic changes of aortic cell populations in a well-characterized mouse model of the most commonly diagnosed form of Marfan syndrome (MFS). As result, 2 discrete subpopulations of aortic cells (SMC3 and EC4) were identified only in the aorta of Fbn1mgR/mgR mice. SMC3 cells highly express genes related to extracellular matrix formation and nitric oxide signaling, whereas the EC4 transcriptional profile is enriched in smooth muscle cell (SMC), fibroblast, and immune cell-related genes. Trajectory analysis predicted close phenotypic modulation between SMC3 and EC4, which were therefore analyzed together as a discrete MFS-modulated (MFSmod) subpopulation. In situ hybridization of diagnostic transcripts located MFSmod cells at the intima of Fbn1mgR/mgR aortas. Reference-based data set integration revealed transcriptomic similarity between MFSmod- and SMC-derived cell clusters modulated in human TAA. Consistent with the angiotensin II type I receptor (At1r) contribution to TAA development, MFSmod cells were absent in the aorta of Fbn1mgR/mgR mice treated with the At1r antagonist losartan. Altogether, our findings indicate that a discrete dynamic alteration of aortic cell identity is associated with dissecting TAA in MFS mice and increased risk of aortic dissection in MFS patients.


Assuntos
Aneurisma da Aorta Torácica , Aneurisma Aórtico , Dissecção Aórtica , Síndrome de Marfan , Humanos , Camundongos , Animais , Transcriptoma , Losartan/farmacologia , Síndrome de Marfan/complicações , Síndrome de Marfan/genética , Síndrome de Marfan/patologia , Aneurisma Aórtico/genética , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/patologia , Aorta/patologia , Dissecção Aórtica/genética
18.
Arterioscler Thromb Vasc Biol ; 43(5): 739-754, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36924234

RESUMO

BACKGROUND: Marfan Syndrome (MFS) is an inherited connective tissue disorder caused by mutations in the FBN1 (fibrillin-1) gene. Lung abnormalities are common in MFS, but their pathogenesis is poorly understood. IL11 (interleukin-11) causes aortic disease in a mouse model of MFS and was studied here in the lung. METHODS: We examined histological and molecular phenotypes in the lungs of Fbn1C1041G/+ mice (mouse model of Marfan Syndrome [mMFS]), an established mouse model of MFS. To identify IL11-expressing cells, we used immunohistochemistry on lungs of 4- and 16-week-old Fbn1C1041G/+:Il11EGFP/+ reporter mice. We studied the effects of IL11 inhibition by RT-qPCR, immunoblots and histopathology in lungs from genetic or pharmacologic models: (1) 16-week-old IL11 receptor (IL11RA) knockout mMFS mice (Fbn1C1041G/+:Il11ra1-/- mice) and (2) in mMFS mice administered IgG control or interleukin-11 receptor antibodies twice weekly from 4 to 24 weeks of age. RESULTS: mMFS lungs showed progressive loss and enlargement of distal airspaces associated with increased proinflammatory and profibrotic gene expression as well as matrix metalloproteinases 2, 9, and 12. IL11 was increased in mMFS lungs and localized to smooth muscle and endothelial cells in young mMFS mice in the Fbn1C1041G/+:Il11EGFP/+ reporter strain and in fibroblasts, in older mice. In mMFS mice, genetic (Fbn1C1041G/+:Il11ra1-/-) or pharmacologic (anti-interleukin-11 receptor) inhibition of IL11 signaling reduced lung emphysema, fibrosis, and inflammation. This protective effect was associated with reduced pathogenic ERK1/2 signaling and lower metalloproteinase 2, 9, and 12 expression. CONCLUSIONS: IL11 causes lung disease in mMFS. This reveals a shared IL11-driven disease mechanism in lung and aorta in MFS and suggests inhibition of IL11 signaling as a holistic approach for treating multiorgan morbidity in MFS.


Assuntos
Interleucina-11 , Síndrome de Marfan , Enfisema Pulmonar , Animais , Camundongos , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Fibrilina-1/genética , Interleucina-11/genética , Subunidade alfa de Receptor de Interleucina-11 , Síndrome de Marfan/complicações , Síndrome de Marfan/genética , Síndrome de Marfan/patologia , Metaloproteinase 2 da Matriz/genética , Camundongos Knockout , Enfisema Pulmonar/complicações , Enfisema Pulmonar/genética
19.
Stem Cell Res ; 68: 103050, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36801568

RESUMO

Marfan syndrome (MFS) is a connective tissue disorder with pleiotropic manifestations in the ocular, skeletal and cardiovascular system. Ruptured aortic aneurysms in MFS patients are associated with high mortality rates. MFS is typically caused by pathogenic variants in the fibrillin-1 (FBN1) gene. Here, we report a generated induced pluripotent cell (iPSC) line of a MFS patient with a FBN1 c.5372G > A (p.Cys1791Tyr) variant. For that, skin fibroblasts of a MFS patient carrying a FBN1 c.5372G > A (p.Cys1791Tyr) variant were successfully reprogrammed into iPSCs using the CytoTune™-iPS 2.0 Sendai Kit (Invitrogen). The iPSCs showed a normal karyotype, expressed pluripotency markers, were able to differentiate into three germ layers and carried the original genotype.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndrome de Marfan , Humanos , Síndrome de Marfan/genética , Síndrome de Marfan/patologia , Fibrilina-1/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Genótipo
20.
Mol Genet Genomic Med ; 11(5): e2140, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36670079

RESUMO

BACKGROUND: Congenital ectopia lentis (EL) refers to the congenital dysplasia or weakness of the lens suspensory ligament, resulting in an abnormal position of the crystalline lens, which can appear as isolated EL or as an ocular manifestation of a syndrome, such as the Marfan syndrome. The fibrillin-1 protein encoded by the FBN1 gene is an essential component of the lens zonules. Mutations in FBN1 are the leading causes of congenital EL and Marfan syndrome. Owing to the complexity and individual heterogeneity of FBN1 gene mutations, the correlation between FBN1 mutation characteristics and various clinical phenotypes remains unclear. METHODS: This study describes the clinical characteristics and identifies possible causative genes in eight families with Marfan syndrome or isolated EL using Sanger and whole-exome sequencing. RESULTS: Eight FBN1 mutations were identified in these families, of which three (c.5065G > C, c.1600 T > A, and c.2210G > C) are reported for the first time. Based on in silico analyses, we hypothesized that these mutations may be pathogenic by affecting the fibrillin-1 protein structure and function. CONCLUSION: These findings expand the number of known mutations involved in EL and provide a reference for the research on their genotype and phenotype associations.


Assuntos
Ectopia do Cristalino , Síndrome de Marfan , Humanos , População do Leste Asiático , Ectopia do Cristalino/genética , Ectopia do Cristalino/patologia , Fibrilina-1/genética , Fibrilinas , Síndrome de Marfan/genética , Síndrome de Marfan/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...