Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 792
Filtrar
1.
Gut Microbes ; 16(1): 2389320, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39150987

RESUMO

The intestinal barrier, an indispensable guardian of gastrointestinal health, mediates the intricate exchange between internal and external environments. Anchored by evolutionarily conserved junctional complexes, this barrier meticulously regulates paracellular permeability in essentially all living organisms. Disruptions in intestinal junctional complexes, prevalent in inflammatory bowel diseases and irritable bowel syndrome, compromise barrier integrity and often lead to the notorious "leaky gut" syndrome. Critical to the maintenance of the intestinal barrier is a finely orchestrated network of intrinsic and extrinsic factors that modulate the expression, composition, and functionality of junctional complexes. This review navigates through the composition of key junctional complex components and the common methods used to assess intestinal permeability. It also explores the critical intracellular signaling pathways that modulate these junctional components. Lastly, we delve into the complex dynamics between the junctional complexes, microbial communities, and environmental chemicals in shaping the intestinal barrier function. Comprehending this intricate interplay holds paramount importance in unraveling the pathophysiology of gastrointestinal disorders. Furthermore, it lays the foundation for the development of precise therapeutic interventions targeting barrier dysfunction.


Assuntos
Microbioma Gastrointestinal , Mucosa Intestinal , Permeabilidade , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Animais , Junções Íntimas/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/fisiopatologia , Transdução de Sinais , Síndrome do Intestino Irritável/metabolismo , Síndrome do Intestino Irritável/fisiopatologia
2.
Am J Reprod Immunol ; 92(2): e13912, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39113660

RESUMO

PROBLEM: There is a higher incidence of irritable bowel syndrome with miscarriages, and recurrent miscarriages of otherwise normal embryos have been linked to subnormal expression of the immune checkpoint inhibitor CD200L. We sought to determine if alterations in the expression of the CD200 immune checkpoint inhibitor occur in colonic tissue in IBS-D patients. METHOD OF STUDY: Quantitative immunohistochemical staining of biopsies from proximal and distal colon or rectum for the inhibitory CD200L and CD200S molecules was done. CD56 cells were also enumerated as they play a role in recurrent miscarriages and may express CD200S. RESULTS: CD200L was decreased and CD200S was unchanged in epithelium but not stroma of 3 IBS-D cases. One case had an increase in both CD200L and CD200S. CD56 cells were also stained for CD200S. Degranulation was assessed by the percentage of extracellular CD200S that was increased as epithelial CD200L decreased. CONCLUSIONS: This pilot study was promising and warrants a larger sample to determine if a correlation between uterine implantation site CD200L and CD200S expression in normal and failing implantation sites is needed. Colonic epithelial CD200L may then provide useful information about the pathogenesis of the spontaneous miscarriage in individual cases.


Assuntos
Aborto Habitual , Antígenos CD , Diarreia , Síndrome do Intestino Irritável , Humanos , Feminino , Síndrome do Intestino Irritável/imunologia , Síndrome do Intestino Irritável/metabolismo , Aborto Habitual/imunologia , Aborto Habitual/metabolismo , Antígenos CD/metabolismo , Adulto , Diarreia/imunologia , Gravidez , Projetos Piloto , Tolerância Imunológica , Transdução de Sinais , Antígeno CD56/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Colo/patologia , Colo/imunologia , Colo/metabolismo
3.
Drug Des Devel Ther ; 18: 3191-3208, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39081703

RESUMO

Purpose: Through network pharmacology combined with molecular docking and in vivo validation, the study examines the unexplored molecular mechanisms of Tongxieyaofang (TXYF) in the treatment of irritable bowel syndrome (IBS). In particular, the potential pharmacological mechanism of TXYF alleviating IBS by regulating CHRM3 and intestinal barrier has not been studied. Patients and Methods: LC-MS technique and TCMSP database were used in combination to identify the potential effective components and target sites of TXYF. Potential targets for IBS were obtained from Genecards and OMIM databases. PPI and cytoHub analysis for targets. Molecular docking was used to validate the binding energy of effective components with related targets and for visualization. GO and KEGG analysis were employed to identify target functions and signaling pathways. In the in vivo validation, wrap restraint stress-induced IBS model was employed to verify the change for cytoHub genes and CHRM3 expression. Furthermore, inflammatory changes of colon were observed by HE staining. The changes of Ach were verified by ELISA. IHC and WB validated CHRM3 and GNAQ/PLC/MLCK channel variations. AB-PAS test and WB test confirmed the protection of TXYF on gut barrier. The NF-κB/MLCK pathway was also verified. Results: In TXYF decoction, LC-MS identified 559 chemical components, with 23 remaining effective components after screening in TCMSP. KEGG analysis indicated that calcium plays a crucial role in TXYF treated for IBS. Molecular docking validated the binding capacity of the effective components Naringenin and Nobiletin with cytoHub-gene and CHRM3. In vivo validation demonstrated that TXYF inhibits the activation of Ach and CHRM3 in IBS, and inhibits for the GNAQ/PLC/MLCK axis. Additionally, TXYF downregulates TNF-α, MMP9, and NF-κB/MLCK, while modulating goblet cell secretion to protect gut barrier. Conclusion: TXYF inhibits Ach and CHRM3 expression, regulating the relaxation of intestinal smooth muscle via GNAQ/PLC/MLCK. Additionally, TXYF inhibits NF-κB/MLCK activated and goblet cell secretion to protect gut barrier.


Assuntos
Medicamentos de Ervas Chinesas , Síndrome do Intestino Irritável , Simulação de Acoplamento Molecular , Receptor Muscarínico M3 , Síndrome do Intestino Irritável/tratamento farmacológico , Síndrome do Intestino Irritável/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Animais , Receptor Muscarínico M3/metabolismo , Receptor Muscarínico M3/antagonistas & inibidores , Humanos , Masculino , Ratos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Ratos Sprague-Dawley , Farmacologia em Rede
4.
Viruses ; 16(7)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39066219

RESUMO

The gut microbiota is involved in the pathogenesis of diarrhea-predominant irritable bowel syndrome (IBS-D), but few studies have focused on the role of the gut virome in IBS-D. We aimed to explore the characteristics of the gut virome in patients with IBS-D, its interactions with bacteria and metabolites, and the associations between gut multiomics profiles and symptoms. This study enrolled twelve patients with IBS-D and eight healthy controls (HCs). The stool samples were subjected to metavirome sequencing, 16S rRNA gene sequencing, and untargeted metabolomic analysis. The participants completed relevant scales to assess the severity of their gastrointestinal symptoms, depression, and anxiety. The results revealed unique DNA and RNA virome profiles in patients with IBS-D with significant alterations in the abundance of contigs from Siphoviridae, Podoviridae, Microviridae, Picobirnaviridae, and Tombusviridae. Single-omics co-occurrence network analyses demonstrated distinct differences in the gut virus, bacteria, and metabolite network patterns between patients with IBS-D and HCs. Multiomics networks revealed that short-chain fatty acid-producing bacteria occupied more core positions in IBS-D networks, but had fewer links to viruses. Amino acids and their derivatives exhibit unique connectivity patterns and centrality features within the IBS-D network. The gastrointestinal and psychological symptom factors of patients with IBS-D were highly clustered in the symptom-multiomics network compared with those of HCs. Machine learning models based on multiomics data can distinguish IBS-D patients from HCs and predict the scores of gastrointestinal and psychological symptoms. This study provides insights into the interactions among gut viruses, bacteria, metabolites, and clinical symptoms in patients with IBS-D, indicating further classification and personalized treatment for IBS-D.


Assuntos
Bactérias , Fezes , Microbioma Gastrointestinal , Síndrome do Intestino Irritável , Viroma , Humanos , Síndrome do Intestino Irritável/virologia , Síndrome do Intestino Irritável/microbiologia , Síndrome do Intestino Irritável/metabolismo , Masculino , Adulto , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bactérias/isolamento & purificação , Feminino , Fezes/virologia , Fezes/microbiologia , RNA Ribossômico 16S/genética , Pessoa de Meia-Idade , Metabolômica , Vírus/classificação , Vírus/genética , Vírus/metabolismo , Vírus/isolamento & purificação , Diarreia/virologia , Diarreia/microbiologia , Adulto Jovem , Multiômica
5.
J Agric Food Chem ; 72(32): 17989-18002, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39082086

RESUMO

Irritable bowel syndrome (IBS) is a prevalent functional gastrointestinal disorder characterized by visceral pain and gut dysmotility. However, the specific mechanisms by which Lactobacillus strains relieve IBS remain unclear. Here, we screened Lactobacillus strains from traditional Chinese fermented foods with potential IBS-alleviating properties through in vitro and in vivo experiments. We demonstrated that Lactiplantibacillus plantarum D266 (Lp D266) administration effectively modulates intestinal peristalsis, enteric neurons, visceral hypersensitivity, colonic inflammation, gut barrier function, and mast cell activation. Additionally, Lp D266 shapes gut microbiota and enhances tryptophan (Trp) metabolism, thus activating the aryl hydrocarbon receptor (AhR) and subsequently enhancing IL-22 production to maintain gut homeostasis. Mechanistically, Lp D266 potentially modulates colonic physiology and enteric neurons by microbial tryptophan metabolites. Further, our study indicates that combining Lp D266 with Trp synergistically ameliorates IBS symptoms. Together, our experiments identify the therapeutic efficacy of tryptophan-catabolizing Lp D266 in regulating gut physiology and enteric neurons, providing new insights into the development of probiotic-mediated nutritional intervention for IBS management.


Assuntos
Microbioma Gastrointestinal , Síndrome do Intestino Irritável , Lactobacillus plantarum , Neurônios , Probióticos , Triptofano , Triptofano/metabolismo , Animais , Probióticos/administração & dosagem , Humanos , Camundongos , Neurônios/metabolismo , Masculino , Síndrome do Intestino Irritável/microbiologia , Síndrome do Intestino Irritável/metabolismo , Síndrome do Intestino Irritável/dietoterapia , Síndrome do Intestino Irritável/terapia , Lactobacillus plantarum/metabolismo , Camundongos Endogâmicos C57BL , Intestinos/microbiologia
6.
mBio ; 15(8): e0153324, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38953358

RESUMO

Emerging evidence indicates that gut dysbiosis is involved in the pathogenesis of visceral hypersensitivity (VH). However, how gut microbiota contributes to the development of VH is unknown. Here, we sought to examine the signal transduction pathways from gut to dorsal root ganglion (DRG) responsible for this. Therefore, abdominal withdrawal reflex (AWR) scores, fecal output, fecal water content, and total gastrointestinal transit time (TGITT) were assessed in Con rats, VH rats, rats treated with NaB, and VH rats treated with VSL#3. Fecal microbiota and its metabolite (short-chain fatty acids, SCFAs), mast cell degranulation in colon, lincRNA-01028, miR-143, and protease kinase C (PKC) and TRPV1 expression in DRGs were further detected. VH rats showed an increased fecal water content, a shortened TGITT, an increased abundance of Clostridium sensu stricto 1 and increased butyrate in fecal samples, an increased mast cell degranulation, an increased expression of lincRNA-01028, PKC, and TRPV1, and a decreased expression of miR-143 in DRGs compared with control rats, which could be restored by the application of probiotic VSL#3. The above-mentioned detection in rats treated with butyrate was similar to that of VH rats. We further confirm whether butyrate sensitized DRG neurons by a lincRNA-01028, miR-143, and PKC-dependent mechanism via mast cell in vitro. In co-cultures, MCs treated with butyrate elicited a higher TRPV1 current, a higher expression of lincRNA-01028, PKC, and a lower expression of miR-143 in DRG neurons, which could be inhibited by a lincRNA-01028 inhibitor. These findings indicate that butyrate promotes visceral hypersensitivity via mast cell-derived DRG neuron lincRNA-01028-PKC-TRPV1 pathway.IMPORTANCEIrritable bowel syndrome (IBS), characterized by visceral hypersensitivity, is a common gastrointestinal dysfunction syndrome. Although the gut microbiota plays a role in the pathogenesis and treatment of irritable bowel syndrome (IBS), the possible underlying mechanisms are unclear. Therefore, it is of critical importance to determine the signal transduction pathways from gut to DRG responsible for this in vitro and in vivo assay. This study demonstrated that butyrate sensitized TRPV1 in DRG neurons via mast cells in vivo and in vitro by a lincRNA-01028, miR-143, and PKC-dependent mechanism. VH rats similarly showed an increased abundance of Clostridium sensu stricto 1, an increased fecal butyrate, an increased mast cell degranulation, and increased expression of TRPV1 compared with control rats, which could be restored by the application of VSL#3. In conclusion, butyrate produced by the altered intestinal microbiota is associated with increased VH.


Assuntos
Butiratos , Modelos Animais de Doenças , Gânglios Espinais , Síndrome do Intestino Irritável , Mastócitos , Proteína Quinase C , Ratos Sprague-Dawley , Canais de Cátion TRPV , Animais , Gânglios Espinais/metabolismo , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , Ratos , Mastócitos/metabolismo , Mastócitos/efeitos dos fármacos , Masculino , Butiratos/metabolismo , Butiratos/farmacologia , Proteína Quinase C/metabolismo , Síndrome do Intestino Irritável/metabolismo , Síndrome do Intestino Irritável/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Transdução de Sinais , Neurônios/metabolismo , Neurônios/efeitos dos fármacos
7.
Int J Med Sci ; 21(9): 1738-1755, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006851

RESUMO

Background and Objectives: Irritable Bowel Syndrome (IBS) is a common gastrointestinal disorder often exacerbated by stress, influencing the brain-gut axis (BGA). BGA dysregulation, disrupted intestinal barrier function, altered visceral sensitivity and immune imbalance defects underlying IBS pathogenesis have been emphasized in recent investigations. Phosphoproteomics reveals unique phosphorylation details resulting from environmental stress. Here, we employ phosphoproteomics to explore the molecular mechanisms underlying IBS-like symptoms, mainly focusing on the role of ZO-1 and IL-1RAP phosphorylation. Materials and Methods: Morris water maze (MWM) was used to evaluate memory function for single prolonged stress (SPS). To assess visceral hypersensitivity of IBS-like symptoms, use the Abdominal withdrawal reflex (AWR). Colonic bead expulsion and defecation were used to determine fecal characteristics of the IBS-like symptoms. Then, we applied a phosphoproteomic approach to BGA research to discover the molecular mechanisms underlying the process of visceral hypersensitivity in IBS-like mice following SPS. ZO-1, p-S179-ZO1, IL-1RAP, p-S566-IL-1RAP and GFAP levels in BGA were measured by western blotting, immunofluorescence staining, and enzyme-linked immunosorbent assay to validate phosphorylation quantification. Fluorescein isothiocyanate-dextran 4000 and electron-microscopy were performed to observe the structure and function of the intestinal epithelial barrier. Results: The SPS group showed changes in learning and memory ability. SPS exposure affects visceral hypersensitivity, increased fecal water content, and significant diarrheal symptoms. Phosphoproteomic analysis displayed that p-S179-ZO1 and p-S566-IL-1RAP were significantly differentially expressed following SPS. In addition, p-S179-ZO1 was reduced in mice's DRG, colon, small intestine, spinal and hippocampus and intestinal epithelial permeability was increased. GFAP, IL-1ß and p-S566-IL-1RAP were also increased at the same levels in the BGA. And IL-1ß showed no significant difference was observed in serum. Our findings reveal substantial alterations in ZO-1 and IL-1RAP phosphorylation, correlating with increased epithelial permeability and immune imbalance. Conclusions: Overall, decreased p-S179-ZO1 and increased p-S566-IL-1RAP on the BGA result in changes to tight junction structure, compromising the structure and function of the intestinal epithelial barrier and exacerbating immune imbalance in IBS-like stressed mice.


Assuntos
Eixo Encéfalo-Intestino , Proteína Acessória do Receptor de Interleucina-1 , Síndrome do Intestino Irritável , Proteína da Zônula de Oclusão-1 , Animais , Humanos , Masculino , Camundongos , Modelos Animais de Doenças , Proteína Acessória do Receptor de Interleucina-1/metabolismo , Síndrome do Intestino Irritável/metabolismo , Síndrome do Intestino Irritável/patologia , Camundongos Endogâmicos C57BL , Fosforilação , Estresse Psicológico/metabolismo , Estresse Psicológico/imunologia , Proteína da Zônula de Oclusão-1/metabolismo
8.
Gut Microbes ; 16(1): 2359500, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38825783

RESUMO

The gut microbiota has been implicated as a driver of irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). Recently we described, mucosal biofilms, signifying alterations in microbiota composition and bile acid (BA) metabolism in IBS and ulcerative colitis (UC). Luminal oxygen concentration is a key factor in the gastrointestinal (GI) ecosystem and might be increased in IBS and UC. Here we analyzed the role of archaea as a marker for hypoxia in mucosal biofilms and GI homeostasis. The effects of archaea on microbiome composition and metabolites were analyzed via amplicon sequencing and untargeted metabolomics in 154 stool samples of IBS-, UC-patients and controls. Mucosal biofilms were collected in a subset of patients and examined for their bacterial, fungal and archaeal composition. Absence of archaea, specifically Methanobrevibacter, correlated with disrupted GI homeostasis including decreased microbial diversity, overgrowth of facultative anaerobes and conjugated secondary BA. IBS-D/-M was associated with absence of archaea. Presence of Methanobrevibacter correlated with Oscillospiraceae and epithelial short chain fatty acid metabolism and decreased levels of Ruminococcus gnavus. Absence of fecal Methanobrevibacter may indicate a less hypoxic GI environment, reduced fatty acid oxidation, overgrowth of facultative anaerobes and disrupted BA deconjugation. Archaea and Ruminococcus gnavus could distinguish distinct subtypes of mucosal biofilms. Further research on the connection between archaea, mucosal biofilms and small intestinal bacterial overgrowth should be performed.


Assuntos
Archaea , Bactérias , Biofilmes , Fezes , Microbioma Gastrointestinal , Humanos , Biofilmes/crescimento & desenvolvimento , Archaea/classificação , Archaea/metabolismo , Archaea/genética , Archaea/isolamento & purificação , Adulto , Pessoa de Meia-Idade , Feminino , Masculino , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bactérias/isolamento & purificação , Fezes/microbiologia , Colo/microbiologia , Methanobrevibacter/metabolismo , Methanobrevibacter/genética , Methanobrevibacter/crescimento & desenvolvimento , Methanobrevibacter/isolamento & purificação , Colite Ulcerativa/microbiologia , Colite Ulcerativa/metabolismo , Síndrome do Intestino Irritável/microbiologia , Síndrome do Intestino Irritável/metabolismo , Idoso , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Íleo/microbiologia , Ácidos Graxos Voláteis/metabolismo , Adulto Jovem , Ácidos e Sais Biliares/metabolismo
9.
Food Funct ; 15(14): 7416-7429, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38899520

RESUMO

Lactobacillus plantarum AR495 is a widely used probiotic for the treatment of various digestive diseases, including irritable bowel syndrome (IBS). However, the specific mechanisms of L. plantarum AR495 in alleviating IBS remain unclear. Abnormal intestinal tryptophan metabolism can cause disordered immune responses, gastrointestinal peristalsis, digestion and sensation, which is closely related to IBS pathogenesis. The aim of this study is to explore the effects and mechanisms of L. plantarum AR495 in regulating tryptophan metabolism. Primarily, tryptophan and its related metabolites in patients with IBS and healthy people were analyzed, and an IBS rat model of acetic acid enema plus restraint stress was established to explore the alleviation pathway of L. plantarum AR495 in tryptophan metabolism. It was found that the 5-HT pathway was significantly changed, and the 5-HTP and 5-HT metabolites were significantly increased in the feces of patients with IBS, which were consistent with the results obtained for the IBS rat model. Maladjusted 5-HT could increase intestinal peristalsis and lead to an increase in the fecal water content and shapeless stool in rats. On the contrary, these two metabolites could be restored to normal levels via intragastric administration of L. plantarum AR495. Further study of the metabolic pathway showed that L. plantarum AR495 could effectively reduce the abundance of 5-HT by inhibiting the expression of enterochromaffin cells rather than promoting its decomposition. In addition, the results showed that L. plantarum AR495 did not affect the expression of SERT. To sum up, L. plantarum AR495 could restore the normal levels of 5-HT by inhibiting the abnormal proliferation of enterochromaffin cells and the excessive activation of TPH1 to inhibit the intestinal peristalsis in IBS. These findings provide insights for the use of probiotics in the treatment of IBS and other diarrheal diseases.


Assuntos
Colo , Síndrome do Intestino Irritável , Lactobacillus plantarum , Probióticos , Ratos Sprague-Dawley , Serotonina , Triptofano , Síndrome do Intestino Irritável/metabolismo , Síndrome do Intestino Irritável/terapia , Síndrome do Intestino Irritável/microbiologia , Lactobacillus plantarum/metabolismo , Animais , Triptofano/metabolismo , Ratos , Probióticos/farmacologia , Humanos , Masculino , Colo/metabolismo , Colo/microbiologia , Serotonina/metabolismo , Feminino , Adulto , Pessoa de Meia-Idade , Modelos Animais de Doenças , Fezes/microbiologia , Adulto Jovem
10.
Microbiol Spectr ; 12(6): e0403123, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38738925

RESUMO

STW 5, a blend of nine medicinal plant extracts, exhibits promising efficacy in treating functional gastrointestinal disorders, notably irritable bowel syndrome (IBS). Nonetheless, its effects on the gastrointestinal microbiome and the role of microbiota on the conversion of its constituents are still largely unexplored. This study employed an experimental ex vivo model to investigate STW 5's differential effects on fecal microbial communities and metabolite production in samples from individuals with and without IBS. Using 560 fecal microcosms (IBS patients, n = 6; healthy controls, n = 10), we evaluated the influence of pre-digested STW 5 and controls on microbial and metabolite composition at time points 0, 0.5, 4, and 24 h. Our findings demonstrate the potential of this ex vivo platform to analyze herbal medicine turnover within 4 h with minimal microbiome shifts due to abiotic factors. While only minor taxonomic disparities were noted between IBS- and non-IBS samples and upon treatment with STW 5, rapid metabolic turnover of STW 5 components into specific degradation products, such as 18ß-glycyrrhetinic acid, davidigenin, herniarin, 3-(3-hydroxyphenyl)propanoic acid, and 3-(2-hydroxy-4-methoxyphenyl)propanoic acid occurred. For davidigenin, 3-(3-hydroxyphenyl)propanoic acid and 18ß-glycyrrhetinic acid, anti-inflammatory, cytoprotective, or spasmolytic activities have been previously described. Notably, the microbiome-driven metabolic transformation did not induce a global microbiome shift, and the detected metabolites were minimally linked to specific taxa. Observed biotransformations were independent of IBS diagnosis, suggesting potential benefits for IBS patients from biotransformation products of STW 5. IMPORTANCE: STW 5 is an herbal medicinal product with proven clinical efficacy in the treatment of functional gastrointestinal disorders, like functional dyspepsia and irritable bowel syndrome (IBS). The effects of STW 5 on fecal microbial communities and metabolite production effects have been studied in an experimental model with fecal samples from individuals with and without IBS. While only minor taxonomic disparities were noted between IBS- and non-IBS samples and upon treatment with STW 5, rapid metabolic turnover of STW 5 components into specific degradation products with reported anti-inflammatory, cytoprotective, or spasmolytic activities was observed, which may be relevant for the pharmacological activity of STW 5.


Assuntos
Biotransformação , Fezes , Microbioma Gastrointestinal , Síndrome do Intestino Irritável , Extratos Vegetais , Síndrome do Intestino Irritável/microbiologia , Síndrome do Intestino Irritável/metabolismo , Síndrome do Intestino Irritável/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Fezes/microbiologia , Adulto , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Masculino , Feminino , Bactérias/metabolismo , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Pessoa de Meia-Idade , Plantas Medicinais/microbiologia , Plantas Medicinais/química
11.
Clin Chim Acta ; 560: 119753, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38821336

RESUMO

Irritable bowel syndrome (IBS) is a chronic gastrointestinal (GI) disorder characterized by altered bowel habits and abdominal discomfort during defecation. It significantly impacts life quality and work productivity for those affected. Global data suggests a slightly higher prevalence in females than in males. Today, unambiguous diagnosis of IBS remains challenging due to the absence of a specific biochemical, histopathological, or radiological test. Current diagnosis relies heavily on thorough symptom evaluation. Efforts by the Rome committees have established standardized diagnostic criteria (Rome I-IV), improving consistency and clinical applicability. Recent studies in this framework, seem to have successfully employed metabolomics techniques to identify distinct metabolite profiles in breath and stool samples of IBS patients, differentiating them from healthy controls and those with other functional GI disorders, such as inflammatory bowel disease (IBD). Building on this success, researchers are investigating the presence of similar metabolites in easily accessible biofluids such as urine, potentially offering a less invasive diagnostic approach. Accordingly, this review focuses on key metabolites specifically detected in IBS patients' biological specimens, with a focus on urinary metabolites, using various methods, particularly mass spectrometry (MS)-based techniques, including gas chromatography-MS (GC-MS), liquid chromatography-tandem MS (LC-MS/MS), and capillary electrophoresis-MS (CE-MS) metabolomics assays. These findings may make provision for a new set of non-invasive biomarkers for IBS diagnosis and management.


Assuntos
Biomarcadores , Síndrome do Intestino Irritável , Metabolômica , Síndrome do Intestino Irritável/diagnóstico , Síndrome do Intestino Irritável/metabolismo , Humanos , Biomarcadores/urina , Biomarcadores/metabolismo , Biomarcadores/análise , Metabolômica/métodos
12.
Int J Mol Sci ; 25(10)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38791590

RESUMO

This paper describes the process of producing chemiresistors based on hybrid nanostructures obtained from graphene and conducting polymers. The technology of graphene presumed the following: dispersion and support stabilization based on the chemical vapor deposition technique; transfer of the graphene to the substrate by spin-coating of polymethyl methacrylate; and thermal treatment and electrochemical delamination. For the process at T = 950 °C, a better settlement of the grains was noticed, with the formation of layers predominantly characterized by peaks and not by depressions. The technology for obtaining hybrid nanostructures from graphene and conducting polymers was drop-casting, with solutions of Poly(3-hexylthiophene (P3HT) and Poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-bithiophene] (F8T2). In the case of F8T2, compared to P3HT, a 10 times larger dimension of grain size and about 7 times larger distances between the peak clusters were noticed. To generate chemiresistors from graphene-polymer structures, an ink-jet printer was used, and the metallization was made with commercial copper ink for printed electronics, leading to a structure of a resistor with an active surface of about 1 cm2. Experimental calibration curves were plotted for both sensing structures, for a domain of CH4 of up to 1000 ppm concentration in air. A linearity of the curve for the low concentration of CH4 was noticed for the graphene structure with F8T2, presenting a sensitivity of about 6 times higher compared with the graphene structure with P3HT, which makes the sensing structure of graphene with F8T2 more feasible and reliable for the medical application of irritable bowel syndrome evaluation.


Assuntos
Grafite , Síndrome do Intestino Irritável , Metano , Nanoestruturas , Polímeros , Grafite/química , Nanoestruturas/química , Polímeros/química , Metano/química , Síndrome do Intestino Irritável/metabolismo , Humanos , Testes Respiratórios/métodos , Tiofenos/química , Condutividade Elétrica
13.
Zhen Ci Yan Jiu ; 49(5): 472-479, 2024 May 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38764118

RESUMO

OBJECTIVES: To investigate the effect of Peitu Yimu(strengthening spleen and soothing liver) acupuncture on intestinal mucosal barrier function and corticotropin-releasing factor (CRF)/CRF receptor 1 (CRFR1) pathway in rats with diarrhea-predominant irritable bowel syndrome (IBS-D), so as to explore its underlying mechanism in alleviating IBS-D. METHODS: Forty female SD rats were randomly divided into blank, model, electroacupuncture (EA), and agonist groups, with 10 rats in each group. Except for the blank group, rats in the other groups were given folium sennae infusion by gavage combined with chronic unpredictable mild stress to establish IBS-D model. Rats in the EA group received acupuncture at "Tianshu"(ST25) and EA at "Zusanli"(ST36) and "Taichong"(LR3) (2 Hz/15 Hz) on one side for 20 min, with the side chosen alternately every other day, for 14 days after modeling. Rats in the agonist group received acupuncture 30 min after intravenous injection of CRFR1 agonist urocortin, with the same manipulation method and time as the EA group. Before and after intervention, visceral pain threshold and stool Bristol scores were measured. Elevated plus maze test and open field test were used to detect anxiety and depression like behavior of rats. ELISA was used to detect the contents of CRF and CRFR1 in rats serum. Immunohistochemistry was used to detect the positive expressions of CRF, CRFR1, zonula occludens protein 1(ZO-1), occlusal protein(Occludin), and closure protein 1 (Claudin-1) in colon tissue. RESULTS: Compared with the blank group, the visceral pain threshold, open arm time percentage (OT%), total distance of movement in the open field test, and positive expression of ZO-1, Occludin, and Claudin-1 in colon were decreased (P<0.01, P<0.05), while Bristol stool scores, serum CRF and CRFR1 contents, and positive expressions of CRF and CRFR1 in colon were increased (P<0.01) in the model group. After intervention and compared with the model group, the visceral pain threshold, OT%, total distance of movement in the open field test, and positive expressions of ZO-1, Occludin, and Claudin-1 in colon were increased (P<0.05, P<0.01), while Bristol stool scores, serum CRF and CRFR1 contents, and positive expressions of CRF and CRFR1 in colon were decreased (P<0.01) in the EA group;the Bristol stool scores, serum CRF content, and CRF positive expression in colon were significantly decreased in the agonist group (P<0.01). CONCLUSIONS: Peitu Yimu acupuncture can significantly improve visceral hypersensitivity and anxiety-depression state in IBS-D rats. Its mechanism may be related to the inhibition of CRF/CRFR1 pathway and restoration of intestinal tight junction protein expressions.


Assuntos
Terapia por Acupuntura , Diarreia , Mucosa Intestinal , Síndrome do Intestino Irritável , Receptores de Hormônio Liberador da Corticotropina , Animais , Feminino , Humanos , Ratos , Pontos de Acupuntura , Claudina-1/metabolismo , Claudina-1/genética , Hormônio Liberador da Corticotropina/metabolismo , Hormônio Liberador da Corticotropina/genética , Diarreia/terapia , Diarreia/metabolismo , Diarreia/genética , Modelos Animais de Doenças , Mucosa Intestinal/metabolismo , Síndrome do Intestino Irritável/terapia , Síndrome do Intestino Irritável/metabolismo , Síndrome do Intestino Irritável/genética , Ratos Sprague-Dawley , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Receptores de Hormônio Liberador da Corticotropina/genética , Proteína da Zônula de Oclusão-1/metabolismo , Proteína da Zônula de Oclusão-1/genética
14.
BMC Gastroenterol ; 24(1): 143, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38654193

RESUMO

BACKGROUND: Food malabsorption and intolerance is implicated in gastrointestinal symptoms among patients with irritable bowel syndrome (IBS). Key triggers include fructose and fructan. Prior studies examined fructose and fructan malabsorption separately in IBS patients. None have concurrently assessed both within the same patient group. We aimed to investigate the association between fructose and fructan malabsorption in the same patients with IBS using hydrogen breath testing (HBT). METHODS: We retrospectively identified patients with IBS who underwent fructose and fructan HBTs and abstracted their results from the electronic medical record. Fructose and fructan HBTs were performed by administering a 25 g fructose solution or 10 g fructan solution, followed by breath hydrogen readings every 30 min for 3 h. Patients were positive for fructose or fructan malabsorption if breath hydrogen levels exceeded 20 ppm. RESULTS: Of 186 IBS patients, 71 (38.2%) were positive for fructose malabsorption and 91 (48.9%) were positive for fructan malabsorption. Of these patients, 42 (22.6%) were positive for fructose malabsorption and fructan malabsorption. Positive fructose HBT readings were significantly associated with positive fructan HBT readings (p = 0.0283). Patients positive for fructose malabsorption or fructan malabsorption had 1.951 times higher odds of testing positive for the other carbohydrate. CONCLUSIONS: Our results reveal a clinically significant association between fructose malabsorption and fructan malabsorption in patients with IBS. Fructan malabsorption should be assessed in patients with fructose malabsorption, and vice versa. Further studies are required to identify the mechanisms underlying our findings.


Assuntos
Testes Respiratórios , Frutanos , Frutose , Síndrome do Intestino Irritável , Síndromes de Malabsorção , Humanos , Síndrome do Intestino Irritável/metabolismo , Síndrome do Intestino Irritável/complicações , Frutose/metabolismo , Feminino , Masculino , Estudos Retrospectivos , Síndromes de Malabsorção/metabolismo , Síndromes de Malabsorção/etiologia , Síndromes de Malabsorção/complicações , Frutanos/metabolismo , Adulto , Pessoa de Meia-Idade , Hidrogênio/análise , Hidrogênio/metabolismo
15.
Int Immunopharmacol ; 133: 112099, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38643709

RESUMO

Visceral hypersensitivity resulting from compromised gut barrier with activated immune system is a key feature of irritable bowel syndrome (IBS). Corticotropin-releasing factor (CRF) and Toll-like receptor 4 (TLR4) activate proinflammatory cytokine signaling to induce these changes, which is one of the mechanisms of IBS. As activation of the NLRP3 inflammasome by lipopolysaccharide (LPS) or TLR4 leads to release interleukin (IL)-1ß, the NLRP3 inflammasome may be involved in the pathophysiology of IBS. Tranilast, an anti-allergic drug has been demonstrated to inhibit the NLRP3 inflammasome, and we evaluated the impact of tranilast on visceral hypersensitivity and colonic hyperpermeability induced by LPS or CRF (IBS rat model). Visceral pain threshold caused by colonic balloon distention was measured by monitoring abdominal muscle contractions electrophysiologically. Colonic permeability was determined by quantifying the absorbed Evans blue within the colonic tissue. Colonic protein levels of NLRP3 and IL-1ß were assessed by immunoblot or ELISA. Intragastric administration of tranilast (20-200 mg/kg) for 3 days inhibited LPS (1 mg/kg)-induced visceral hypersensitivity and colonic hyperpermeability in a dose-dependent manner. Simultaneously, tranilast also abolished these alterations induced by CRF (50 µg/kg). LPS increased colonic protein levels of NLRP3 and IL-1ß, and tranilast inhibited these changes. ß-hydroxy butyrate, an NLRP3 inhibitor, also abolished visceral hypersensitivity and colonic hyperpermeability caused by LPS. In contrast, IL-1ß induced similar GI alterations to LPS, which were not modified by tranilast. In conclusion, tranilast improved visceral pain and colonic barrier by suppression of the NLRP3 inflammasome in IBS rat models. Tranilast may be useful for IBS treating.


Assuntos
Colo , Inflamassomos , Síndrome do Intestino Irritável , Proteína 3 que Contém Domínio de Pirina da Família NLR , ortoaminobenzoatos , Animais , Masculino , Ratos , Colo/efeitos dos fármacos , Colo/metabolismo , Modelos Animais de Doenças , Hiperalgesia/tratamento farmacológico , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Interleucina-1beta/metabolismo , Síndrome do Intestino Irritável/tratamento farmacológico , Síndrome do Intestino Irritável/metabolismo , Lipopolissacarídeos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , ortoaminobenzoatos/farmacologia , ortoaminobenzoatos/uso terapêutico , Permeabilidade/efeitos dos fármacos , Ratos Sprague-Dawley , Dor Visceral/tratamento farmacológico , Dor Visceral/metabolismo
16.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673878

RESUMO

Irritable bowel syndrome (IBS) involves low-grade mucosal inflammation. Among the various approaches capable of managing the symptoms, physical activity is still under investigation. Despite its benefits, it promotes oxidative stress and inflammation. Mitochondria impacts gut disorders by releasing damage-associated molecular patterns, such as cell-free mtDNA (cf-mtDNA), which support inflammation. This study evaluated the effects of a 12-week walking program on the cf-mtDNA and DNase in 26 IBS and 17 non-IBS subjects. Pro- and anti-inflammatory cytokines were evaluated by ELISA. Digital droplet PCR was used to quantify cf-mtDNA; DNase activity was assessed using a single radial enzyme diffusion assay. PCR-RFLP was used to genotype DNASE1 rs1053874 SNP. Significantly lower IL-10 levels were found in IBS than in non-IBS individuals. Exercise reduced cf-mtDNA in non-IBS subjects but not in IBS patients. DNase activity did not correlate with the cf-mtDNA levels in IBS patients post-exercise, indicating imbalanced cf-mtDNA clearance. Different rs1053874 SNP frequencies were not found between groups. The study confirms the positive effects of regular moderate-intensity physical activity in healthy subjects and its role in cf-mtDNA release and clearance. Walking alone might not sufficiently reduce subclinical inflammation in IBS, based on imbalanced pro- and anti-inflammatory molecules. Prolonged programs are necessary to investigate their effects on inflammatory markers in IBS.


Assuntos
Ácidos Nucleicos Livres , DNA Mitocondrial , Síndrome do Intestino Irritável , Caminhada , Humanos , Síndrome do Intestino Irritável/genética , Síndrome do Intestino Irritável/metabolismo , DNA Mitocondrial/genética , Masculino , Feminino , Adulto , Ácidos Nucleicos Livres/genética , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Desoxirribonucleases/metabolismo , Desoxirribonucleases/genética , Exercício Físico/fisiologia
17.
J Ethnopharmacol ; 331: 118256, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38677571

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: A herbal formula Tong-Xie-Yao-Fang (TXYF) is traditionally used to treat irritable bowel syndrome (IBS), modern pharmacological evidence supports that the formula efficacy is associated with altered gut microbiota. Yet, the mechanistic role of gut microbiota in the therapy of TXYF remains unclear. We previously clarified that gut microbiota-dysregulated bile acid (BA) metabolism contribute to the pathogenesis of IBS, deriving a hypothesis that microbiota-BA metabolic axis might be a potential target of TXYF. AIM OF THE STUDY: We aim to investigate a new gut microbiota-mediated mechanism underlying anti-IBS efficacy of TXYF. MATERIALS AND METHODS: We established an IBS rat model with a combination of stressors, compared the herbal efficacy in models undergone gut bacterial manipulations, also examined BA metabolism-related microbiota, metabolites, genes and proteins by 16S rRNA gene sequencing, targeted metabolomics, qPCR and multiplex immunofluorescence staining. RESULTS: We observed that TXYF attenuated visceral hyperalgesia and diarrhea in IBS rats but not in those underwent gut bacteria depletion. Transferring gut microbiota from TXYF-treated donors also decreased visceral sensitivity and slightly relief diarrhea-like behaviors in IBS recipient rats. Fecal 16S rRNA gene sequencing revealed that TXYF modulated microbial ß-diversity and taxonomic structure of IBS rats, with a significant increase in relative abundance of bile salt hydrolase (BSH)-expressing Bacteroidaceae. qPCR and culturing data validated that TXYF had a promotive effect on the growth and BSH activity of Bacteroides species. TXYF-reshaped microbiota upregulated the expression of intestinal Fgf15, a feedback signal to control BA synthesis in the liver. As a result, the BA synthetic and excretory levels in IBS rats were decreased by TXYF, so as that colonic BA membrane receptor Tgr5 sensing and its mediated Calcitonin gene-related peptide (Cgrp)-positive neuronal response were attenuated. CONCLUSION: This study poses a new microbiota-driven therapeutic action for TXYF, highlighting the potential of developing new anti-IBS strategies from the herbal formula targeting BSH-expressing gut bacteria.


Assuntos
Amidoidrolases , Ácidos e Sais Biliares , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Síndrome do Intestino Irritável , Ratos Sprague-Dawley , Animais , Síndrome do Intestino Irritável/tratamento farmacológico , Síndrome do Intestino Irritável/microbiologia , Síndrome do Intestino Irritável/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Ácidos e Sais Biliares/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Masculino , Amidoidrolases/metabolismo , Ratos , Modelos Animais de Doenças , Receptores Acoplados a Proteínas G/metabolismo
18.
Neuroendocrinology ; 114(7): 605-622, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38547853

RESUMO

INTRODUCTION: Irritable bowel syndrome with diarrhea (IBS-D) is frequently accompanied by depression and anxiety, resulting in a reduced quality of life and increased medical expenditures. Although psychological factors are known to play an important role in the genesis and development of IBS-D, an understanding of the central neural control of intestinal dysfunction remains elusive. Melanin-concentrating hormone (MCH) is a gut-brain peptide involved in regulating feeding, sleep-wake rhythms, and emotional states. METHODS: This study investigated the regulation of the MCHergic neural circuit from the lateral hypothalamic area (LHA) to the dorsal raphe nucleus (DRN) on anxiety- and depression-like behaviors, intestinal motility, and visceral hypersensitivity in a mice model of IBS-D. The models of IBS-D were prepared by inducing chronic unpredictable mild stress. RESULTS: Chemogenetic activation of the MCH neurons in the LHA could excite serotonin (5-HT) neurons in the DRN and induce anxiety- and depression-like behaviors and IBS-D-like symptoms, which could be recovered by microinjection of the MCH receptor antagonist SNAP94847 into the DRN. The mice model of IBS-D showed a reduction of 5-HT and brain-derived neurotrophic factor (BDNF) expression in the DRN, while an elevation of 5-HT and BDNF was observed in the colon through immunofluorescent staining, ELISA, and Western blot analysis. SNAP94847 treatment in the DRN alleviated anxiety- and depression-like behaviors, improved intestinal motility, and alleviated visceral hypersensitivity responses by normalizing the 5-HT and BDNF expression in the DRN and colon. CONCLUSION: This study suggests that the activation of MCH neurons in the LHA may induce IBS-D symptoms via the DRN and that the MCH receptor antagonist could potentially have therapeutic effects.


Assuntos
Diarreia , Modelos Animais de Doenças , Núcleo Dorsal da Rafe , Hormônios Hipotalâmicos , Síndrome do Intestino Irritável , Melaninas , Hormônios Hipofisários , Animais , Síndrome do Intestino Irritável/metabolismo , Síndrome do Intestino Irritável/fisiopatologia , Núcleo Dorsal da Rafe/metabolismo , Hormônios Hipofisários/metabolismo , Hormônios Hipotalâmicos/metabolismo , Camundongos , Diarreia/metabolismo , Diarreia/etiologia , Masculino , Melaninas/metabolismo , Camundongos Endogâmicos C57BL , Motilidade Gastrointestinal/fisiologia , Motilidade Gastrointestinal/efeitos dos fármacos , Serotonina/metabolismo , Emoções/fisiologia , Vias Neurais/metabolismo , Vias Neurais/fisiopatologia , Ansiedade/etiologia , Ansiedade/fisiopatologia , Ansiedade/metabolismo , Depressão/etiologia , Depressão/metabolismo , Depressão/fisiopatologia , Comportamento Animal/fisiologia
19.
Cell Prolif ; 57(8): e13638, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38523511

RESUMO

Irritable bowel syndrome (IBS) is a widespread gastrointestinal disorder known for its multifaceted pathogenesis and varied extraintestinal manifestations, yet its implications for bone and muscle health are underexplored. Recent studies suggest a link between IBS and musculoskeletal disorders, but a comprehensive understanding remains elusive, especially concerning the role of bile acids (BAs) in this context. This study aimed to elucidate the potential contribution of IBS to bone and muscle deterioration via alterations in gut microbiota and BA profiles, hypothesizing that cholestyramine could counteract these adverse effects. We employed a mouse model to characterize IBS and analysed its impact on bone and muscle health. Our results revealed that IBS promotes bone and muscle loss, accompanied by microbial dysbiosis and elevated BAs. Administering cholestyramine significantly mitigated these effects, highlighting its therapeutic potential. This research not only confirms the critical role of BAs and gut microbiota in IBS-associated bone and muscle loss but also demonstrates the efficacy of cholestyramine in ameliorating these conditions, thereby contributing significantly to the field's understanding and offering a promising avenue for treatment.


Assuntos
Ácidos e Sais Biliares , Resina de Colestiramina , Microbioma Gastrointestinal , Síndrome do Intestino Irritável , Camundongos Endogâmicos C57BL , Animais , Síndrome do Intestino Irritável/tratamento farmacológico , Síndrome do Intestino Irritável/metabolismo , Resina de Colestiramina/farmacologia , Ácidos e Sais Biliares/metabolismo , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Osso e Ossos/metabolismo , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Modelos Animais de Doenças , Masculino , Disbiose/tratamento farmacológico , Disbiose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...