Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.043
Filtrar
1.
Food Res Int ; 192: 114843, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147474

RESUMO

The hydrothermal pretreatment process stands out as a pivotal step in breaking down the hemicellulosic fraction of lignocellulosic biomasses, such as sugarcane bagasse and eucalyptus sawdust. This pretreatment step is crucial for preparing these materials for subsequent processes, particularly in food applications. This technique aims to disintegrate plant wall components like cellulose, hemicellulose, and lignin, and facilitating access in later phases such as enzymatic hydrolysis, and ultimately making fermentable sugars available. In this study, sugarcane bagasse and eucalyptus sawdust biomass underwent hydrothermal pretreatment at specific conditions, yielding two key components: dry biomass and hemicellulose liquor. The primary focus was to assess the impact of hydrothermal pretreatment followed by enzymatic hydrolysis, using the Celic Ctec III enzyme cocktail, to obtain fermentable sugars. These sugars were then transformed into membranes via strain Gluconacetobacter xylinus bacterial biosynthesis. Notably, the addition of a nitrogen source significantly boosted production to 14.76 g/ in hydrolyzed sugarcane bagasse, underscoring its vital role in bacterial metabolism. Conversely, in hydrolyzed eucalyptus, nitrogen source inclusion unexpectedly decreased yield, highlighting the intricate interactions in fermentation media and the pivotal influence of nitrogen supplementation. Characterization of membranes obtained in synthetic and hydrolyzed media through techniques such as FEG-SEM, FTIR, and TGA, followed by mass balance assessment, gauged their viability on an industrial scale. This comprehensive study aimed not only to understand the effects of pretreatment and enzymatic hydrolysis but to also evaluate the applicability and sustainability of the process on a large scale, providing crucial insights into its feasibility and efficiency in practical food-related scenarios, utilizing nanocellulose bacterial (BNC) as a key component.


Assuntos
Biomassa , Celulose , Eucalyptus , Lignina , Saccharum , Lignina/química , Lignina/metabolismo , Celulose/química , Celulose/metabolismo , Hidrólise , Eucalyptus/química , Saccharum/química , Fermentação , Gluconacetobacter xylinus/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo
2.
Food Res Int ; 192: 114783, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147532

RESUMO

Non-centrifugal raw cane sugar (NRCS) is a minimally processed product from sugarcane (Saccharum officinarum L). This product contains phytochemical and nutritional compounds that benefit human health. Despite these advantages, NRCS commercialization is hindered by a lack of knowledge about its composition and, consequently, the absence of quality standards. Studies associating the nutritional composition of sugarcane varieties and their genuine products have not yet been found in the literature, and understanding this relationship can help establish quality standards for this product. Therefore, this study evaluated the mineral nutritional composition of genuine derivative NRCS produced from two sugarcane varieties obtained under different agronomic conditions at two stages of maturation to verify the relationships between raw material and the product. The obtained sugarcanes, juices, and bagasse, as well as the produced sugars, were analyzed for mineral content, such as calcium, magnesium, potassium, phosphorus, sulfur, iron, manganese, copper, and zinc, using inductively coupled plasma optical emission spectrometry. Most mineral constituents of sugarcane are in the juice in direct proportions to those in raw sugarcane. Thus, minimally processed food derivatives have nutritional characteristics equivalent to the raw materials. Consumption of NRCS contributes to meeting daily requirements for essential nutrients such as magnesium, copper, potassium, and manganese. For manganese, 25 g of NRCS, like the one produced in this study, can fulfill 22 to 76 % of an adult male's daily mineral requirements. The variation observed in the four NRCS samples, obtained from the same sugarcane variety under different maturation and agronomic conditions, was 250 %. This variation makes establishing quality parameters for mineral or ash content difficult. Therefore, setting mineral content levels for NRCS is inappropriate, as this parameter naturally depends on the raw material.


Assuntos
Minerais , Valor Nutritivo , Saccharum , Saccharum/química , Minerais/análise , Celulose/análise , Celulose/química , Manipulação de Alimentos/métodos
3.
Int J Biol Macromol ; 277(Pt 2): 134350, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39094877

RESUMO

In this study, a novel and cost-effective approach was employed to prepare an effective Pb(II) adsorbent. We synthesized highly porous CMCSB-SCB microbeads with multiple active binding sites by combining carboxymethylated chitosan Schiff base (CMCSB) and sugarcane bagasse (SCB). These microbeads were structurally and morphologically characterized using various physical, analytical, and microscopic techniques. The SEM image and N2-adsorption analysis of CMCSB-SCB revealed a highly porous structure with irregularly shaped voids and interconnected pores. The CMCSB-SCB microbeads demonstrated an impressive aqueous Pb(II) adsorption capacity, reaching a maximum of 318.21 mg/g, under identified optimal conditions: pH 4.5, 15 mg microbeads dosage, 30 min contact time, and Pb(II) initial concentration (350 mg/L). The successful adsorption of Pb(II) onto CMCSB-SCB beads was validated using FTIR, EDX, and XPS techniques. Furthermore, the experimental data fitting indicated a good agreement with the Langmuir model (R2 = 0.99633), whereas the adsorption kinetics aligned well with the pseudo-second-order model (R2 = 0.99978). The study also identified the Pb(II) adsorption mechanism by CMCSB-SCB microbeads as monolayer chemisorption.


Assuntos
Celulose , Quitosana , Chumbo , Microesferas , Saccharum , Bases de Schiff , Poluentes Químicos da Água , Purificação da Água , Quitosana/química , Quitosana/análogos & derivados , Chumbo/química , Chumbo/isolamento & purificação , Adsorção , Bases de Schiff/química , Celulose/química , Celulose/análogos & derivados , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Cinética , Saccharum/química , Purificação da Água/métodos , Concentração de Íons de Hidrogênio , Água/química
4.
Bioresour Technol ; 408: 131165, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39069142

RESUMO

This study explores the enhancement of phosphate rock (PR) solubilization through solid-state fermentation (SSF) by optimizing oxalic acid production using Aspergillus niger. Key process parameters, including the use of agro-industrial by-products (sugarcane bagasse (SCB), wheat bran (WB), soybean bran (SB)), pH levels, sucrose supplementation, and methanol addition, were systematically evaluated through sequential experimental designs. The results identified SCB and SB in a 1:1 ratio as the most effective substrate. Remarkably, the inclusion of methanol (7 %) and sucrose (0.5 %) resulted in a 3-fold increase in oxalic acid production. Under these optimized conditions, significant phosphorus solubilization of Bayóvar, Itafós, and Registro PRs was achieved, with Bayóvar rock releasing up to 12.1 g/kgds of soluble P (63.8 % efficiency). Additionally, the SSF process effectively released organic phosphorus from the agro-industrial substrates. These findings hold promise for advancing the bio-based economy and developing future industrial biofertilizers.


Assuntos
Aspergillus niger , Fermentação , Ácido Oxálico , Fosfatos , Solubilidade , Ácido Oxálico/química , Fosfatos/química , Aspergillus niger/metabolismo , Concentração de Íons de Hidrogênio , Celulose/química , Glycine max/metabolismo , Metanol/química , Sacarose/metabolismo , Saccharum/química
5.
World J Microbiol Biotechnol ; 40(9): 277, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037585

RESUMO

Food insecurity and malnutrition are serious problems in many developing countries, including Ethiopia. This situation warrants an urgent need for the diversification of food sources with enhanced productivity. This study was aimed at contributing to the food security in Ethiopia through cultivation of Pleurotus ostreatus mushrooms using sustainable and locally available agro-industrial byproduct-based substrates in parallel with pollution control. Ten substrates were prepared using sugarcane bagasse, filter cake, trash, cotton seed hull and animal waste, namely cow dung and horse and chicken manure. The effect of each substrate (treatment) on the yields, biological efficiency, nutritional composition, and mineral contents of Pleurotus ostreatus mushroom species was evaluated at the Ethiopian Forest Products Innovation Center, Addis Ababa, Ethiopia. The results obtained indicate that a significantly higher (p < 0.05) yield and biological efficiency were recorded from the mushroom cultivated on S2 substrate containing a mixture of 80% sugarcane bagasse, 12% cow dung, and 8% cotton seed hull. Moreover, substrate containing sugarcane bagasse mixed with cotton seed hull, cow dung, and chicken manure significantly (p < 0.05) increased the yields and biological efficiency of the mushroom. The content of protein, crude fat, fiber, and carbohydrates of the mushroom cultivated from all the utilized substrates were in the range of 17.30-21.5, 1.77-2.52, 31.03-34.38, and 28.02-39.74%, respectively. The critical macro-elements are abundant in the mushroom in the order of potassium, magnesium, calcium, and sodium. The mushrooms cultivated on all the substrates were rich in essential micro-elements in the order of iron and zinc. It was found that substrate preparation and formulation significantly (p < 0.05) improved the yields, biological efficiency, nutritive values, and mineral contents of the mushroom. The use of these by-products as substrates is sustainable and environmentally friendly and allows the production of mushroom with high nutritional value on a sustainable basis in order to enhance food security in the country.


Assuntos
Valor Nutritivo , Pleurotus , Saccharum , Etiópia , Pleurotus/crescimento & desenvolvimento , Pleurotus/metabolismo , Saccharum/metabolismo , Saccharum/química , Animais , Celulose/metabolismo , Esterco/análise , Agricultura/métodos , Bovinos , Galinhas , Minerais/análise
6.
Int J Biol Macromol ; 277(Pt 1): 134165, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39059537

RESUMO

In recent years, there has been an increase in research devoted to the advancement of cellulose and nanocellulose-based materials, which are advantageous due to their renewable nature, strength, rigidity, and environmental friendliness. This exploration complies with the fundamental tenets of environmental stewardship and sustainability. An area of industrial biotechnology where cellulosic agricultural residues have the potential to be economically utilized is through the conversion of such residues; sugarcane bagasse is currently leading this charge. SCB, a plentiful fibrous byproduct produced during the sugarcane industry's operations, has historically been utilized in various sectors, including producing paper, animal feed, enzymes, biofuel conversion, and biomedical applications. Significantly, SCB comprises a considerable amount of cellulose, approximately 40 % to 50 %, rendering it a valuable source of cellulose fibre for fabricating cellulose nanocrystals. This review sheds light on the significant advances in surface modification techniques, encompassing physical, chemical, and biological treatments, that enhance sugarcane bagasse fibres' adsorption capacity and selectivity. Furthermore, the paper investigates the specific advancements related to the augmentation of sugarcane bagasse fibres' efficacy in adsorbing a wide range of pollutants. These pollutants span a spectrum that includes heavy metals, dyes, organic pollutants, and emerging contaminants. The discussion provides a comprehensive overview of the targeted removal processes facilitated by applying modified fibres. The unique structural and chemical properties inherent in sugarcane bagasse fibres and their widespread availability position them as highly suitable adsorbents for various pollutants. This convergence of attributes underscores the potential of sugarcane bagasse fibres in addressing environmental challenges and promoting sustainable solutions across multiple industries.


Assuntos
Celulose , Saccharum , Saccharum/química , Celulose/química , Adsorção , Biotecnologia/métodos
7.
World J Microbiol Biotechnol ; 40(9): 266, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-38997527

RESUMO

Bacteria within the Paenibacillus genus are known to secrete a diverse array of enzymes capable of breaking down plant cell wall polysaccharides. We studied the extracellular xylanolytic activity of Paenibacillus xylanivorans and examined the complete range of secreted proteins when grown on carbohydrate-based carbon sources of increasing complexity, including wheat bran, sugar cane straw, beechwood xylan and sucrose, as control. Our data showed that the relative abundances of secreted proteins varied depending on the carbon source used. Extracellular enzymatic extracts from wheat bran (WB) or sugar cane straw (SCR) cultures had the highest xylanolytic activity, coincidently with the largest representation of carbohydrate active enzymes (CAZymes). Scaling-up to a benchtop bioreactor using WB resulted in a significant enhancement in productivity and in the overall volumetric extracellular xylanase activity, that was further concentrated by freeze-drying. The enzymatic extract was efficient in the deconstruction of xylans from different sources as well as sugar cane straw pretreated by alkali extrusion (SCRe), resulting in xylobiose and xylose, as primary products. The overall yield of xylose released from SCRe was improved by supplementing the enzymatic extract with a recombinant GH43 ß-xylosidase (EcXyl43) and a GH62 α-L-arabinofuranosidase (CsAbf62A), two activities that were under-represented. Overall, we showed that the extracellular enzymatic extract from P. xylanivorans, supplemented with specific enzymatic activities, is an effective approach for targeting xylan within lignocellulosic biomass.


Assuntos
Proteínas de Bactérias , Paenibacillus , Saccharum , Xilanos , Xilose , Xilosidases , Xilanos/metabolismo , Paenibacillus/metabolismo , Paenibacillus/enzimologia , Proteínas de Bactérias/metabolismo , Saccharum/metabolismo , Saccharum/química , Xilosidases/metabolismo , Xilose/metabolismo , Reatores Biológicos/microbiologia , Fibras na Dieta/metabolismo , Endo-1,4-beta-Xilanases/metabolismo , Dissacarídeos/metabolismo , Glicosídeo Hidrolases/metabolismo
8.
Environ Sci Pollut Res Int ; 31(34): 47071-47083, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38985421

RESUMO

Understanding the strength behavior and leaching characteristics of mining tailings stabilized with alkali-activated cements in the short, medium, and long term is crucial for the feasibility of material applications. In this context, this study assessed the stabilization/solidification of iron ore tailings (IOT) using alkali-activated binder (AAB) composed of sugarcane bagasse ash and eggshell lime at curing times of 7, 28, 60, 90, 180, and 365 days. Additionally, leaching tests were conducted, along with the examination of possible changes in the chemical and mineralogical composition resulting from exposure to acidic environments. Tests included unconfined compression strength (UCS), leaching, X-ray diffraction, and Fourier-transform infrared spectroscopy for the IOT-AAB mixtures. The highest increase in UCS was observed between 7 and 60 days, reaching 6.47 MPa, with minimal variation thereafter. The AAB-bonded IOT exhibited no metal toxicity over time. Elements Ba, Mn, Pb, and Zn present in IOT and ash were encapsulated in the cemented matrix, with complete encapsulation of all metals observed from 90 days of curing time. The mineralogy of the stabilized/solidified tailings showed no changes resulting from leaching tests. Characteristic bands associated with the presence of N-A-S-H gel were identified in both pre-leaching and post-leaching samples for all curing times analyzed. Exposure to acidic environments altered bands related to carbonate bonds formed in the IOT-AAB mixture.


Assuntos
Ferro , Mineração , Ferro/química , Álcalis/química , Metais/química , Difração de Raios X , Saccharum/química
9.
Environ Sci Pollut Res Int ; 31(35): 48674-48686, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39037629

RESUMO

Contamination with traces of pharmaceutical compounds, such as ciprofloxacin, has prompted interest in their removal via low-cost, efficient biomass-based adsorption. In this study, classical models, a mechanistic model, and a neural network model were evaluated for predicting ciprofloxacin breakthrough curves in both laboratory- and pilot scales. For the laboratory-scale (d = 2.2 cm, Co = 5 mg/L, Q = 7 mL/min, T = 18 °C) and pilot-scale (D = 4.4 cm, Co = 5 mg/L, Q = 28 mL/min, T = 18 °C) setups, the experimental adsorption capacities were 2.19 and 2.53 mg/g, respectively. The mechanistic model reproduced the breakthrough data with high accuracy on both scales (R2 > 0.4 and X2 < 0.15), and its fit was higher than conventional analytical models, namely the Clark, Modified Dose-Response, and Bohart-Adams models. The neural network model showed the highest level of agreement between predicted and experimental data with values of R2 = 0.993, X2 = 0.0032 (pilot-scale) and R2 = 0.986, X2 = 0.0022 (laboratory-scale). This study demonstrates that machine learning algorithms exhibit great potential for predicting the liquid adsorption of emerging pollutants in fixed bed.


Assuntos
Celulose , Ciprofloxacina , Aprendizado de Máquina , Redes Neurais de Computação , Ciprofloxacina/química , Adsorção , Celulose/química , Saccharum/química , Poluentes Químicos da Água
10.
Bioresour Technol ; 406: 131088, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38981553

RESUMO

Sugarcane bagasse was recycled to produce fermentation liquid (FL) as a supplementary carbon source that was added to constructed wetlands (CWs) for regulating influent carbon to nitrogen ratio (C/N), and then being applied to investigate nitrogen transformations and greenhouse gas emissions. Results showed that this FL achieved faster NO3--N removal and lower N2O fluxes than sucrose did, and the lowest N2O flux (67.6 µg m-2h-1) was achieved when FL was added to CWs in a C/N of 3. In contrast, CH4 emissions were higher by the FL addition than by the sucrose addition, although the fluxes under both additions were in a lower range of 0.06-0.17 mg m-2h-1. The utilization of FL also induced significant variations in microbial communities and increased the abundance of denitrification genes. Results showed the application of FL from sugarcane bagasse can be an effective strategy for improving nitrogen removal and mitigating N2O emissions in CWs.


Assuntos
Carbono , Celulose , Fermentação , Nitrogênio , Óxido Nitroso , Saccharum , Águas Residuárias , Áreas Alagadas , Saccharum/química , Saccharum/metabolismo , Óxido Nitroso/metabolismo , Celulose/metabolismo , Águas Residuárias/química , Purificação da Água/métodos , Metano/metabolismo , Desnitrificação
11.
Environ Geochem Health ; 46(9): 307, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39002001

RESUMO

This study aimed to assess the effectiveness of urban derived biochars such as Sugarcane bagasse (SB), Brinjal Stem (BS), and Citrus Peel (CP) produced at two different pyrolysis conditions (450 and 600 °C for 60 min) for soil heavy metal bioremediation potential. An ex-situ study was conducted to remediate single heavy metal-contaminated SoilRite with lead (Pb), copper (Cu), chromium (Cr) and cadmium (Cd), with biochars applied at different rates. Heavy metal status in soilrite was evaluated using various extraction methods (water-soluble, exchangeable, TCLP (Toxicity Characteristic Leaching Procedure), and PBET (Physiologically Based Extraction Tests)) to determine the biochar treatments' efficacy. The findings show that SB biochar at 450-60 are more effective in immobilizing heavy metals in water-soluble (Cd-100% Pb and Cu-70%), exchangeable (Pb:91%, Cd and Cu by 70-80%) and PBET-extracted forms (Cd-91%, Pb-80%, and Cu-75%), whereas biochar derived from BS (84%) and CP (90%) at 600-60 are more effective in immobilizing TCLP-extracted form of Pb and Cu. Urban derived biochars significantly reduced the toxicity of Pb, Cu, and Cd in various extractable forms and can stabilize and convert them into less accessible forms except for Cr. These extraction methods aid in evaluating environmental risks and influencing remediation strategies for soil heavy metal pollution. Urban biochar, as a cost-effective and eco-friendly solution, significantly solves this issue, facilitating sustainable waste management.


Assuntos
Carvão Vegetal , Recuperação e Remediação Ambiental , Metais Pesados , Pirólise , Poluentes do Solo , Carvão Vegetal/química , Poluentes do Solo/química , Poluentes do Solo/análise , Metais Pesados/química , Metais Pesados/análise , Recuperação e Remediação Ambiental/métodos , Citrus/química , Saccharum/química , Solo/química , Biodegradação Ambiental
12.
Water Sci Technol ; 90(1): 18-31, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39007304

RESUMO

The demand for new products derived from agro-industrial residues has increased recently. Furthermore, vinasse, a wastewater from ethanol production, needs treatment to be reused in the sugarcane industry, reducing industrial water consumption. This study performed vinasse filtration with charcoal from industrial sugarcane residues and used filtered molasses dilution in ethanolic fermentation. There were five treatments in randomized blocks with three repetitions. The treatments included deionized water and natural vinasse as positive and negative controls, respectively, and filtered vinasse from charcoal made from bamboo, sugarcane bagasse, and straw. Hence, fermentation for ethanol production was performed. Compared with natural vinasse, filtered vinasse with all types of charcoal showed lower soluble solids, total residual reducing sugars, higher ethanol concentrations, and greater fermentative efficiency. Filtered vinasse from bagasse and straw charcoals had efficiencies of 81.14% and 77.98%, respectively, in terms of ethanol production, which are close to those of deionized water (81.49%). In a hypothetical industry, vinasse charcoal filtration and charcoal regeneration should prevent 84.12% of water consumption from environmental resources. This process is feasible because it uses a product of sugarcane residue to treat wastewater and reduce industrial water consumption and vinasse disposal.


Assuntos
Carvão Vegetal , Etanol , Fermentação , Melaço , Saccharum , Carvão Vegetal/química , Etanol/química , Saccharum/química , Resíduos Industriais , Filtração/métodos , Eliminação de Resíduos Líquidos/métodos
13.
PLoS One ; 19(6): e0302135, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38861530

RESUMO

Soilless agriculture is acknowledged worldwide because it uses organic leftovers as a means of supporting intensive and efficient plant production. However, the quality of potting media deteriorates because of lower nutrient content and excessive shrinkage of most organic materials. A current study was undertaken to identify the optimal blend of locally available organic materials with desirable qualities for use as potting media. Therefore, different ingredients, viz., Pinus roxburghii needles, sugarcane bagasse, and farmyard manure were used alone or in combination as potting media to test their suitability by growing spinach as a test crop. Results showed that an increase in Pinus roxburghii needles and sugarcane bagasse decreased medium pH and electrical conductivity. Higher pH and electrical conductivity were recorded for the treatments having a higher farmyard manure ratio (≥50%) in combination. Except for pine needles 100%, pH and electrical conductivity were in the recommended range. The growth attributes include, leaves plant-1, shoot length, fresh- and dry shoot weight along with plant macronutrients (nitrogen, phosphorous, and potassium) and micronutrients (iron, copper, manganese, and zinc) content were higher in treatment pine needles 50%+farmyard manure 50% followed by pine needles 25%+farmyard manure 50%+sugarcane bagasse 25%. Moreover, the particular treatment of pine needles 50%+farmyard manure 50% exhibited the highest concentrations of macro- (nitrogen, phosphorus, and potassium) as well as micronutrients (iron, copper, manganese, and zinc) in the potting media following the harvest. This study highlights the potential of utilizing agro-industrial litter/waste as a soilless growing medium for spinach production under greenhouse conditions. When employed in appropriate proportions, this approach not only addresses disposal concerns but also proves effective for sustainable cultivation. Further research is needed to investigate the use of these wastes as potting media by mixing various particle-size ingredients.


Assuntos
Esterco , Pinus , Saccharum , Esterco/análise , Saccharum/crescimento & desenvolvimento , Saccharum/química , Pinus/crescimento & desenvolvimento , Celulose , Verduras/crescimento & desenvolvimento , Verduras/química , Spinacia oleracea/crescimento & desenvolvimento , Spinacia oleracea/metabolismo , Concentração de Íons de Hidrogênio , Condutividade Elétrica , Agricultura/métodos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/química , Solo/química , Nitrogênio/análise
14.
Int J Biol Macromol ; 275(Pt 1): 133480, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38942408

RESUMO

This study investigates the conversion of highly acetylated sugarcane bagasse into high-modulus carbon nanofibers (CnNFs) with exceptional electrical conductivity. By electrospinning the bagasse into nanofibers with diameters ranging from 80 nm to 800 nm, a cost-effective CnNFs precursor is obtained. The study reveals the transformation of the cellulose crystalline structure into a stable antiparallel chain arrangement of cellulose II following prolonged isothermal treatment, leading to a remarkable 50 % increase in CnNFs recovery with carbon contents ranging from 80 % to 90 %. This surpasses the performance of any other reported biomass precursors. Furthermore, graphitization-induced shrinkage of CnNFs diameter results in significant growth of specific surface area and pore volume in the resulting samples. This, along with a highly ordered nanostructure and high crystallinity degree, contributes to an impressive tensile modulus of 9.592 GPa, surpassing that of most petroleum-based CnNFs documented in the literature. Additionally, the prolonged isothermal treatment influences the d002 value (measured at 0.414 nm) and CnNFs degree of crystallinity, leading to an enhancement in electrical conductivity. However, the study observes no size effect advantages on mechanical properties and electrical conductivity, possibly attributed to the potential presence of point defects in the ultrathin CnNFs. Overall, this research opens a promising and cost-effective pathway for converting sugarcane biomasses into high-modulus carbon nanofibers with outstanding electrical conductivity. These findings hold significant implications for the development of sustainable and high-performance materials for various applications, including electronics, energy storage, and composite reinforcement.


Assuntos
Carbono , Celulose , Nanofibras , Nanofibras/química , Celulose/química , Carbono/química , Condutividade Elétrica , Biomassa , Saccharum/química , Temperatura , Resistência à Tração
15.
Food Chem ; 457: 140133, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38909455

RESUMO

The present work evaluated kiwi juice addition alongside pasteurization (at 85 °C for 5 min) or microwave treatment (for 3 min) on the quality improvement of sugarcane juice. The juice was treated in the presence of kiwi juice (0-8%), and its physicochemical properties and microbial load were compared with raw juice. The study also highlighted the key enzymes causing sugarcane juice discoloration, peroxidase (POD) and polyphenol oxidase (PPO), by quantifying kiwi juice constituents using GC-MS and monitoring their effects by molecular docking. Kiwi addition considerably raised (p < 0.05) acidity, ascorbic acid (54.28%), and phenolic compounds (32%), and decreased the POD and PPO activity of raw cane juice. Pasteurization in the presence of kiwi, rather than microwave treatment, has significantly (p < 0.05) increased the phenolic compounds and reduced POD and PPO activities until barley was detected. Molecular docking revealed that heptacosane, oleic acid, and melezitose are the primary kiwi components responsible for enzyme inactivation.


Assuntos
Actinidia , Catecol Oxidase , Sucos de Frutas e Vegetais , Simulação de Acoplamento Molecular , Saccharum , Saccharum/química , Sucos de Frutas e Vegetais/análise , Catecol Oxidase/química , Catecol Oxidase/metabolismo , Catecol Oxidase/antagonistas & inibidores , Actinidia/química , Actinidia/enzimologia , Peroxidase/química , Peroxidase/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Fenóis/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia
16.
Bioresour Technol ; 405: 130932, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38838831

RESUMO

The first comparative pre-treatment study of Miscanthus (Mxg) and sugarcane bagasse (SCB) using steam explosion (SE) and pressurised disc refining (PDR) pretreatment to optimise xylose and xylo-oligosaccharide release is described. The current investigation aimed to 1) Develop optimised batch-wise steam explosion parameters for Mxg and SCB, 2) Scale from static batch steam explosion to dynamic continuous pressurised disc refining, 3) Identify, understand, and circumvent scale-up production hurdles. Optimised SE parameters released 82% (Mxg) and 100% (SCB) of the available xylan. Scaling to PDR, Miscanthus yielded 85% xylan, highlighting how robust scouting assessments for boundary process parameters can result in successful technical transfer. In contrast, SCB technical transfer was not straightforward, with significant differences observed between the two processes, 100% (SE) and 58% (PDR). This report underlines the importance of feedstock-specific pretreatment strategies to underpin process development, scale-up, and optimisation of carbohydrate release from biomass.


Assuntos
Celulose , Oligossacarídeos , Poaceae , Saccharum , Vapor , Xilose , Saccharum/química , Celulose/química , Projetos Piloto , Biotecnologia/métodos , Xilanos , Glucuronatos
17.
J Ethnopharmacol ; 333: 118476, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-38908491

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Sugarcane (Saccharum officinarum L.) is reported by traditional medicine as tonic, stimulating and beneficial in increasing resistance to fatigue. Previous preclinical studies in rats using aqueous extract of sugarcane leaves (AE) revealed pharmacological effects on the central nervous and cardiovascular systems involving the participation of dopaminergic pathways. This neurotransmission system is also related to motor, emotional and cognitive activities, which could, in part, justify the ethnopharmacological information. AIM OF STUDY: The present study aimed to investigate the motor, emotional and cognitive activities of rats submitted to AE treatment using behavioral tests in order to correlate the pharmacological effects with the therapeutic benefits postulated by traditional medicine. Additionally, the chemical profile of AE was evaluated by HPLC-UV/Vis, and the presence of shikimic acid, vitexin, and ferulic acid, as possible chemical markers, was investigated through comparisons of chemical parameters with the authentic patterns, and a UV-Vis scan of known spectra. MATERIAL AND METHODS: Rats received water (1.5 mL/kg, p.o.) and AE (0.5, 10 and 500 mg/kg, p.o.) in the absence and presence of haloperidol (0.5 mg/kg, i.p.), 90 min before open field; rotarod; elevated plus maze and inhibitory avoidance tests for investigation of motor; emotional and cognitive responses. As a positive control was used apomorphine (0.25 mg/kg, s.c.). The chemical profile of AE was evaluated by HPLC-UV/Vis and the presence of shikimic acid, vitexin and ferulic acid, as possible chemical markers, was investigated through comparisons with the retention times, an increase of the integral of the peak area determined by co-injection of AE with the authentic patterns, and a UV-Vis scan of known spectra. RESULTS: In open field, it revealed that AE increased locomotion; reduced rearing but did not change freezing and grooming. Besides, AE increased motor performance in rotarod and reduced anxiety in elevated plus maze. A relation dose-response was observed in these tests where the lowest dose of AE was more effective in developing pharmacological responses. Previous administration of haloperidol inhibited the responses of AE. Inhibitory avoidance test revealed that AE did not modify fast-learning and associative memory. CONCLUSIONS: Sugarcane induced psychostimulant, anxiolytic-like effects, and improvement of motor performance in rats, with the involvement of dopaminergic pathways. The present study points to AE as a potential adaptogen but, in addition to behavioral assessments, metabolic and molecular aspects, that involve the participation of a variety of regulatory systems, will be investigated in futures studies. Phytochemical analyses showed that AE is a complex matrix and revealed shikimic acid, vitexin, and ferulic acid as potential chemical markers.


Assuntos
Ansiolíticos , Atividade Motora , Extratos Vegetais , Ratos Wistar , Saccharum , Animais , Saccharum/química , Ansiolíticos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Masculino , Ratos , Atividade Motora/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia , Folhas de Planta/química , Comportamento Animal/efeitos dos fármacos , Haloperidol/farmacologia , Ansiedade/tratamento farmacológico , Relação Dose-Resposta a Droga , Aprendizagem em Labirinto/efeitos dos fármacos
18.
Food Chem ; 456: 139983, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38850609

RESUMO

A method for accurately determining 3-nitropropionic acid in sugarcane was established for the first time using gas chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry (GC - APCI-MS/MS). Under acidic conditions, 3-nitropropionic acid is methylated to obtain methyl 3-nitropropionate. The derivative product was purified using dispersive solid-phase extraction (d-SPE) method and analyzed using GC - APCI-MS/MS. The recovery experiments were conducted at three concentrations: low, medium, and high. The recovery rates ranged from 75.1% to 90.2%, the relative standard deviations were <8.2%, and the limit of quantification was 2.0 µg/kg. The method offers the advantage of being accurate, sensitive, and specific, meeting the requirements of the determination of 3-nitropropionic acid in sugarcane.


Assuntos
Nitrocompostos , Propionatos , Saccharum , Extração em Fase Sólida , Espectrometria de Massas em Tandem , Propionatos/isolamento & purificação , Propionatos/análise , Saccharum/química , Nitrocompostos/química , Nitrocompostos/análise , Nitrocompostos/isolamento & purificação , Extração em Fase Sólida/métodos , Cromatografia Gasosa-Espectrometria de Massas , Contaminação de Alimentos/análise
19.
Bioresour Technol ; 406: 130973, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38879051

RESUMO

In Brazil the main feedstock used for ethanol production is sugarcane juice, resulting in large amounts of bagasse. Bagasse has high potential for cellulosic ethanol production, and consolidated bioprocessing (CBP) has potential for lowering costs. However, economic feasibility requires bioprocessing at high solids loadings, entailing engineering and biological challenges. This study aims to document and characterize carbohydrate solubilization and utilization by defined cocultures of Clostridium thermocellum and Thermoanaerobacterium thermosaccharolyticum at increasing loadings of sugarcane bagasse. Results show that fractional carbohydrate solubilization decreases as solids loading increases from 10 g/L to 80 g/L. Cocultures enhance solubilization and carbohydrate utilization compared to monocultures, irrespective of initial solids loading. Rinsing bagasse before fermentation slightly decreases solubilization. Experiments studying inhibitory effects using spent media and dilution of broth show that negative effects are temporary or reversible. These findings highlight the potential of converting sugarcane bagasse via CBP, pointing out performance limitations that must be addressed.


Assuntos
Celulose , Clostridium thermocellum , Saccharum , Solubilidade , Thermoanaerobacterium , Saccharum/química , Celulose/química , Celulose/metabolismo , Thermoanaerobacterium/metabolismo , Clostridium thermocellum/metabolismo , Fermentação , Técnicas de Cocultura , Etanol/metabolismo
20.
Bioresour Technol ; 406: 130982, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38879055

RESUMO

Cotreatment, mechanical disruption of lignocellulosic biomass during microbial fermentation, is a potential alternative to thermochemical pretreatment as a means of increasing the accessibility of lignocellulose to biological attack. Successful implementation of cotreatment requires microbes that can withstand milling, while solubilizing and utilizing carbohydrates from lignocellulose. In this context, cotreatment with thermophilic, lignocellulose-fermenting bacteria has been successfully evaluated for a number of lignocellulosic feedstocks. Here, cotreatment was applied to sugarcane bagasse using monocultures of the cellulose-fermenting Clostridium thermocellum and cocultures with the hemicellulose-fermenting Thermoanaerobacterium thermosaccharolyticum. This resulted in 76 % carbohydrate solubilization (a 1.8-fold increase over non-cotreated controls) on 10 g/L solids loading, having greater effect on the hemicellulose fraction. With cotreatment, fermentation by wild-type cultures at low substrate concentrations increased cumulative product formation by 45 % for the monoculture and 32 % for the coculture. These findings highlight the potential of cotreatment for enhancing deconstruction of sugarcane bagasse using thermophilic bacteria.


Assuntos
Celulose , Técnicas de Cocultura , Fermentação , Saccharum , Solubilidade , Saccharum/química , Celulose/metabolismo , Celulose/química , Clostridium thermocellum/metabolismo , Thermoanaerobacterium/metabolismo , Lignina/metabolismo , Lignina/química , Bactérias Anaeróbias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...