RESUMO
Membranes undergo various patterns of deformation during vesicle fusion, but how this membrane deformation is regulated and contributes to fusion remains unknown. In this study, we developed a new method of observing the fusion of individual late endosomes and lysosomes by using mouse yolk sac visceral endoderm cells that have huge endocytic vesicles. We found that there were two distinct fusion modes that were differently regulated. In homotypic fusion, two late endosomes fused quickly, whereas in heterotypic fusion they fused to lysosomes slowly. Mathematical modeling showed that vesicle size is a critical determinant of these fusion types and that membrane fluctuation forces can overcome the vesicle size effects. We found that actin filaments were bound to late endosomes and forces derived from dynamic actin remodeling were necessary for quick fusion during homotypic fusion. Furthermore, cofilin played a role in endocytic fusion by regulating actin turnover. These data suggest that actin promotes vesicle fusion for efficient membrane trafficking in visceral endoderm cells.
Assuntos
Actinas , Endoderma , Endossomos , Saco Vitelino , Animais , Endoderma/metabolismo , Endoderma/citologia , Endossomos/metabolismo , Camundongos , Saco Vitelino/metabolismo , Actinas/metabolismo , Fusão de Membrana , Lisossomos/metabolismo , Citoesqueleto de Actina/metabolismoRESUMO
CMTR2 is an mRNA cap methyltransferase with poorly understood physiological functions. It catalyzes 2'-O-ribose methylation of the second transcribed nucleotide of mRNAs, potentially serving to mark RNAs as "self" to evade the cellular innate immune response. Here we analyze the consequences of Cmtr2 deficiency in mice. We discover that constitutive deletion of Cmtr2 results in mouse embryos that die during mid-gestation, exhibiting defects in embryo size, placental malformation and yolk sac vascularization. Endothelial cell deletion of Cmtr2 in mice results in vascular and hematopoietic defects, and perinatal lethality. Detailed characterization of the constitutive Cmtr2 KO phenotype shows an activation of the p53 pathway and decreased proliferation, but no evidence of interferon pathway activation. In summary, our study reveals the essential roles of Cmtr2 in mammalian cells beyond its immunoregulatory function.
Assuntos
Desenvolvimento Embrionário , Metiltransferases , Animais , Feminino , Camundongos , Gravidez , Proliferação de Células , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Células Endoteliais/metabolismo , Metiltransferases/metabolismo , Metiltransferases/genética , Camundongos Knockout , Placenta/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Saco Vitelino/metabolismo , Saco Vitelino/embriologiaRESUMO
This study aimed to investigate the developmental change of body growth and gene expression related to fatty acid uptake and oxidation in the yolk sac membrane (YSM) and jejunum during embryogenesis in Muscovy ducks. The weights of embryos and yolk sac (YS) (5 embryos per replicate, n = 6) were recorded on embryonic days (E)16, E19, E22, E25, E28, E31, and the day of hatch (DOH). The fat and fatty acid contents in YSM, jejunal histology, and gene expression related to fatty acid metabolism in YSM and jejunum were determined in each sampling time. Among the nonlinear models, the maximum growth is estimated at 2.83 (E22.5), 2.67 (E22.1), and 2.60 (E21.3) g/d using logistic, Gompertz, and Von Bertalanffy models, respectively. The weight of YS, and ether extract-free YS as well as the amounts of fat and fatty acids in YS decreased (P < 0.05) linearly, whereas the villus height, crypt depth, villus height/crypt depth, and musculature thickness in jejunum increased (P < 0.05) linearly during embryogenesis. The mRNA expression of CD36, SLC27A4, and FABP1 related to fatty acid uptake as well as the mRNA and protein expressions of PPARα and CPT1 related to fatty acid oxidation increased in a quadratic manner (P < 0.05) in both YS and jejunum, and the maximum values were achieved during E25 to E28. In conclusion, the maximum growth rate of Muscovy duck embryos was estimated at 2.60 to 2.83 g/d on E21.3 to E23.5, while the accumulations of lipid and fatty acid in YS were decreased in association with the increased absorptive area of morphological structures in jejunum. The gene and protein expression involved in fatty acid metabolism displayed a similar enhancement pattern between YSM and jejunum during E25 to E28, suggesting that fatty acid utilization could be strengthened to meet the energy demand for embryonic development.
Assuntos
Patos , Desenvolvimento Embrionário , Ácidos Graxos , Jejuno , Oxirredução , Saco Vitelino , Animais , Patos/embriologia , Patos/crescimento & desenvolvimento , Patos/metabolismo , Jejuno/metabolismo , Jejuno/embriologia , Jejuno/crescimento & desenvolvimento , Ácidos Graxos/metabolismo , Saco Vitelino/metabolismo , FemininoRESUMO
During development, the zebrafish embryo relies on its yolk sac as a nutrient source. Here, we present a protocol for modifying the free fatty acid (FFA) and triacylglycerol (TAG) content of the zebrafish yolk sac by microinjection. We describe steps for needle and injection mold preparation, FFA and TAG solution preparation, and microinjection. This protocol can elucidate how excesses of FFA and TAG affect development and modify the transcriptome of zebrafish embryos. For complete details on the use and execution of this protocol, please refer to Konadu et al. 1.
Assuntos
Embrião não Mamífero , Ácidos Graxos não Esterificados , Microinjeções , Triglicerídeos , Peixe-Zebra , Animais , Peixe-Zebra/embriologia , Microinjeções/métodos , Triglicerídeos/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Embrião não Mamífero/metabolismo , Saco Vitelino/metabolismoRESUMO
Glucose has important roles in the development of zebrafish, the vertebrate animal model; however, in most oviparous animals, the amount of maternally provided glucose in the yolk is scarce. For these reasons, developing animals need some ways to supplement glucose. Recently, it was found that developing zebrafish, a teleost fish, undergo gluconeogenesis in the yolk syncytial layer (YSL), an extraembryonic tissue that surrounds the yolk. However, teleost YSL is evolutionarily unique, and it is not clear how other vertebrates supplement glucose. In this study, we used cloudy catshark (or Torazame catshark), an elasmobranch species which possesses a YSL-like tissue during development, and sought for possible gluconeogenic activities in this tissue. In their yolk sac, glucose increased, and our isotope tracking analysis detected gluconeogenic activities with glycerol most preferred substrate. In addition, many of gluconeogenic genes were expressed at the YSL-like tissue, suggesting that cloudy catshark engages in gluconeogenesis in this tissue. The gluconeogenesis in teleost YSL and a similar tissue in elasmobranch species implies conserved mechanisms of yolk metabolism between these two lineages. Future studies on other vertebrate taxa will be helpful to understand the evolutionary changes in the modes of yolk metabolism that vertebrates have experienced.
Assuntos
Gluconeogênese , Animais , Glucose/metabolismo , Saco Vitelino/metabolismo , Tubarões/metabolismo , Gema de Ovo , Embrião não MamíferoRESUMO
Alpha-fetoprotein (AFP) belongs to the albuminoid protein family and is considered as the fetal analog of serum albumin. This plasma protein is initially synthesized in the fetal liver and yolk sac and shows a maximum peak near the end of the first trimester. Later, concentrations begin to decline prenatally and drop precipitously after birth. This protein has three key ligand-binding pockets for interactions with various biomolecules. It contains multiple phosphorylation and acetylation sites for the regulation of physiological and pathophysiological states. High serum AFP titer is an established biomarker for yolk sac, embryonal and hepatocellular carcinoma. The present review critically analyzes the chemical nature, receptors, clinical implications, and therapeutic aspects of AFP, underpinning the development of different types of cancer.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , alfa-Fetoproteínas/metabolismo , Carcinoma Hepatocelular/metabolismo , Saco Vitelino/metabolismo , Feto/metabolismo , Neoplasias Hepáticas/metabolismoRESUMO
The extraembryonic yolk sac (YS) ensures delivery of nutritional support and oxygen to the developing embryo but remains ill-defined in humans. We therefore assembled a comprehensive multiomic reference of the human YS from 3 to 8 postconception weeks by integrating single-cell protein and gene expression data. Beyond its recognized role as a site of hematopoiesis, we highlight roles in metabolism, coagulation, vascular development, and hematopoietic regulation. We reconstructed the emergence and decline of YS hematopoietic stem and progenitor cells from hemogenic endothelium and revealed a YS-specific accelerated route to macrophage production that seeds developing organs. The multiorgan functions of the YS are superseded as intraembryonic organs develop, effecting a multifaceted relay of vital functions as pregnancy proceeds.
Assuntos
Desenvolvimento Embrionário , Saco Vitelino , Feminino , Humanos , Gravidez , Coagulação Sanguínea/genética , Macrófagos , Saco Vitelino/citologia , Saco Vitelino/metabolismo , Desenvolvimento Embrionário/genética , Atlas como Assunto , Expressão Gênica , Perfilação da Expressão Gênica , Hematopoese/genética , Fígado/embriologiaRESUMO
During the transition from incubation to hatch, the chicks shift from obtaining nutrients from the yolk sac to the intestine. The yolk sac tissue (YST) and small intestine serve as biological barriers between the yolk or gut contents and the blood circulation. These barriers must maintain structural integrity for optimal nutrient uptake as well as protection from pathogens. The objective of this study was to investigate the effect of high incubation temperature on mRNA abundance of the tight junction (TJ) proteins zona occludens 1 (ZO1), occludin (OCLN), claudin 1 (CLDN1), and junctional adhesion molecules A and 2 (JAMA, JAM2) and the heat shock proteins (HSP70 and HSP90) in the YST and small intestine of embryonic broilers. Broiler eggs were incubated at 37.5°C. On embryonic day 12 (E12), half of the eggs were switched to 39.5°C. YST samples were collected from E7 to day of hatch (DOH), while small intestinal samples were collected from E17 to DOH. The temporal expression of TJ protein mRNA from E7 to DOH at 37.5°C and the effect of incubation temperature from E13 to DOH were analyzed by one-way and two-way ANOVA, respectively and Tukey's test. Significance was set at P < 0.05. The temporal expression pattern of ZO1, OCLN, and CLDN1 mRNA showed a pattern of decreased expression from E7 to E13 followed by an increase to DOH. High incubation temperature caused an upregulation of ZO1 and JAM2 mRNA in the YST and small intestine. Using in situ hybridization, OCLN and JAMA mRNA were detected in the epithelial cells of the YST. In addition, JAMA mRNA was detected in epithelial cells of the small intestine, whereas JAM2 mRNA was detected in the vascular system of the villi and lamina propria. In conclusion, the YST expressed mRNA for TJ proteins and high incubation temperature increased ZO1 and JAM2 mRNA. This suggests that the TJ in the vasculature of the YST and intestine is affected by high incubation temperature.
Assuntos
Galinhas , Saco Vitelino , Animais , Galinhas/genética , Saco Vitelino/metabolismo , Temperatura , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Óvulo/metabolismo , Intestino Delgado/metabolismo , Ocludina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Junções ÍntimasRESUMO
During the early phases of embryonic development, the yolk sac serves as an initial placenta in many animal species. While in some, this role subsides around the end of active organogenesis, it continues to have important functions in rodents, alongside the chorio-allantoic placenta. The yolk sac is the initial site of hematopoiesis in many animal species including primates. Cells of epiblastic origin form blood islands that are the forerunners of hematopoietic cells and of the primitive endothelial cells that form the vitelline circulation. The yolk sac is also a major route of embryonic and fetal nutrition apparently as long as it functions. In mammals and especially rodents, macro and micronutrients are absorbed by active pinocytosis into the visceral yolk sac, degraded and the degradation products (i.e., amino acids) are then transferred to the embryo. Interference with the yolk sac function may directly reflect on embryonic growth and development, inducing congenital malformations or in extreme damage, causing embryonic and fetal death. In rodents, many agents were found to damage the yolk sac (i.e., anti-yolk sac antibodies or toxic substances interfering with yolk sac pinocytosis) subsequently affecting the embryo/fetus. Often, the damage to the yolk sac is transient while embryonic damage persists. In humans, decreased yolk sac diameter was associated with diabetic pregnancies and increased diameter was associated with pregnancy loss. In addition, culture of rat yolk sacs in serum obtained from pregnant diabetic women or from women with autoimmune diseases induced severe damage to the visceral yolk sac epithelium and embryonic malformations. It can be concluded that as a result of the crucial role of the yolk sac in the well-being of the early embryo, any damage to its normal function may severely and irreversibly affect further development of the embryo/fetus.
Assuntos
Células Endoteliais , Roedores , Gravidez , Ratos , Feminino , Humanos , Animais , Saco Vitelino/metabolismo , Mamíferos , PinocitoseRESUMO
CONTEXT: Pure post-pubertal yolk sac tumors (YSTs) are an extremely rare type of malignant germ cell tumor (GCT) that account for <1 % of testicular GCTs. Clinically, they are more aggressive compared to the more common pre-pubertal counterpart. The aim of this study is to analyze the clinical presentation, ancillary tests and clinical outcomes in addition to presenting a spectrum of histomorphological features, in a case series along with a literature review. DESIGN: A retrospective review of 4 cases of pure post-pubertal YST of the testis was performed. Data collected for each patient included demographics, clinical presentation, serum markers, radiology and pathologic findings, treatment, and clinical outcomes. RESULTS: All patients presented with a testicular mass with or without associated pain and elevated serum alpha-feto protein. Mean age at presentation was 36 years (range 25-68 years). Two patients presented with metastatic disease at the time of diagnosis. Histologic patterns and features are as follows: germ cell neoplasia in-situ (n = 4), reticular/microcystic, solid, glandular, papillary, endometrioid, cystic, necrosis and angiolymphatic invasion (n = 3). Fluorescent in-situ hybridization test performed on Case 2, showed presence of isochromosome 12p and next generation sequencing showed gains of 12p. Case 1, 2 and 4 showed metastatic disease on follow-up. CONCLUSIONS: Diagnosis of pure post-pubertal YST remains challenging due to the variety of morphologic patterns often present in these tumors. Extensive sampling along with use of ancillary tests is the key for diagnosis. In this study, 75 % of cases had metastatic disease at or after the diagnosis confirming the aggressive nature of this rare entity.
Assuntos
Tumor do Seio Endodérmico , Neoplasias Embrionárias de Células Germinativas , Neoplasias Testiculares , Masculino , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Neoplasias Testiculares/patologia , Tumor do Seio Endodérmico/patologia , Saco Vitelino/metabolismo , Saco Vitelino/patologiaRESUMO
The yolk sac is a multifunctional organ, which not only participates in nutrient absorption, but also plays an important role in immune function. The objective of this study was to compare the mRNA abundance of avian ß-defensin 10 (AvBD10) and 3 cathelicidins (CATH1, CATH2, and CATH3) in the yolk sac tissue (YST) of commercial broilers and white egg and brown egg commercial layers. AvBD10 and CATH mRNA abundance was analyzed using two-way ANOVA and Tukey's test, with P < 0.05 being considered significant. AvBD10 and CATH mRNA showed similar temporal expression patterns in the YST of both broiler and layers, with an increase from embryonic day (E) 7 to E9 through E13 followed by a decrease to day of hatch. AvBD10 mRNA showed a breed × age interaction with greater expression in the YST of both layers compared to broilers at E9 and E11. CATH1 mRNA was greater in the YST of brown egg layers than broilers. CATH2 mRNA showed a breed × age interaction, with greater expression in the YST of brown egg layers than broilers at E11. CATH3 mRNA showed no difference in the YST between layers and broilers. Because broilers and brown egg layers are genetically related, these results show that selection for production parameters (broiler vs. layer) and not genetic relatedness (white egg layer vs. brown egg layer and broilers) is the basis for the differences in AvBD10, CATH1, and CATH2 mRNA in the YST of broilers and layers. The yolk-free body weights of broiler embryos were greater than that of both brown and white egg layers from E9 to 17. One possible explanation is that the reduced expression of AvBD10, CATH1 and CATH2 mRNA in the YST of broilers compared to layers at E9 and 11 may be due to faster embryonic growth at the expense of host defense peptide expression in broilers compared to layers.
Assuntos
Galinhas , beta-Defensinas , Animais , Saco Vitelino/metabolismo , beta-Defensinas/genética , beta-Defensinas/metabolismo , Catelicidinas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
Microglia are the resident macrophages of the CNS that serve critical roles in brain construction. Although human brains contain microglia by 4 weeks gestation, an understanding of the earliest microglia that seed the brain during its development remains unresolved. Using time-lapse imaging in zebrafish, we discovered a mrc1a+ microglia precursor population that seeds the brain before traditionally described microglia. These early microglia precursors are dependent on lymphatic vasculature that surrounds the brain and are independent of pu1+ yolk sac-derived microglia. Single-cell RNA-sequencing datasets reveal Mrc1+ microglia in the embryonic brains of mice and humans. We then show in zebrafish that these early mrc1a+ microglia precursors preferentially expand during pathophysiological states in development. Taken together, our results identify a critical role of lymphatics in the microglia precursors that seed the early embryonic brain.
Assuntos
Microglia , Peixe-Zebra , Animais , Encéfalo/fisiologia , Humanos , Microglia/metabolismo , Saco Vitelino/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismoRESUMO
Forms of embryonic nutrition are highly diverse in cartilaginous fishes, which contain oviparity, yolk-sac viviparity and several types of matrotrophic viviparity (histotrophy, oophagy, and placentotrophy). The molecular mechanisms of embryonic nutrition are poorly understood in these animals as few species are capable of reproducing in captivity. Oviparous cartilaginous fishes solely depend on yolk nutrients for their growth and development. In the present study, we compared the contribution to embryonic nutrition of the embryonic intestine with the yolk sac membrane (YSM). RNA-seq analysis was performed on the embryonic intestine and YSM of the oviparous cloudy catshark Scyliorhinus torazame to identify candidate genes involved in nutrient metabolism to further the understanding of nutrient utilization of developing embryos. RNA-seq discovery was subsequently confirmed by quantitative PCR analysis and we identified increases in several amino acid transporter genes (slc3a1, slc6a19, slc3a2, slc7a7) as well as genes involved in lipid absorption (apob and mtp) in the intestine after 'pre-hatching', which is a developmental event marked by an early opening of the egg case about 4 months before hatching. Although a reciprocal decrease in the nutritional role of YSM was expected after the intestine became functional, we observed similar increases in gene expression among amino acid transporters, lipid absorption molecules, and lysosomal cathepsins in the extraembryonic YSM in late developmental stages. Ultrastructure of the endodermal cells of YSM showed that yolk granules were incorporated by endocytosis, and the number of granules increased during development. Furthermore, the digestion of yolk granules in the YSM and nutrient transport through the basolateral membrane of the endodermal cells appeared to be enhanced after pre-hatching. These findings suggest that nutrient digestion and absorption is highly activated in both intestine and YSM after pre-hatching in catshark embryos, which supports the rapid growth at late developmental stages.
Assuntos
Elasmobrânquios , Oviparidade , Animais , Peixes , Lipídeos , Nutrientes , Saco Vitelino/metabolismoRESUMO
Establishing a functional circulatory system is required for post-implantation development during murine embryogenesis. Previous studies in loss-of-function mouse models showed that FOXO1, a Forkhead family transcription factor, is required for yolk sac (YS) vascular remodeling and survival beyond embryonic day (E) 11. Here, we demonstrate that at E8.25, loss of Foxo1 in Tie2-cre expressing cells resulted in increased sprouty 2 (Spry2) and Spry4 expression, reduced arterial gene expression and reduced Kdr (also known as Vegfr2 and Flk1) transcripts without affecting overall endothelial cell identity, survival or proliferation. Using a Dll4-BAC-nlacZ reporter line, we found that one of the earliest expressed arterial genes, delta like 4, is significantly reduced in Foxo1 mutant YS without being substantially affected in the embryo proper. We show that FOXO1 binds directly to previously identified Spry2 gene regulatory elements (GREs) and newly identified, evolutionarily conserved Spry4 GREs to repress their expression. Furthermore, overexpression of Spry4 in transient transgenic embryos largely recapitulates the reduced expression of arterial genes seen in conditional Foxo1 mutants. Together, these data reveal a novel role for FOXO1 as a key transcriptional repressor regulating both pre-flow arterial specification and subsequent vessel remodeling within the murine YS.
Assuntos
Proteínas do Tecido Nervoso/metabolismo , Remodelação Vascular , Saco Vitelino , Animais , Artérias , Embrião de Mamíferos/metabolismo , Células Endoteliais/metabolismo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Camundongos , Remodelação Vascular/genética , Saco Vitelino/metabolismoRESUMO
During ontogeny, macrophage populations emerge in the Yolk Sac (YS) via two distinct progenitor waves, prior to hematopoietic stem cell development. Macrophage progenitors from the primitive/"early EMP" and transient-definitive/"late EMP" waves both contribute to various resident primitive macrophage populations in the developing embryonic organs. Identifying factors that modulates early stages of macrophage progenitor development may lead to a better understanding of defective function of specific resident macrophage subsets. Here we show that YS primitive macrophage progenitors express Lyl-1, a bHLH transcription factor related to SCL/Tal-1. Transcriptomic analysis of YS macrophage progenitors indicate that primitive macrophage progenitors present at embryonic day 9 are clearly distinct from those present at later stages. Disruption of Lyl-1 basic helix-loop-helix domain leads initially to an increased emergence of primitive macrophage progenitors, and later to their defective differentiation. These defects are associated with a disrupted expression of gene sets related to embryonic patterning and neurodevelopment. Lyl-1-deficiency also induce a reduced production of mature macrophages/microglia in the early brain, as well as a transient reduction of the microglia pool at midgestation and in the newborn. We thus identify Lyl-1 as a critical regulator of primitive macrophages and microglia development, which disruption may impair resident-macrophage function during organogenesis.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Macrófagos/metabolismo , Microglia/metabolismo , Proteínas de Neoplasias/genética , Saco Vitelino/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Feminino , Camundongos/embriologia , Proteínas de Neoplasias/metabolismoRESUMO
Yolk sac (YS) hematopoiesis is critical for the survival of the embryo and a major source of tissue-resident macrophages that persist into adulthood. Yet, the transcriptional and epigenetic regulation of YS hematopoiesis remains poorly characterized. Here we report that the epigenetic regulator Ezh2 is essential for YS hematopoiesis but dispensable for subsequent aorta-gonad-mesonephros (AGM) blood development. Loss of EZH2 activity in hemogenic endothelium (HE) leads to the generation of phenotypically intact but functionally deficient erythro-myeloid progenitors (EMPs), while the generation of primitive erythroid cells is not affected. EZH2 activity is critical for the generation of functional EMPs at the onset of the endothelial-to-hematopoietic transition but subsequently dispensable. We identify a lack of Wnt signaling downregulation as the primary reason for the production of non-functional EMPs. Together, our findings demonstrate a critical and stage-specific role of Ezh2 in modulating Wnt signaling during the generation of EMPs from YS HE.
Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/genética , Células Eritroides/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Embrionárias Murinas/metabolismo , Células Progenitoras Mieloides/metabolismo , Proteínas de Transporte Vesicular/genética , Saco Vitelino/metabolismo , Animais , Diferenciação Celular , Embrião de Mamíferos , Proteína Potenciadora do Homólogo 2 de Zeste/deficiência , Epigênese Genética , Células Eritroides/citologia , Feminino , Feto , Genes Reporter , Hematopoese/genética , Fígado/citologia , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Embrionárias Murinas/citologia , Células Progenitoras Mieloides/patologia , Cultura Primária de Células , Proteínas de Transporte Vesicular/metabolismo , Via de Sinalização Wnt , Saco Vitelino/citologia , Saco Vitelino/crescimento & desenvolvimento , Proteína Vermelha FluorescenteRESUMO
Species differences are among the main reasons for the high failure rate of preclinical studies. A better awareness and understanding of these differences might help to improve the outcome of preclinical research. In reproduction, the placenta is the central organ regulating fetal exposure to a substance circulating in the maternal organism. Exact information about placental transfer can help to better estimate the toxic potential of a substance. From an evolutionary point of view, the chorioallantoic placenta is the organ with the highest anatomical diversity among species. Moreover, frequently used animal models in reproduction belong to rodents and lagomorphs, two groups that are characterized by the generation of an additional type of placenta, which is crucial for fetal development, but absent from humans: the inverted yolk sac placenta. Taken together, the translatability of placental transfer studies from laboratory animals to humans is challenging, which is supported by the fact that numerous species-dependent toxic effects are described in literature. Thus, reliable human-relevant data are frequently lacking and the toxic potential of chemicals and pharmaceuticals for humans can hardly be estimated, often resulting in recommendations that medical treatments or exposure to chemicals should be avoided for safety reasons. Although species differences of placental anatomy have been described frequently and the need for human-relevant research models has been emphasized, analyses of substances with species-dependent placental transfer have been performed only sporadically. Here, we present examples for species-specific placental transfer, including that of nanoparticles and pharmaceuticals, and discuss potential underlying mechanisms. With respect to the COVID 19-pandemic it might be of interest that some antiviral drugs are reported to feature species-specific placental transfer. Further, differences in placental structure and antibody transfer may affect placental transfer of ZIKA virus.
Assuntos
Troca Materno-Fetal/fisiologia , Placenta/metabolismo , Animais , Antivirais/farmacocinética , Transporte Biológico/fisiologia , COVID-19/transmissão , COVID-19/virologia , Feminino , Humanos , Transmissão Vertical de Doenças Infecciosas , Troca Materno-Fetal/efeitos dos fármacos , Placenta/efeitos dos fármacos , Gravidez , Complicações Infecciosas na Gravidez/tratamento farmacológico , Complicações Infecciosas na Gravidez/metabolismo , Complicações Infecciosas na Gravidez/virologia , SARS-CoV-2/metabolismo , Especificidade da Espécie , Saco Vitelino/metabolismo , Saco Vitelino/fisiologia , Zika virus/metabolismo , Infecção por Zika virus/tratamento farmacológico , Infecção por Zika virus/transmissão , Tratamento Farmacológico da COVID-19RESUMO
Exogenous growth factors play an important role in mediating hematopoietic differentiation of human pluripotent stem cells. We explored the role of different factors in early human blood cell production using blast colony formation in methylcellulose as a surrogate assay for yolk sac hematopoiesis. A reporter cell line that read out endothelial (SOX17+) and hematopoietic (RUNX1C+) progenitors facilitated the identification of basic fibroblast growth and vascular endothelial growth factor as critical signals for the progression of mesoderm into endothelium. Bone morphogenetic protein 4 was needed for the subsequent generation of blood from hemogenic endothelium, and this was antagonized by Activin A or high concentrations of the WNT agonist CHIR-99021. Manipulations of the Hedgehog pathway or inhibition of Notch signaling reduced blast colony frequency but did not perturb cell differentiation. These data help to define distinct roles for prerequisite growth factors that commit mesoderm to hemogenic endothelium and subsequently allocate cells to blood lineages.
Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Hematopoese , Fator A de Crescimento do Endotélio Vascular/metabolismo , Saco Vitelino/citologia , Linhagem Celular , Endotélio/citologia , Endotélio/metabolismo , Humanos , Mesoderma/citologia , Mesoderma/metabolismo , Saco Vitelino/metabolismoRESUMO
Neutrophil plays a critical role in the progression of periodontitis. In general, its chemotaxis and activation are benefit for the host defense of bacterial infection and inflammation. However, previous studies have reported that the hyperactive and reactive neutrophils appear to be one of the reasons for tissue destruction in periodontitis tissues. In this study, we investigated an isoquinoline alkaloid Litcubanine A (LA), which from the Traditional Chinese medicinal plant, Litsea cubeba. We found LA showed significant activity in inhibiting neutrophils chemotaxis in the zebrafish yolk sac microinjection model in vivo and in mouse neutrophils in vitro. Further investigation proved that LA could inhibit the expression levels of neutrophil respiratory burst-related and inflammation-related genes CYBB and NCF2, as well as inhibit the activation of MAPK signaling pathway. Moreover, using LA, we successfully achieved the effect of reducing periodontitis bone loss by regulating neutrophil chemotaxis and related functions in a mouse ligature-induced periodontitis model.
Assuntos
Alcaloides/uso terapêutico , Quimiotaxia , Isoquinolinas/uso terapêutico , Neutrófilos/patologia , Periodontite/tratamento farmacológico , Alcaloides/farmacologia , Animais , Reabsorção Óssea/patologia , Quimiotaxia/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Interleucina-8/metabolismo , Isoquinolinas/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Microinjeções , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Periodontite/diagnóstico por imagem , Periodontite/patologia , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo , Explosão Respiratória/efeitos dos fármacos , Saco Vitelino/efeitos dos fármacos , Saco Vitelino/metabolismo , Peixe-ZebraRESUMO
Zebrafish (Danio rerio) is increasingly used to assess the pharmacological activity and toxicity of compounds. The spatiotemporal distribution of seven fluorescent alkyne compounds was examined during 48 h after immersion (10 µM) or microinjection (2 mg/kg) in the pericardial cavity (PC), intraperitoneally (IP) and yolk sac (IY) of 3 dpf zebrafish eleuthero-embryos. By modelling the fluorescence of whole-body contours present in fluorescence images, the main pharmacokinetic (PK) parameter values of the compounds were determined. It was demonstrated that especially in case of short incubations (1-3 h) immersion can result in limited intrabody exposure to compounds. In this case, PC and IP microinjections represent excellent alternatives. Significantly, IY microinjections did not result in a suitable intrabody distribution of the compounds. Performing a QSPkR (quantitative structure-pharmacokinetic relationship) analysis, LogD was identified as the only molecular descriptor that explains the final uptake of the selected compounds. It was also shown that combined administration of compounds (immersion and microinjection) provides a more stable intrabody exposure, at least in case of a prolonged immersion and compounds with LogD value > 1. These results will help reduce the risk of false negative results and can offer an invaluable input for future translational research and safety assessment applications.