Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 379
Filtrar
1.
Sci Rep ; 14(1): 18006, 2024 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-39097615

RESUMO

Choline is recognized as an essential nutrient for Atlantic salmon at all developmental stages. However, its dietary requirement is not well defined. Choline plays a critical role in lipid transport, and the clearest deficiency sign is intestinal steatosis. The present work, aiming to find whether lipid source and fish size may affect steatosis symptoms, was one of a series of studies conducted to identify which production-related conditions may influence choline requirement. Six choline-deficient diets were formulated varying in ratios of rapeseed oil to fish oil and fed to Atlantic salmon of 1.5 and 4.5 kg. After eight weeks, somatic characteristics were observed, and the severity of intestinal steatosis was assessed by histological, biochemical, and molecular analyses. Fatty acid composition in pyloric intestine, mesenteric tissue, and liver samples was also quantified. The increasing rapeseed oil level increased lipid digestibility markedly, enhancing lipid supply to the fish. Moreover, small fish consumed more feed, and consequently had a higher lipid intake. In conclusion, the results showed that choline requirement depends on dietary lipid load, which depends on the fatty acid profile as well as the fish size.


Assuntos
Ração Animal , Óleos de Peixe , Óleo de Brassica napus , Salmo salar , Animais , Óleo de Brassica napus/administração & dosagem , Salmo salar/metabolismo , Salmo salar/crescimento & desenvolvimento , Óleos de Peixe/administração & dosagem , Ração Animal/análise , Ácidos Graxos/metabolismo , Ácidos Graxos/análise , Doenças dos Peixes/patologia , Doenças dos Peixes/metabolismo , Fígado Gorduroso/veterinária , Fígado Gorduroso/metabolismo , Fígado Gorduroso/etiologia , Fígado Gorduroso/patologia , Colina/metabolismo , Colina/administração & dosagem , Dieta/veterinária , Fígado/metabolismo , Fígado/patologia
2.
FASEB J ; 38(14): e23837, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39031536

RESUMO

Bone morphogenetic protein 15 (BMP15) is an oocyte-specific growth factor important for successful female reproduction in mammals. While mutations in BMP15/Bmp15 cause ovulatory deficiency and/or infertility in certain mammalian species, loss of bmp15 in zebrafish, a continuous spawner and the only bmp15 knockout model in fish to date, results in complete arrest of follicle development and later female-to-male sex reversal, preventing to examine effects on ovulation/fertilization. Here, we used Atlantic salmon, a seasonal spawner, and generated bmp15 mutants to investigate ovarian development and fertility. Histological and morphometric analyses revealed that in biallelic frameshift (bmp15 fs/fs) mutant ovaries, folliculogenesis started earlier, resulting in an advanced development compared to wild-type (WT) controls, accompanied by a weaker expression of the (early) oocyte-specific factor figla. This precocious ovarian development was followed in bmp15 fs/fs females by enhanced follicle atresia during vitellogenic stages. Although genes involved in steroid synthesis and signaling (star, cyp11b, cyp17a1 and esr1) were dramatically higher in late vitellogenic bmp15 fs/fs mutant ovaries, estradiol-17ß plasma levels were lower than in WT counterparts, potentially reflecting compensatory changes at the level of ovarian gene expression. At spawning, bmp15 fs/fs females displayed lower gonado-somatic index values and reduced oocyte diameter, and the majority (71.4%), showed mature non-ovulating ovaries with a high degree of atresia. The remaining (28.6%) females spawned eggs but they either could not be fertilized or, upon fertilization, showed severe malformations and embryonic mortality. Our results show that Bmp15 is required for proper follicle recruitment and growth and later ovulatory success in Atlantic salmon, providing an alternative candidate target to induce sterility in farmed salmon. Moreover, since loss of bmp15 in salmon, in contrast to zebrafish, does not result in female-to-male sex change, this is the first mutant model in fish allowing further investigations on Bmp15-mediated functions in the ovulatory period.


Assuntos
Proteína Morfogenética Óssea 15 , Ovulação , Salmo salar , Animais , Proteína Morfogenética Óssea 15/genética , Proteína Morfogenética Óssea 15/metabolismo , Feminino , Salmo salar/metabolismo , Salmo salar/genética , Salmo salar/crescimento & desenvolvimento , Ovário/metabolismo , Folículo Ovariano/metabolismo , Oócitos/metabolismo , Masculino , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Estações do Ano
3.
Food Chem ; 456: 139414, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38901077

RESUMO

Atlantic salmon were fed either a diet reflecting current commercial feeds with added oil supplied by a blend of fish oil and rapeseed oil (COM), or a diet formulated with oil from transgenic Camelina sativa containing 20% EPA + DHA (TCO). Salmon were grown from smolt to market size (>3 kg) in sea pens under semi-commercial conditions. There were no differences in growth, feed efficiency or survival between fish fed the TCO or COM diets at the end of the trial. Levels of EPA + DHA in flesh of salmon fed TCO were significantly higher than in fish fed COM. A 140 g fillet from TCO-fed salmon delivered 2.3 g of EPA + DHA, 67% of the weekly requirement level recommended by many health agencies, and 1.5-fold more than the 1.5 g of EPA + DHA for COM-fed fish. Oil from transgenic Camelina supported growth and improved the nutritional quality of farmed salmon in terms of increased "omega-3" supply for human consumers.


Assuntos
Ração Animal , Brassicaceae , Ácidos Docosa-Hexaenoicos , Ácido Eicosapentaenoico , Óleos de Plantas , Plantas Geneticamente Modificadas , Salmo salar , Animais , Salmo salar/metabolismo , Salmo salar/crescimento & desenvolvimento , Ácidos Docosa-Hexaenoicos/análise , Ácidos Docosa-Hexaenoicos/metabolismo , Ração Animal/análise , Ácido Eicosapentaenoico/análise , Ácido Eicosapentaenoico/metabolismo , Brassicaceae/química , Brassicaceae/metabolismo , Brassicaceae/crescimento & desenvolvimento , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Óleos de Peixe/metabolismo , Água do Mar/química , Aquicultura
4.
PLoS One ; 19(4): e0302388, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38648207

RESUMO

The anadromous Atlantic salmon undergo a preparatory physiological transformation before seawater entry, referred to as smoltification. Key molecular developmental processes involved in this life stage transition, such as remodeling of gill functions, are known to be synchronized and modulated by environmental cues like photoperiod. However, little is known about the photoperiod influence and genome regulatory processes driving other canonical aspects of smoltification such as the large-scale changes in lipid metabolism and energy homeostasis in the developing smolt liver. Here we generate transcriptome, DNA methylation, and chromatin accessibility data from salmon livers across smoltification under different photoperiod regimes. We find a systematic reduction of expression levels of genes with a metabolic function, such as lipid metabolism, and increased expression of energy related genes such as oxidative phosphorylation, during smolt development in freshwater. However, in contrast to similar studies of the gill, smolt liver gene expression prior to seawater transfer was not impacted by photoperiodic history. Integrated analyses of gene expression, chromatin accessibility, and transcription factor (TF) binding signatures highlight chromatin remodeling and TF dynamics underlying smolt gene regulatory changes. Differential peak accessibility patterns largely matched differential gene expression patterns during smoltification and we infer that ZNF682, KLFs, and NFY TFs are important in driving a liver metabolic shift from synthesis to break down of organic compounds in freshwater. Overall, chromatin accessibility and TFBS occupancy were highly correlated to changes in gene expression. On the other hand, we identified numerous differential methylation patterns across the genome, but associated genes were not functionally enriched or correlated to observed gene expression changes across smolt development. Taken together, this work highlights the relative importance of chromatin remodeling during smoltification and demonstrates that metabolic remodeling occurs as a preadaptation to life at sea that is not to a large extent driven by photoperiod history.


Assuntos
Fígado , Salmo salar , Animais , Fígado/metabolismo , Salmo salar/genética , Salmo salar/crescimento & desenvolvimento , Salmo salar/metabolismo , Fotoperíodo , Metilação de DNA , Genoma , Transcriptoma , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Água do Mar , Metabolismo dos Lipídeos/genética , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo
5.
Gene ; 823: 146393, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35248662

RESUMO

The Atlantic salmon (Salmo salar) is a globally important species for its value in fisheries and aquaculture, and as a research model. In order to characterise aspects of sex differentiation at the morphological and mRNA level in this species, the present study examined developmental changes in gonad morphology and gene expression in males and females between 0 and 79 days post hatch (dph). Morphological differentiation of the ovary (indicated by the formation of germ cell cysts) became apparent from 52 dph. By 79 dph, ovarian phenotype was evident in 100% of genotypic females. Testes remained in an undifferentiated-like state throughout the experiment, containing germ cells dispersed singularly within the gonadal region distal to the mesentery. There were no significant sex-related differences in gonad cross-section size, germ cell number or germ cell diameter during the experiment. The expression of genes involved in teleost sex differentiation (anti-müllerian hormone (amh), cytochrome P450, family 19, subfamily A, polypeptide 1a (cyp19a1a), forkhead box L2a (foxl2a), gonadal soma-derived factor (gsdf), r-spondin 1 (rspo1), sexually dimorphic on the Y chromosome (sdY)), retinoic acid-signalling (aldehyde dehydrogenase 1a2 (aldh1a2), cytochrome P450 family 26 a1 (cyp26a1), cytochrome P450 family 26 b1 (cyp26b1), t-box transcription factor 1 (tbx1a)) and neuroestrogen production (cytochrome P450, family 19, subfamily A, polypeptide 1b (cyp19a1b)) was investigated. Significant sex-related differences were observed only for the expression of amh, cyp19a1a, gsdf and sdY. In males, amh, gsdf and sdY were upregulated from 34, 59 and 44 dph respectively. In females, cyp19a1a was upregulated from 66 dph. Independent of sex, foxl2a expression was highest at 0 dph and had reduced âˆ¼ 47-fold by the time of morphological sex differentiation at 52 dph. This study provides new insights into the timing and sequence of some physiological changes associated with sex differentiation in Atlantic salmon. These findings also reveal that some aspects of the mRNA sex differentiation pathways in Atlantic salmon are unique compared to other teleost fishes, including other salmonids.


Assuntos
Proteínas de Peixes/genética , Ovário/crescimento & desenvolvimento , Salmo salar/crescimento & desenvolvimento , Testículo/crescimento & desenvolvimento , Animais , Feminino , Perfilação da Expressão Gênica/veterinária , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Ovário/química , Salmo salar/genética , Diferenciação Sexual , Transdução de Sinais , Testículo/química
6.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35163597

RESUMO

The objective of the current study was to examine the effects of yeasts on intestinal health and transcriptomic profiles from the distal intestine and spleen tissue of Atlantic salmon fed SBM-based diets in seawater. Cyberlindnera jadinii (CJ) and Wickerhamomyces anomalus (WA) yeasts were heat-inactivated with spray-drying (ICJ and IWA) or autolyzed at 50 °C for 16 h (ACJ and AWA), followed by spray-drying. Six diets were formulated, one based on fishmeal (FM), a challenging diet with 30% soybean meal (SBM) and four other diets containing 30% SBM and 10% of each of the four yeast fractions (i.e., ICJ, ACJ, IWA and AWA). The inclusion of CJ yeasts reduced the loss of enterocyte supranuclear vacuolization and reduced the population of CD8α labeled cells present in the lamina propria of fish fed the SBM diet. The CJ yeasts controlled the inflammatory responses of fish fed SBM through up-regulation of pathways related to wound healing and taurine metabolism. The WA yeasts dampened the inflammatory profile of fish fed SBM through down-regulation of pathways related to toll-like receptor signaling, C-lectin receptor, cytokine receptor and signal transduction. This study suggests that the yeast species, Cyberlindnera jadinii and Wickerhamomyces anomalus are novel high-quality protein sources with health-beneficial effects in terms of reducing inflammation associated with feeding plant-based diets to Atlantic salmon.


Assuntos
Ração Animal , Candida/química , Glycine max/química , Intestinos/metabolismo , Saccharomycetales/química , Salmo salar/crescimento & desenvolvimento , Transcriptoma , Animais
7.
Sci Rep ; 12(1): 567, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35022439

RESUMO

Atlantic salmon aquaculture is expanding, and with it, the need to find suitable replacements for conventional protein sources used in formulated feeds. Torula yeast (Cyberlindnera jadinii), has been identified as a promising alternative protein for feed and can be sustainably cultivated on lignocellulosic biomasses. The present study investigated the impact of torula yeast on the growth performance and gut microbiome of freshwater Atlantic salmon. A marine protein base diet and a mixed marine and plant protein base diet were tested, where conventional proteins were replaced with increasing inclusion levels of torula yeast, (0%, 10%, 20%). This study demonstrated that 20% torula yeast can replace fish meal without alteration to growth performance while leading to potential benefits for the gut microbiome by increasing the presence of bacteria positively associated with the host. However, when torula yeast replaced plant meal in a mixed protein diet, results suggested that 10% inclusion of yeast produced the best growth performance results but at the 20% inclusion level of yeast, potentially negative changes were observed in the gut microbial community, such as a decrease in lactic acid bacteria. This study supports the continued investigation of torula yeast for Atlantic salmon as a partial replacement for conventional proteins.


Assuntos
Aquicultura , Candida , Proteínas Alimentares , Microbioma Gastrointestinal , Salmo salar/crescimento & desenvolvimento , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Animais , Salmo salar/microbiologia
8.
Sci Rep ; 11(1): 14702, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34282173

RESUMO

In 2019, it was estimated that more than 50 million captive Atlantic salmon in Norway died in the final stage of their production in marine cages. This mortality represents a significant economic loss for producers and a need to improve welfare for farmed salmon. Single adverse events, such as algal blooms or infectious disease outbreaks, can explain mass mortality in salmon cages. However, little is known about the production, health, or environmental factors that contribute to their baseline mortality during the sea phase. Here we conducted a retrospective study including 1627 Atlantic salmon cohorts put to sea in 2014-2019. We found that sea lice treatments were associated with Atlantic salmon mortality. In particular, the trend towards non-medicinal sea lice treatments, including thermal delousing, increases Atlantic salmon mortality in the same month the treatment is applied. There were differences in mortality among production zones. Stocking month and weight were other important factors, with the lowest mortality in smaller salmon stocked in August-October. Sea surface temperature and salinity also influenced Atlantic salmon mortality. Knowledge of what affects baseline mortality in Norwegian aquaculture can be used as part of syndromic surveillance and to inform salmon producers on farming practices that can reduce mortality.


Assuntos
Aquicultura , Doenças dos Peixes/mortalidade , Salmo salar , Animais , Aquicultura/métodos , Aquicultura/estatística & dados numéricos , Estudos de Coortes , Meio Ambiente , Noruega/epidemiologia , Estudos Retrospectivos , Fatores de Risco , Salinidade , Salmo salar/crescimento & desenvolvimento , Salmo salar/parasitologia , Alimentos Marinhos , Estações do Ano , Temperatura
9.
Fish Physiol Biochem ; 47(4): 979-997, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33974164

RESUMO

In stocking program, the use of artificial incubation conditions in hatcheries from the fertilisation of eggs to the release of unfed fry could reduce their ability to adapt to the natural environment. This study evaluates the effects of three factors on the fitness and physiology of salmon fry at their emergence, the origin of water (river vs drilling), the type of support in the incubator (support matrix vs plastic sheets) and the type of incubators (Californian vs vertical trays), and compares them to a semi-natural incubation method in river. Key biological functions including nutritional and immune status were compared among experimental conditions using biometric parameters, lipid composition and gene expression analyses. Our findings demonstrated that fry incubated in vertical trays supplied with river water had no significant difference in growth and lipid composition compared to those in semi-natural incubators. Besides, fry incubated on a substrate matrix in Californian trays exhibited phenotypic characteristics closest to those incubated in river. This support matrix improved fish growth, lipid consumption and distribution compared to fry on plastic sheets. Moreover, the large amounts of several PUFAs in these fry could allow a better membrane fluidity ensuring a better adaptation to temperature variation under cold conditions. In addition, drilling water improved the survival rate compared to river water due to lower numbers of fine particles, known to be responsible for the clogging of eggs. To conclude, using a substrate combined with drilling water in artificial incubators could increase fry fitness and its adaption to wild life.


Assuntos
Pesqueiros , Metabolismo dos Lipídeos , Salmo salar , Animais , Feminino , Expressão Gênica , Masculino , Rios , Salmo salar/genética , Salmo salar/crescimento & desenvolvimento , Salmo salar/metabolismo , Temperatura , Água
10.
Artigo em Inglês | MEDLINE | ID: mdl-33971399

RESUMO

High content of carotenoids in tissues of salmonid species suggests possible functional importance, which has so far remained unclear. The objective of this study was to investigate the effect of astaxanthin on performance and gene expression of sea water adapted Atlantic salmon (Salmo salar) fed diets with low content of marine ingredients (7.5% fishmeal and 5% fish oil). Salmon with start weight 197 g were fed two diets with identical proximate composition except for the content of astaxanthin (<1 and 48 mg/kg, respectively) for 84 days. Absence of dietary astaxanthin caused significant transcriptome changes revealed with DNA microarray. The growth rate was not optimal for the two diet groups but was not affected by dietary astaxanthin concentration. Accumulation of lipid in the intestine and liver was found in salmon fed both diets, indicating malabsorption of lipid. Salmon fed the diet without astaxanthin had larger livers and higher fat content in liver due to accumulation of triglycerides, but the difference in fat content was not significant. Transcriptome responses in different organs suggested that lack of dietary astaxanthin may have functional consequences in salmon fed low marine diets. In the intestine of astaxanthin deprived salmon, decreased expression was observed in a suite of immune genes including genes of innate antiviral immunity, transporters and enzymes of glycan metabolism. Transcriptome responses in liver suggested effect of absence of astaxanthin on lipid metabolism and especially on increased biosynthesis of terpenoids and steroids and only minor effects on immune genes. The greatest transcriptome changes were observed in skeletal muscle in the absence of astaxanthin, with an up-regulation of immune-related genes (119) and multiple genes with well-established association with stress. The condition resembled a mild inflammation of the muscle. Small or moderate scale of gene expression changes were in concordance with equal growth performance of fish fed both diets, however their character may indicate potential risk of absence of dietary carotenoids.


Assuntos
Ração Animal/análise , Dieta/veterinária , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Salmo salar/genética , Transcriptoma , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Salmo salar/crescimento & desenvolvimento , Xantofilas/metabolismo
11.
PLoS One ; 16(4): e0247435, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33822799

RESUMO

Genetic individual assignment of river stock of origin of mixed stock catch fish offers a tool to analyze size differences among river stocks. Data on the genetically identified river stock of origin of individual fish from commercial mixed stock catches were used to compare the catch size-at-age of mature Atlantic salmon catch fish (Salmo salar) from different rivers in the Baltic Sea. In this application of genetic mixed stock modeling, individual assignments of the river stock of origin were analyzed together with length- and weight-at-age data for individual catch fish. The use of four genetic stock identification based methods was compared for defining the length distributions of caught mature salmon in different river stocks. The catch data included information on maturing salmon in the northern Baltic Sea over the years 2000-2013. DNA microsatellite data on 17 loci and information on the smoltification age were used to assign spawners to their stock of origin. All of the compared methods for using probabilistic stock of origin data in our case yielded very similar estimates of the final mean length distributions of the stocks. The Bayesian mixture model yielded slightly more conservative estimates than the direct probability method, threshold method, or the modified probability method. The catch size between spawners of a same sex and age from river stocks differed significantly and the differences were large. The mean catch weight of 1-sea-winter old mature males in different rivers varied from 1.9 kg to 2.9 kg, from 5.1 kg to 7.5 kg for 2-sea-winter old males, from 5.0 kg to 7.2 kg for 2-sea-winter old females, and from 8.2 kg to 10.8 kg for 3-sea-winter-old females. The mean size of caught wild salmon spawners in each year-class was on average smaller than that of the hatchery-reared and sea ranched stocks.


Assuntos
Salmo salar/fisiologia , Animais , Países Bálticos , Tamanho Corporal , Feminino , Masculino , Repetições de Microssatélites , Oceanos e Mares , Salmo salar/genética , Salmo salar/crescimento & desenvolvimento , Estações do Ano
12.
Sci Rep ; 11(1): 6504, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33753812

RESUMO

The timing of the smolt migration of Atlantic salmon (Salmo salar) is a phenological trait increasingly important to the fitness of this species. Understanding when and how smolts migrate to the sea is crucial to understanding how salmon populations will be affected by both climate change and the elevated salmon lice concentrations produced by salmon farms. Here, acoustic telemetry was used to monitor the fjord migration of wild post-smolts from four rivers across two fjord systems in western Norway. Smolts began their migration throughout the month of May in all populations. Within-population, the timing of migration was multimodal with peaks in migration determined by the timing of spring floods. As a result, migrations were synchronized across populations with similar hydrology. There was little indication that the timing of migration had an impact on survival from the river mouth to the outer fjord. However, populations with longer fjord migrations experienced lower survival rates and had higher variance in fjord residency times. Explicit consideration of the multimodality inherent to the timing of smolt migration in these populations may help predict when smolts are in the fjord, as these modes seem predictable from available environmental data.


Assuntos
Migração Animal , Salmo salar/fisiologia , Animais , Estuários , Salmo salar/crescimento & desenvolvimento , Tempo
13.
Mar Biotechnol (NY) ; 23(2): 308-320, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33638736

RESUMO

For salmon aquaculture, one of the most critical phase is the parr-smolt transformation. Studies around this process have mainly focused on physiological changes and the Na+/K+-ATPase activity during the osmoregulatory activity. However, understanding how the salmon genome regulates the parr-smolt transformation, specifically the molecular mechanisms involved, remains uncovered. This study aimed to explore the transcriptional modulation of long non-coding RNAs (lncRNAs), as key molecular regulators, during the freshwater (FW) to seawater (SW) transfer in Atlantic salmon. Transcriptome sequencing was performed from gill samples of Atlantic salmon adapted from FW to SW through gradual salinity changes from 0 to 30 PSU. The results showed that most transcripts differently modulated were downregulated in all salinity conditions. Relevant biological processes were associated with growth, collagen formation, immune response, metabolism, and heme transport. Notably, 2864 putative lncRNAs were identified in Atlantic salmon gills differently expressed during fish smoltification. The highest number of lncRNAs differently modulated was observed at 30 PSU. Correlation expression analysis suggests putative regulatory roles of lncRNAs with smoltification-related genes. Herein, co-localization of Na+/K+-ATPase, growth hormone receptor, and thyroid hormone receptor genes with lncRNAs differentially expressed suggest putative regulatory mechanisms in the Atlantic salmon genome. The lncRNAs can be used as novel biomarkers for the fish smoltification process. Here, the lncRNA_145326 and lncRNA_18762 are putatively related to the parr-smolt transfer in Atlantic salmon. This study is the first description of lncRNAs with putative regulatory roles in Atlantic salmon during the SW adaptation.


Assuntos
RNA Longo não Codificante/metabolismo , Salinidade , Salmo salar/metabolismo , Adaptação Fisiológica/genética , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Brânquias/metabolismo , Estágios do Ciclo de Vida , RNA Longo não Codificante/genética , Salmo salar/genética , Salmo salar/crescimento & desenvolvimento
14.
Artigo em Inglês | MEDLINE | ID: mdl-33607575

RESUMO

Energy allocation in juvenile fish can have important implications for future life-history progression. Inherited and environmental factors determine when and where individuals allocate energy, and timely and sufficient energy reserves are crucial for reaching key life stages involved in the timing of maturation and sea migration. In Atlantic salmon, lipid reserves are predominantly found in the viscera and myosepta in the muscle and have been shown to play a key role in determining the timing of maturity. This life-history trait is tightly linked to fitness in many species and can be different between males and females, however, the details of relative energy allocation in juveniles of different sexes is not well understood. Therefore, the aim of this study was to investigate the effects of sex, genetics and environment during juvenile development of salmon on the amount and composition of their lipid reserves. To do so, juvenile salmon were fed one of two different lipid food contents during their first summer and autumn under common-garden conditions. Muscle lipid composition and concentrations were determined by thin layer chromatography. The muscle lipid class concentrations covaried negatively with body length and males showed higher concentrations than females for phosphatidylcholine, cholesterol, sphingomyelin, and triacylglycerol. This sex-specific difference in major lipid classes presents a new scope for understanding the regulation of lipids during juvenile development and gives direction for understanding how lipids may interact and influence major life-history traits in Atlantic salmon.


Assuntos
Metabolismo dos Lipídeos , Salmo salar/crescimento & desenvolvimento , Salmo salar/metabolismo , Animais , Feminino , Lipídeos/análise , Lipídeos/genética , Masculino , Músculos/metabolismo , Salmo salar/genética , Caracteres Sexuais
15.
Immunogenetics ; 73(1): 53-63, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33426583

RESUMO

The function of a tissue is determined by its construction and cellular composition. The action of different genes can thus only be understood properly when seen in the context of the environment in which they are expressed and function. We now experience a renaissance in morphological research in fish, not only because, surprisingly enough, large structures have remained un-described until recently, but also because improved methods for studying morphological characteristics in combination with expression analysis are at hand. In this review, we address anatomical features of teleost immune tissues. There are approximately 30,000 known teleost fish species and only a minor portion of them have been studied. We aim our review at the Atlantic salmon (Salmo salar) and other salmonids, but when applicable, we also present information from other species. Our focus is the anatomy of the kidney, thymus, spleen, the interbranchial lymphoid tissue (ILT), the newly discovered salmonid cloacal bursa and the naso-pharynx associated lymphoid tissue (NALT).


Assuntos
Peixes/imunologia , Tecido Linfoide/anatomia & histologia , Animais , Peixes/anatomia & histologia , Peixes/crescimento & desenvolvimento , Brânquias/anatomia & histologia , Brânquias/crescimento & desenvolvimento , Brânquias/imunologia , Rim/anatomia & histologia , Rim/crescimento & desenvolvimento , Rim/imunologia , Tecido Linfoide/crescimento & desenvolvimento , Tecido Linfoide/imunologia , Nasofaringe/anatomia & histologia , Nasofaringe/crescimento & desenvolvimento , Nasofaringe/imunologia , Salmo salar/anatomia & histologia , Salmo salar/crescimento & desenvolvimento , Salmo salar/imunologia , Baço/anatomia & histologia , Baço/crescimento & desenvolvimento , Baço/imunologia , Timo/anatomia & histologia , Timo/crescimento & desenvolvimento , Timo/imunologia
16.
PLoS One ; 16(1): e0245216, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33429419

RESUMO

Triploid, sterile Atlantic salmon (Salmo salar) could make a contribution to the development of the farming industry, but uncertainties about the performance and welfare of triploids have limited their adoption by farmers. In this study, we compared the ontogeny of digestive tract morphology and enzyme activities (pepsin, trypsin, chymotrypsin, alkaline phosphatase and aminopeptidase) of diploid and triploid Atlantic salmon. Fish were fed diets based on fishmeal (STD) or a mix of fishmeal and hydrolysed fish proteins (HFM) whilst being reared at low temperature from start-feeding to completion of the parr-smolt transformation. Fish weights for each ploidy and feed combination were used to calculate thermal growth coefficients (TGCs) that spanned this developmental period, and the data were used to examine possible relationships between enzyme activities and growth. At the end of the experiment, faeces were collected and analyzed to determine the apparent digestibility coefficients (ADCs) of the dietary amino acids (AAs). Digestive tract histo-morphology did not differ substantially between ploidies and generally reflected organ maturation and functionality. There were no consistent differences in proteolytic enzyme activities resulting from the inclusion of HFM in the diet, nor was there improved digestibility and AA bioavailability of the HFM feed in either diploid or triploid fish. The triploid salmon had lower ADCs than diploids for most essential and non-essential AAs in both diets (STD and HFM), but without there being any indication of lower intestinal protease activity in triploid fish. When trypsin-to-chymotrypsin activity and trypsin and alkaline phosphatase (ALP) ratios (T:C and T:ALP, respectively) were considered in combination with growth data (TGC) low T:C and T:ALP values coincided with times of reduced fish growth, and vice versa, suggesting that T:C and T:ALP may be used to predict recent growth history and possible growth potential.


Assuntos
Ração Animal , Diploide , Proteínas de Peixes , Trato Gastrointestinal , Hidrolisados de Proteína/farmacologia , Salmo salar , Triploidia , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Proteínas de Peixes/farmacologia , Trato Gastrointestinal/anatomia & histologia , Trato Gastrointestinal/enzimologia , Trato Gastrointestinal/crescimento & desenvolvimento , Salmo salar/anatomia & histologia , Salmo salar/genética , Salmo salar/crescimento & desenvolvimento
17.
J Fish Biol ; 98(1): 6-16, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32951198

RESUMO

Variation in circulus spacing on the scales of wild Atlantic salmon is indicative of changes in body length growth rate. We analyzed scale circulus spacing during the post-smolt growth period for adult one sea-winter salmon (n = 1947) returning to Scotland over the period 1993-2011. The growth pattern of the scales was subjectively and visually categorized according to the occurrence and zonal sequence of three intercirculus spacing criteria ("Slow", "Fast" and "Check" zones). We applied hierarchical time-series cluster analysis to the empirical circulus spacing data, followed by post hoc analysis of significant changes in growth patterns within the 20 identified clusters. Temporal changes in growth pattern frequencies showed significant correlation with sea surface temperature anomalies during the early months of the post-smolt growth season and throughout the Norwegian Sea. Since the turn of the millennium, we observed (a) a marked decrease in the occurrence of continuous Fast growth; (b) increased frequencies of fish showing an extended period of initially Slow growth; and (c) the occurrence of obvious growth Checks or hiatuses. These changes in post-smolt growth pattern were manifest also in decreases in the mean body length attained by the ocean midwinter, as sea surface temperatures have risen.


Assuntos
Temperatura Alta , Salmo salar/crescimento & desenvolvimento , Migração Animal , Animais , Oceano Atlântico , Rios , Escócia , Estações do Ano
18.
Anat Rec (Hoboken) ; 304(8): 1629-1649, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33155751

RESUMO

While it is well known that the notochord of bony fishes changes over developmental time, less is known about how it varies across different body regions. In the development of the Atlantic salmon, Salmo salar L., cranial and caudal ends of the notochord are overlaid by the formation of the bony elements of the neurocranium and caudal fin, respectively. To investigate, we describe how the notochord of the cranium and caudal fin changes from embryo to spawning adult, using light microscopy, SEM, TEM, dissection, and CT scanning. The differences are dramatic. In contrast to the abdominal and caudal regions, at the ends of the notochord vertebrae never develop. While the cranial notochord builds a tapering, unsegmented cone of chordal bone, the urostylic notochordal sheath never ossifies: adjacent, irregular bony elements form from the endoskeleton of the caudal fin. As development progresses, two previously undescribed processes occur. First, the bony cone of the cranial notochord, and its internal chordocytes, are degraded by chordoclasts, an undescribed function of the clastic cell type. Second, the sheath of the urostylic notochord creates transverse septae that partly traverse the lumen in an irregular pattern. By the adult stage, the cranial notochord is gone. In contrast, the urostylic notochord in adults is robust, reinforced with septae, covered by irregularly shaped pieces of cellular bone, and capped with an opistural cartilage that develops from the sheath of the urostylic notochord. A previously undescribed muscle, with its origin on the opistural cartilage, inserts on the lepidotrich ventral to it.


Assuntos
Nadadeiras de Animais/embriologia , Notocorda/embriologia , Salmo salar/embriologia , Crânio/embriologia , Nadadeiras de Animais/crescimento & desenvolvimento , Animais , Notocorda/crescimento & desenvolvimento , Salmo salar/crescimento & desenvolvimento , Crânio/crescimento & desenvolvimento
19.
Front Endocrinol (Lausanne) ; 11: 603538, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329404

RESUMO

We recently characterized two paralogs of the thyrotropin (TSH) beta subunit in Atlantic salmon, tshßa and tshßb, issued from teleost-specific whole genome duplication. The transcript expression of tshßb, but not of tshßa, peaks at the time of smoltification, which revealed a specific involvement of tshßb paralog in this metamorphic event. Tshßa and tshßb are expressed by distinct pituitary cells in salmon, likely related to TSH cells from the pars distalis and pars tuberalis, respectively, in mammals and birds. The present study aimed at investigating the neuroendocrine and endocrine factors potentially involved in the differential regulation of tshßa and tshßb paralogs, using primary cultures of Atlantic salmon pituitary cells. The effects of various neurohormones and endocrine factors potentially involved in the control of development, growth, and metabolism were tested. Transcript levels of tshßa and tshßb were measured by qPCR, as well as those of growth hormone (gh), for comparison and validation. Corticotropin-releasing hormone (CRH) stimulated tshßa transcript levels in agreement with its potential role in the thyrotropic axis in teleosts, but had no effect on tshßb paralog, while it also stimulated gh transcript levels. Thyrotropin-releasing hormone (TRH) had no effect on neither tshß paralogs nor gh. Somatostatin (SRIH) had no effects on both tshß paralogs, while it exerted a canonical inhibitory effect on gh transcript levels. Thyroid hormones [triiodothyronine (T3) and thyroxine (T4)] inhibited transcript levels of both tshß paralogs, as well as gh, but with a much stronger effect on tshßa than on tshßb and gh. Conversely, cortisol had a stronger inhibitory effect on tshßb than tshßa, while no effect on gh. Remarkably, insulin-like growth factor 1 (IGF1) dose-dependently stimulated tshßb transcript levels, while it had no effect on tshßa, and a classical inhibitory effect on gh. This study provides the first data on the neuroendocrine factors involved in the differential regulation of the expression of the two tshß paralogs. It suggests that IGF1 may be involved in triggering the expression peak of the tshßb paralog at smoltification, thus representing a potential internal signal in the link between body growth and smoltification metamorphosis.


Assuntos
Células Endócrinas/metabolismo , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hipófise/metabolismo , Salmo salar/metabolismo , Hormônios Tireóideos/farmacologia , Tireotropina Subunidade beta/metabolismo , Animais , Células Endócrinas/efeitos dos fármacos , Proteínas de Peixes/genética , Técnicas In Vitro , Hipófise/efeitos dos fármacos , Salmo salar/genética , Salmo salar/crescimento & desenvolvimento , Tireotropina Subunidade beta/genética
20.
Genes (Basel) ; 11(11)2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198292

RESUMO

Feed safety is a necessity for animal health and welfare as well as prerequisite for food safety and human health. Wheat gluten (WG) is considered as a valuable protein source in fish feed due to its suitability as a feed binder, high digestibility, good amino acid profile, energy density and most importantly, due to its relatively low level of anti-nutritional factors (ANFs). The main aim of this study was to identify the impact of dietary WG on salmon health by analysing growth, feed efficiency and the hepatic and intestinal transcriptomes. The fish were fed either control diet with fishmeal (FM) as the only source of protein or diets, where 15% or 30% of the FM were replaced by WG. The fish had a mean initial weight of 223 g and approximately doubled their weight during the 9-week experiment. Salmon fed on 30% WG showed reduced feed intake compared to the 15% and FM fed groups. The liver was the less affected organ but fat content and activities of the liver health markers in plasma increased with the inclusion level of WG in the diet. Gene expression analysis showed significant changes in both, intestine and liver of fish fed with 30% WG. Especially noticeable were changes in the lipid metabolism, in particular in relation to the intestinal lipoprotein transport and sterol metabolism. Moreover, the intestinal transcriptome of WG-fed fish showed shifts in the expression of a large number of genes responsible for immunity and tissue structure and integrity. These observations implied that the fish receiving WG-containing diet were undergoing nutritional stress. Overall, the study provided evidence that a high dietary level of WG can have a negative impact on the intestinal and liver health of salmon with symptoms similar to gluten sensitivity in humans.


Assuntos
Ração Animal/efeitos adversos , Glutens , Intestinos/fisiologia , Salmo salar/genética , Hipersensibilidade a Trigo/genética , Animais , Aquicultura , Análise Química do Sangue , Fígado/fisiologia , Salmo salar/crescimento & desenvolvimento , Triticum , Hipersensibilidade a Trigo/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...