Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 675
Filtrar
1.
Methods Mol Biol ; 2852: 255-272, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39235749

RESUMO

Metabolomics is the study of low molecular weight biochemical molecules (typically <1500 Da) in a defined biological organism or system. In case of food systems, the term "food metabolomics" is often used. Food metabolomics has been widely explored and applied in various fields including food analysis, food intake, food traceability, and food safety. Food safety applications focusing on the identification of pathogen-specific biomarkers have been promising. This chapter describes a nontargeted metabolite profiling workflow using gas chromatography coupled with mass spectrometry (GC-MS) for characterizing three globally important foodborne pathogens, Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella enterica, from selective enrichment liquid culture media. The workflow involves a detailed description of food spiking experiments followed by procedures for the extraction of polar metabolites from media, the analysis of the extracts using GC-MS, and finally chemometric data analysis using univariate and multivariate statistical tools to identify potential pathogen-specific biomarkers.


Assuntos
Biomarcadores , Microbiologia de Alimentos , Cromatografia Gasosa-Espectrometria de Massas , Listeria monocytogenes , Metabolômica , Metabolômica/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Biomarcadores/análise , Microbiologia de Alimentos/métodos , Listeria monocytogenes/metabolismo , Listeria monocytogenes/isolamento & purificação , Salmonella enterica/metabolismo , Escherichia coli O157/metabolismo , Escherichia coli O157/isolamento & purificação , Doenças Transmitidas por Alimentos/microbiologia , Metaboloma
2.
Molecules ; 29(17)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39275074

RESUMO

This study aimed at the biotransformation of sumatriptan by Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa and Salmonella enterica subsp. enterica and the identification of the drug metabolites by liquid chromatography-mass spectrometry. The drug was incubated with the organisms in tryptic soya broth at 37 °C. The broth was filtered and subjected to liquid chromatography-mass spectrometry. The metabolites identified by the use of mass spectral (+ve ion mode) fragmentation patterns were (3-methylphenyl)methanethiol (Bacillus subtilis), 1-(4-amino-3-ethylphenyl)-N-methylmethanesulfonamide (Salmonella enterica subsp. enterica) and 1-{4-amino-3-[(1E)-3-(dimethylamino)prop-1-en-1-yl]phenyl}methanesulfinamide (Salmonella enterica subsp. enterica, Bacillus subtilis, Pseudomonas aeruginosa, Staphylococcus aureus). These metabolites exhibit high gastrointestinal absorption, no blood-brain barrier permeability (except (3-methylphenyl)methanethiol), a bioavailability score of 0.55 and no inhibitory effect on CYP2C19, CYP2C9, CYP2D6, CYP3A4 or cytochrome P450 1A2 (except (3-methylphenyl)methanethiol), as determined by SwissADME software ver. 2024. The metabolites appear to be more toxic than the parent drug, as suggested by their calculated median lethal dose values. All four organisms under investigation transformed sumatriptan to different chemical substances that were more toxic than the parent drug.


Assuntos
Bacillus subtilis , Biotransformação , Pseudomonas aeruginosa , Salmonella enterica , Staphylococcus aureus , Sumatriptana , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo , Bacillus subtilis/metabolismo , Bacillus subtilis/efeitos dos fármacos , Sumatriptana/metabolismo , Sumatriptana/farmacologia , Salmonella enterica/metabolismo , Salmonella enterica/efeitos dos fármacos , Humanos , Sistema Enzimático do Citocromo P-450/metabolismo
3.
mBio ; 15(9): e0164224, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39152718

RESUMO

Bacteria acquire P primarily as inorganic orthophosphate (Pi, PO43-). Once internalized, Pi is rapidly assimilated into biomass during the synthesis of ATP. Because Pi is essential, but excessive ATP is toxic, the acquisition of environmental Pi is tightly regulated. In the bacterium Salmonella enterica (Salmonella), growth in Pi-limiting environments activates the membrane sensor histidine kinase PhoR, leading to the phosphorylation of its cognate transcriptional regulator PhoB and subsequent transcription of genes involved in adaptations to low Pi. Pi limitation promotes PhoR kinase activity by altering the conformation of a membrane signaling complex comprised of PhoR, the multicomponent Pi transporter system PstSACB and the regulatory protein PhoU. However, the identity of the Pi-starvation signal and how it controls PhoR activity remain unknown. Here, we identify conditions where the PhoB and PhoR signal transduction proteins can be maintained in an inactive state when Salmonella is grown in media lacking Pi. Our results demonstrate that PhoB/PhoR is activated by an intracellular P-insufficiency signal.IMPORTANCEIn enteric bacteria, the transcriptional response to phosphorus (P) starvation is controlled by a specialized signal transduction system comprised of a membrane-bound, multicomponent signal sensor, and a cytoplasmic transcriptional factor. Whereas this system has been primarily studied in the context of phosphate (Pi) starvation, it is currently unknown how this stress initiates signal transduction. In the current study, we establish that this signaling system is regulated by a cytoplasmic signal arising from insufficient P. We demonstrate that rather than responding to extracellular conditions, cells couple the activation of their P starvation response to the availability of cytoplasmic P. This regulatory logic may enable cells to prevent toxicity resulting from excessive Pi acquisition and hinder the onset of a P starvation response when their metabolic demands are being met through the consumption of P sources other than Pi.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Fósforo , Salmonella enterica , Transdução de Sinais , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Fósforo/metabolismo , Salmonella enterica/genética , Salmonella enterica/metabolismo , Fosforilação , Fosfatos/metabolismo
4.
mSphere ; 9(8): e0036724, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39109886

RESUMO

Protein production strategies in bacteria are often limited due to the need for cell lysis and complicated purification schemes. To avoid these challenges, researchers have developed bacterial strains capable of secreting heterologous protein products outside the cell, but secretion titers often remain too low for commercial applicability. Improved understanding of the link between secretion system structure and its secretory abilities can help overcome the barrier to engineering higher secretion titers. Here, we investigated this link with the PrgI protein, the monomer of the secretory channel of the type 3 secretion system (T3SS) of Salmonella enterica. Despite detailed knowledge of the PrgI needle's assembly and structure, little is known about how its structure influences its secretory capabilities. To study this, we recently constructed a comprehensive codon mutagenesis library of the PrgI protein utilizing a novel one-pot recombineering approach. We then screened this library for functional T3SS assembly and secretion titer by measuring the secretion of alkaline phosphatase using a high-throughput activity assay. This allowed us to construct a first-of-its-kind secretion fitness landscape to characterize the PrgI needle's mutability at each position as well as the mutations which lead to enhanced T3SS secretion. We discovered new design rules for building a functional T3SS as well as identified hypersecreting mutants. This work can be used to increase understanding of the T3SS's assembly and identify further targets for engineering. This work also provides a blueprint for future efforts to engineer other complex protein assemblies through the construction of fitness landscapes.IMPORTANCEProtein secretion offers a simplified alternative method for protein purification from bacterial hosts. However, the current state-of-the-art methods for protein secretion in bacteria are still hindered by low yields relative to traditional protein purification strategies. Engineers are now seeking strategies to enhance protein secretion titers from bacterial hosts, often through genetic manipulations. In this study, we demonstrate that protein engineering strategies focused on altering the secretion apparatus can be a fruitful avenue toward this goal. Specifically, this study focuses on how changes to the PrgI needle protein from the type 3 secretion system from Salmonella enterica can impact secretion titer. We demonstrate that this complex is amenable to comprehensive mutagenesis studies and that this can yield both PrgI variants with increased secretory capabilities and insight into the normal functioning of the type 3 secretion system.


Assuntos
Proteínas de Bactérias , Mutagênese , Salmonella enterica , Sistemas de Secreção Tipo III , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Salmonella enterica/genética , Salmonella enterica/metabolismo , Biblioteca Gênica , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo
5.
Gut Microbes ; 16(1): 2369339, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962965

RESUMO

The bacterial species Salmonella enterica (S. enterica) is a highly diverse pathogen containing more than 2600 distinct serovars, which can infect a wide range of animal and human hosts. Recent global emergence of multidrug resistant strains, from serovars Infantis and Muenchen is associated with acquisition of the epidemic megaplasmid, pESI that augments antimicrobial resistance and pathogenicity. One of the main pESI's virulence factors is the potent iron uptake system, yersiniabactin encoded by fyuA, irp2-irp1-ybtUTE, ybtA, and ybtPQXS gene cluster. Here we show that yersiniabactin, has an underappreciated distribution among different S. enterica serovars and subspecies, integrated in their chromosome or carried by different conjugative plasmids, including pESI. While the genetic organization and the coding sequence of the yersiniabactin genes are generally conserved, a 201-bp insertion sequence upstream to ybtA, was identified in pESI. Despite this insertion, pESI-encoded yersiniabactin is regulated by YbtA and the ancestral Ferric Uptake Regulator (Fur), which binds directly to the ybtA and irp2 promoters. Furthermore, we show that yersiniabactin genes are specifically induced during the mid-late logarithmic growth phase and in response to iron-starvation or hydrogen peroxide. Concurring, yersiniabactin was found to play a previously unknown role in oxidative stress tolerance and to enhance intestinal colonization of S. Infantis in mice. These results indicate that yersiniabactin contributes to Salmonella fitness and pathogenicity in vivo and is likely to play a role in the rapid dissemination of pESI among globally emerging Salmonella lineages.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Ferro , Estresse Oxidativo , Salmonella enterica , Animais , Ferro/metabolismo , Camundongos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Salmonella enterica/genética , Salmonella enterica/metabolismo , Salmonella enterica/patogenicidade , Virulência/genética , Fenóis/metabolismo , Tiazóis/metabolismo , Humanos , Infecções por Salmonella/microbiologia , Transferência Genética Horizontal , Feminino , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Plasmídeos/genética
6.
Nat Commun ; 15(1): 5921, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004688

RESUMO

The bacterial flagellum, which facilitates motility, is composed of ~20 structural proteins organized into a long extracellular filament connected to a cytoplasmic rotor-stator complex via a periplasmic rod. Flagellum assembly is regulated by multiple checkpoints that ensure an ordered gene expression pattern coupled to the assembly of the various building blocks. Here, we use epifluorescence, super-resolution, and transmission electron microscopy to show that the absence of a periplasmic protein (FlhE) prevents proper flagellar morphogenesis and results in the formation of periplasmic flagella in Salmonella enterica. The periplasmic flagella disrupt cell wall synthesis, leading to a loss of normal cell morphology resulting in cell lysis. We propose that FlhE functions as a periplasmic chaperone to control assembly of the periplasmic rod, thus preventing formation of periplasmic flagella.


Assuntos
Proteínas de Bactérias , Flagelos , Chaperonas Moleculares , Periplasma , Flagelos/metabolismo , Flagelos/ultraestrutura , Flagelos/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Periplasma/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Salmonella enterica/metabolismo , Salmonella enterica/genética , Microscopia Eletrônica de Transmissão , Proteínas Periplásmicas/metabolismo , Proteínas Periplásmicas/genética , Regulação Bacteriana da Expressão Gênica
7.
ACS Synth Biol ; 13(6): 1727-1736, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38787640

RESUMO

Curcumin, a natural polyphenol derived from turmeric, has attracted immense interest due to its diverse pharmacological properties. Traditional extraction methods from Curcuma longa plants present limitations in meeting the growing demand for this bioactive compound, giving significance to its production by genetically modified microorganisms. Herein, we have developed an engineered Saccharomyces cerevisiae to produce curcumin from glucose. A pathway composed of the 4-hydroxyphenylacetate 3-monooxygenase oxygenase complex from Pseudomonas aeruginosa and Salmonella enterica, caffeic acid O-methyltransferase from Arabidopsis thaliana, feruloyl-CoA synthetase from Pseudomonas paucimobilis, and diketide-CoA synthase and curcumin synthase from C. longa was introduced in a p-coumaric acid overproducing S. cerevisiae strain. This strain produced 240.1 ± 15.1 µg/L of curcumin. Following optimization of phenylpropanoids conversion, a strain capable of producing 4.2 ± 0.6 mg/L was obtained. This study reports for the first time the successful de novo production of curcumin in S. cerevisiae.


Assuntos
Ácidos Cumáricos , Curcumina , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Curcumina/metabolismo , Ácidos Cumáricos/metabolismo , Engenharia Metabólica/métodos , Arabidopsis/genética , Arabidopsis/metabolismo , Metiltransferases/metabolismo , Metiltransferases/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Glucose/metabolismo , Salmonella enterica/genética , Salmonella enterica/metabolismo
8.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38673776

RESUMO

Salmonella enterica is a leading cause of bacterial food-borne illness in humans and is responsible for millions of cases annually. A critical strategy for the survival of this pathogen is the translocation of bacterial virulence factors termed effectors into host cells, which primarily function via protein-protein interactions with host proteins. The Salmonella genome encodes several paralogous effectors believed to have arisen from duplication events throughout the course of evolution. These paralogs can share structural similarities and enzymatic activities but have also demonstrated divergence in host cell targets or interaction partners and contributions to the intracellular lifecycle of Salmonella. The paralog effectors SopD and SopD2 share 63% amino acid sequence similarity and extensive structural homology yet have demonstrated divergence in secretion kinetics, intracellular localization, host targets, and roles in infection. SopD and SopD2 target host Rab GTPases, which represent critical regulators of intracellular trafficking that mediate diverse cellular functions. While SopD and SopD2 both manipulate Rab function, these paralogs display differences in Rab specificity, and the effectors have also evolved multiple mechanisms of action for GTPase manipulation. Here, we highlight this intriguing pair of paralog effectors in the context of host-pathogen interactions and discuss how this research has presented valuable insights into effector evolution.


Assuntos
Proteínas de Bactérias , Interações Hospedeiro-Patógeno , Infecções por Salmonella , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Humanos , Interações Hospedeiro-Patógeno/genética , Infecções por Salmonella/microbiologia , Infecções por Salmonella/metabolismo , Salmonella enterica/metabolismo , Salmonella enterica/genética , Salmonella enterica/patogenicidade , Fatores de Virulência/metabolismo , Fatores de Virulência/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Animais , Evolução Molecular
9.
Nat Struct Mol Biol ; 31(7): 1050-1060, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38538913

RESUMO

Transcription factors control gene expression; among these, transcriptional repressors must liberate the promoter for derepression to occur. Toxin-antitoxin (TA) modules are bacterial elements that autoregulate their transcription by binding the promoter in a T:A ratio-dependent manner, known as conditional cooperativity. The molecular basis of how excess toxin triggers derepression has remained elusive, largely because monitoring the rearrangement of promoter-repressor complexes, which underpin derepression, is challenging. Here, we dissect the autoregulation of the Salmonella enterica tacAT3 module. Using a combination of assays targeting DNA binding and promoter activity, as well as structural characterization, we determine the essential TA and DNA elements required to control transcription, and we reconstitute a repression-to-derepression path. We demonstrate that excess toxin triggers molecular stripping of the repressor complex off the DNA through multiple allosteric changes causing DNA distortion and ultimately leading to derepression. Thus, our work provides important insight into the mechanisms underlying conditional cooperativity.


Assuntos
Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Sistemas Toxina-Antitoxina , Sistemas Toxina-Antitoxina/genética , Regiões Promotoras Genéticas/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , DNA Bacteriano/metabolismo , DNA Bacteriano/genética , Salmonella enterica/genética , Salmonella enterica/metabolismo , Modelos Moleculares , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/química , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Ligação Proteica , Transcrição Gênica , Cristalografia por Raios X
10.
Microbiol Spectr ; 12(4): e0355723, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38385737

RESUMO

We propose a novel strategy for quick and easy preparation of suicide live vaccine candidates against bacterial pathogens. This method requires only the transformation of one or more plasmids carrying genes encoding for two types of biological devices, an unnatural amino acid (uAA) incorporation system and toxin-antitoxin systems in which translation of the antitoxins requires the uAA incorporation. Escherichia coli BL21-AI laboratory strains carrying the plasmids were viable in the presence of the uAA, whereas the free toxins killed these strains after the removal of the uAA. The survival time after uAA removal could be controlled by the choice of the uAA incorporation system and toxin-antitoxin systems. Multilayered toxin-antitoxin systems suppressed escape frequency to less than 1 escape per 109 generations in the best case. This conditional suicide system also worked in Salmonella enterica and E. coli clinical isolates. The S. enterica vaccine strains were attenuated with a >105 fold lethal dose. Serum IgG response and protection against the parental pathogenic strain were confirmed. In addition, the live E. coli vaccine strain was significantly more immunogenic and provided greater protection than a formalin-inactivated vaccine. The live E. coli vaccine was not detected after inoculation, presumably because the uAA is not present in the host animals or the natural environment. These results suggest that this strategy provides a novel way to rapidly produce safe and highly immunogenic live bacterial vaccine candidates. IMPORTANCE: Live vaccines are the oldest vaccines with a history of more than 200 years. Due to their strong immunogenicity, live vaccines are still an important category of vaccines today. However, the development of live vaccines has been challenging due to the difficulties in achieving a balance between safety and immunogenicity. In recent decades, the frequent emergence of various new and old pathogens at risk of causing pandemics has highlighted the need for rapid vaccine development processes. We have pioneered the use of uAAs to control gene expression and to conditionally kill host bacteria as a biological containment system. This report proposes a quick and easy conversion of bacterial pathogens into live vaccine candidates using this containment system. The balance between safety and immunogenicity can be modulated by the selection of the genetic devices used. Moreover, the uAA-auxotrophy can prevent the vaccine from infecting other individuals or establishing the environment.


Assuntos
Escherichia coli , Salmonella enterica , Humanos , Animais , Escherichia coli/metabolismo , Aminoácidos/metabolismo , Vacinas Atenuadas/genética , Salmonella enterica/metabolismo , Vacinas de Produtos Inativados
11.
FEMS Microbiol Lett ; 3712024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38268488

RESUMO

Human-induced pluripotent stem cell-derived small intestinal epithelial cell (hiPSC-SIEC) monolayers are useful in vitro models for evaluating the gut mucosal barrier; however, their reactivity to cytokines, which are closely related to the regulation of mucosal barrier function, remains unclear. Interleukin (IL)-22 is a cytokine that contributes to regulate the mucosal barrier in the intestinal epithelia. Using microarray and gene set enrichment analysis, we found that hiPSC-SIEC monolayers activate the immune response and enhance the mucosal barrier in response to IL-22. Moreover, hiPSC-SIEC monolayers induced the gene expression of antimicrobials, including the regenerating islet-derived protein 3 family. Furthermore, IL-22 stimulation upregulated Mucin 2 secretion and gene expression of an enzyme that modifies sugar chains, suggesting alteration of the state of the mucus layer of hiPSC-SIEC monolayers. To evaluate its physiological significance, we measured the protective activity against Salmonella enterica subsp. enterica infection in hiPSC-SIEC monolayers and found that prestimulation with IL-22 reduced the number of viable intracellular bacteria. Collectively, these results suggest that hiPSC-SIEC monolayers enhance the mucosal barrier and inhibit infection by pathogenic bacteria in response to IL-22, as previously reported. These results can contribute to the further application of hiPSC-SIECs in evaluating mucosal barriers.


Assuntos
Células-Tronco Pluripotentes Induzidas , Salmonella enterica , Salmonella , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Interleucina 22 , Salmonella enterica/metabolismo , Células Epiteliais/microbiologia , Citocinas/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia
12.
Microbiol Spectr ; 12(1): e0272423, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38095474

RESUMO

IMPORTANCE: The capacity to utilize myo-inositol (MI) as sole carbon and energy source is widespread among bacteria, among them the intestinal pathogen S. Typhimurium. This study elucidates the complex and hierarchical regulation that underlies the utilization of MI by S. Typhimurium under substrate limitation. A total of seven regulatory factors have been identified so far, allowing the pathogen an environment-dependent, efficient, and fine-tuned regulation of a metabolic property that provides growth advantages in different environments.


Assuntos
Salmonella enterica , Salmonella enterica/metabolismo , Salmonella typhimurium/genética , Regiões Promotoras Genéticas , Proteínas de Bactérias/genética , Inositol/metabolismo , Redes e Vias Metabólicas , Regulação Bacteriana da Expressão Gênica
13.
Nat Commun ; 14(1): 8106, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062076

RESUMO

Small noncoding RNAs (sRNAs) are crucial regulators of gene expression in bacteria. Acting in concert with major RNA chaperones such as Hfq or ProQ, sRNAs base-pair with multiple target mRNAs and form large RNA-RNA interaction networks. To systematically investigate the RNA-RNA interactome in living cells, we have developed a streamlined in vivo approach iRIL-seq (intracellular RIL-seq). This generic approach is highly robust, illustrating the dynamic sRNA interactomes in Salmonella enterica across multiple stages of growth. We have identified the OmpD porin mRNA as a central regulatory hub that is targeted by a dozen sRNAs, including FadZ cleaved from the conserved 3'UTR of fadBA mRNA. Both ompD and FadZ are activated by CRP, constituting a type I incoherent feed-forward loop in the fatty acid metabolism pathway. Altogether, we have established an approach to profile RNA-RNA interactomes in live cells, highlighting the complexity of RNA regulatory hubs and RNA networks.


Assuntos
Pequeno RNA não Traduzido , Salmonella enterica , Regiões 3' não Traduzidas/genética , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Salmonella enterica/genética , Salmonella enterica/metabolismo , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/metabolismo
14.
Int J Mol Sci ; 24(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37958507

RESUMO

Outer membrane proteins (Omps) of Gram-negative bacteria represent porins involved in a wide range of virulence- and pathogenesis-related cellular processes, including transport, adhesion, penetration, and the colonization of host tissues. Most outer membrane porins share a specific spatial structure called the ß-barrel that provides their structural integrity within the membrane lipid bilayer. Recent data suggest that outer membrane proteins from several bacterial species are able to adopt the amyloid state alternative to their ß-barrel structure. Amyloids are protein fibrils with a specific spatial structure called the cross-ß that gives them an unusual resistance to different physicochemical influences. Various bacterial amyloids are known to be involved in host-pathogen and host-symbiont interactions and contribute to colonization of host tissues. Such an ability of outer membrane porins to adopt amyloid state might represent an important mechanism of bacterial virulence. In this work, we investigated the amyloid properties of the OmpC and OmpF porins from two species belonging to Enterobacteriaceae family, Escherichia coli, and Salmonella enterica. We demonstrated that OmpC and OmpF of E. coli and S. enterica form toxic fibrillar aggregates in vitro. These aggregates exhibit birefringence upon binding Congo Red dye and show characteristic reflections under X-ray diffraction. Thus, we confirmed amyloid properties for OmpC of E. coli and demonstrated bona fide amyloid properties for three novel proteins: OmpC of S. enterica and OmpF of E. coli and S. enterica in vitro. All four studied porins were shown to form amyloid fibrils at the surface of E. coli cells in the curli-dependent amyloid generator system. Moreover, we found that overexpression of recombinant OmpC and OmpF in the E. coli BL21 strain leads to the formation of detergent- and protease-resistant amyloid-like aggregates and enhances the birefringence of bacterial cultures stained with Congo Red. We also detected detergent- and protease-resistant aggregates comprising OmpC and OmpF in S. enterica culture. These data are important in the context of understanding the structural dualism of Omps and its relation to pathogenesis.


Assuntos
Proteínas de Escherichia coli , Salmonella enterica , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Salmonella enterica/metabolismo , Vermelho Congo/metabolismo , Detergentes , Proteínas de Escherichia coli/metabolismo , Porinas/metabolismo , Peptídeo Hidrolases/metabolismo
15.
Mol Cell Proteomics ; 22(12): 100674, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37924977

RESUMO

Salmonella enterica, the etiological agent of gastrointestinal and systemic diseases, translocates a plethora of virulence factors through its type III secretion systems to host cells during infection. Among them, SpvB has been reported to harbor an ADP-ribosyltransferase domain in its C terminus, which destabilizes host cytoskeleton by modifying actin. However, whether this effector targets other host factors as well as the function of its N terminus still remains to be determined. Here, we found that SpvB targets clathrin and its adaptor AP-1 (adaptor protein 1) via interactions with its N-terminal domain. Notably, our data suggest that SpvB-clathrin/AP-1 associations disrupt clathrin-mediated endocytosis and protein secretion pathway as well. In addition, knocking down of AP-1 promotes Salmonella intracellular survival and proliferation in host cells.


Assuntos
Salmonella enterica , Salmonella typhimurium , Salmonella typhimurium/metabolismo , Fator de Transcrição AP-1/metabolismo , Salmonella enterica/metabolismo , Fatores de Virulência/metabolismo , Actinas/metabolismo , Clatrina/metabolismo
16.
Microbiol Spectr ; 11(6): e0292223, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37787563

RESUMO

IMPORTANCE: Carbapenem resistance arising from the loss of porins is commonly observed in extended-spectrum ß-lactamase (ESBL) and AmpC ß-lactamase-producing strains of certain Enterobacteriaceae genera, including Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa. However, this resistance mechanism is rarely reported in the Salmonella genus. To address this knowledge gap, our study offers genetic evidence demonstrating that the loss of two specific porins (OmpC_378 and OmpD) is crucial for the development of carbapenem resistance in Salmonella ESBL and AmpC ß-lactamase-producing strains. Furthermore, our findings reveal that most Salmonella serovars carry seven porin parathologs, with OmpC_378 and OmpD being the key porins involved in the development of carbapenem resistance in Salmonella strains.


Assuntos
Antibacterianos , Salmonella enterica , Antibacterianos/farmacologia , Sorogrupo , beta-Lactamases/genética , beta-Lactamases/metabolismo , Proteínas de Bactérias/genética , Salmonella , Escherichia coli/genética , Carbapenêmicos/farmacologia , Salmonella enterica/genética , Salmonella enterica/metabolismo , Porinas/genética , Testes de Sensibilidade Microbiana
17.
Microbiol Spectr ; 11(6): e0226023, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37787565

RESUMO

IMPORTANCE: Phosphorus (P) is the fifth most abundant element in living cells. This element is acquired mainly as inorganic phosphate (Pi, PO4 3-). In enteric bacteria, P starvation activates a two-component signal transduction system which is composed of the membrane sensor protein PhoR and its cognate transcription regulator PhoB. PhoB, in turn, promotes the transcription of genes that help maintain Pi homeostasis. Here, we characterize the P starvation response of the bacterium Salmonella enterica. We determine the PhoB-dependent and independent transcriptional changes promoted by P starvation and identify proteins enabling the utilization of a range of organic substrates as sole P sources. We show that transcription and activity of a subset of these proteins are independent of PhoB and Pi availability. These results establish that Salmonella enterica can maintain Pi homeostasis and repress PhoB/PhoR activation even when cells are grown in medium lacking Pi.


Assuntos
Proteínas de Escherichia coli , Salmonella enterica , Fósforo/metabolismo , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Salmonella enterica/genética , Salmonella enterica/metabolismo , Organofosfatos/metabolismo , Regulação Bacteriana da Expressão Gênica , Fatores de Transcrição/metabolismo , Proteínas de Escherichia coli/genética
18.
Arch Microbiol ; 205(12): 362, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37904066

RESUMO

Salmonella, a Gram-negative bacterium that infects humans and animals, causes diseases ranging from gastroenteritis to severe systemic infections. Here, we discuss various strategies used by Salmonella against host cell defenses. Epithelial cell invasion largely depends on a Salmonella pathogenicity island (SPI)-1-encoded type 3 secretion system, a molecular syringe for injecting effector proteins directly into host cells. The internalization of Salmonella into macrophages is primarily driven by phagocytosis. After entering the host cell cytoplasm, Salmonella releases many effectors to achieve intracellular survival and replication using several secretion systems, primarily an SPI-2-encoded type 3 secretion system. Salmonella-containing vacuoles protect Salmonella from contacting bactericidal substances in epithelial cells and macrophages. Salmonella modulates the immunity, metabolism, cell cycle, and viability of host cells to expand its survival in the host, and the intracellular environment of Salmonella-infected cells promotes its virulence. This review provides insights into how Salmonella subverts host cell defenses for survival.


Assuntos
Salmonella enterica , Sistemas de Secreção Tipo III , Animais , Humanos , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Salmonella typhimurium/metabolismo , Salmonella enterica/metabolismo , Virulência
19.
ISME J ; 17(12): 2270-2278, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37865718

RESUMO

Predicting evolution in microbial communities is critical for problems from human health to global nutrient cycling. Understanding how species interactions impact the distribution of fitness effects for a focal population would enhance our ability to predict evolution. Specifically, does the type of ecological interaction, such as mutualism or competition, change the average effect of a mutation (i.e., the mean of the distribution of fitness effects)? Furthermore, how often does increasing community complexity alter the impact of species interactions on mutant fitness? To address these questions, we created a transposon mutant library in Salmonella enterica and measured the fitness of loss of function mutations in 3,550 genes when grown alone versus competitive co-culture or mutualistic co-culture with Escherichia coli and Methylorubrum extorquens. We found that mutualism reduces the average impact of mutations, while competition had no effect. Additionally, mutant fitness in the 3-species communities can be predicted by averaging the fitness in each 2-species community. Finally, we discovered that in the mutualism S. enterica obtained vitamins and more amino acids than previously known. Our results suggest that species interactions can predictably impact fitness effect distributions, in turn suggesting that evolution may ultimately be predictable in multi-species communities.


Assuntos
Microbiota , Salmonella enterica , Humanos , Simbiose/genética , Escherichia coli/genética , Aminoácidos/metabolismo , Salmonella enterica/metabolismo
20.
PLoS Pathog ; 19(8): e1011537, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37535496

RESUMO

The bacterial flagellum is a rotary motor organelle and important virulence factor that propels motile pathogenic bacteria, such as Salmonella enterica, through their surroundings. Bacteriophages, or phages, are viruses that solely infect bacteria. As such, phages have myriad applications in the healthcare field, including phage therapy against antibiotic-resistant bacterial pathogens. Bacteriophage χ (Chi) is a flagellum-dependent (flagellotropic) bacteriophage, which begins its infection cycle by attaching its long tail fiber to the S. enterica flagellar filament as its primary receptor. The interactions between phage and flagellum are poorly understood, as are the reasons that χ only kills certain Salmonella serotypes while others entirely evade phage infection. In this study, we used molecular cloning, targeted mutagenesis, heterologous flagellin expression, and phage-host interaction assays to determine which domains within the flagellar filament protein flagellin mediate this complex interaction. We identified the antigenic N- and C-terminal D2 domains as essential for phage χ binding, with the hypervariable central D3 domain playing a less crucial role. Here, we report that the primary structure of the Salmonella flagellin D2 domains is the major determinant of χ adhesion. The phage susceptibility of a strain is directly tied to these domains. We additionally uncovered important information about flagellar function. The central and most variable domain, D3, is not required for motility in S. Typhimurium 14028s, as it can be deleted or its sequence composition can be significantly altered with minimal impacts on motility. Further knowledge about the complex interactions between flagellotropic phage χ and its primary bacterial receptor may allow genetic engineering of its host range for use as targeted antimicrobial therapy against motile pathogens of the χ-host genera Salmonella, Escherichia, or Serratia.


Assuntos
Bacteriófagos , Salmonella enterica , Bacteriófagos/fisiologia , Flagelina/genética , Flagelina/metabolismo , Salmonella enterica/genética , Salmonella enterica/metabolismo , Salmonella/metabolismo , Serratia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...