Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.126
Filtrar
1.
Clin Lab ; 70(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38965941

RESUMO

BACKGROUND: Salmonella typhi is a specific strain of the Salmonella bacterium, responsible for triggering typhoid fever; a significant public health concern in developing nations. OBJECTIVE: The current study aimed to identify the bacteria from the gallbladder, taken during cholecystectomies of patients, by isolating Salmonella typhi and by using microscopic characteristics, biochemical and polymerase chain reaction (PCR) tests. METHODS: A total of 120 specimens were collected from the Baghdad Teaching Hospital, Iraq. A cross-sectional descriptive study was carried out from October, 2021, to July, 2022. During that study, 26 (54.2%) male patient tested positive for Salmonella typhias well as 22 (45.8%) female patients. The age of the patients varied from < 30 to > 60 years. p-value > 0.05 was considered significant to confirm a relationship between age and Salmonella typhi effect for patients. RESULTS: Out of the 120 blood samples taken for this study, 48 (40%) tested positive by use of PCR test, 40 (33.3%) tested positive by use of the Widal test, 35 (29.1%) were positive for biopsy culture, and 35 (29.1%) were positive for blood culture. All Salmonella typhi isolates were found to be sensitive to the imipenem, cefepime, and ceftriaxone, but were resistant to gentamycin, ciprofloxacin, amikacin, erythromycin, and tetracycline (72%, 29%, 43%, 100%, 100%, respectively). CONCLUSIONS: The real time polymerase chain reaction (RT-PCR) tests and the Vitek 2 compact system showed a high level of accuracy in the detection of Salmonella typhi. Multidrug resistance was observed, which should be a signal to reduce antibiotic consumption.


Assuntos
Colecistectomia , Vesícula Biliar , Salmonella typhi , Febre Tifoide , Humanos , Salmonella typhi/isolamento & purificação , Salmonella typhi/genética , Feminino , Masculino , Iraque , Adulto , Pessoa de Meia-Idade , Estudos Transversais , Febre Tifoide/microbiologia , Febre Tifoide/diagnóstico , Vesícula Biliar/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana , Reação em Cadeia da Polimerase/métodos , Adulto Jovem
2.
Lancet Microbe ; 5(8): 100841, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38996496

RESUMO

BACKGROUND: Enteric fever is a serious public health concern. The causative agents, Salmonella enterica serovars Typhi and Paratyphi A, frequently have antimicrobial resistance (AMR), leading to limited treatment options and poorer clinical outcomes. We investigated the genomic epidemiology, resistance mechanisms, and transmission dynamics of these pathogens at three urban sites in Africa and Asia. METHODS: S Typhi and S Paratyphi A bacteria isolated from blood cultures of febrile children and adults at study sites in Dhaka (Bangladesh), Kathmandu (Nepal), and Blantyre (Malawi) during STRATAA surveillance were sequenced. Isolates were charactered in terms of their serotypes, genotypes (according to GenoTyphi and Paratype), molecular determinants of AMR, and population structure. We used phylogenomic analyses incorporating globally representative genomic data from previously published surveillance studies and ancestral state reconstruction to differentiate locally circulating from imported pathogen AMR variants. Clusters of sequences without any single-nucleotide variants in their core genome were identified and used to explore spatiotemporal patterns and transmission dynamics. FINDINGS: We sequenced 731 genomes from isolates obtained during surveillance across the three sites between Oct 1, 2016, and Aug 31, 2019 (24 months in Dhaka and Kathmandu and 34 months in Blantyre). S Paratyphi A was present in Dhaka and Kathmandu but not Blantyre. S Typhi genotype 4.3.1 (H58) was common in all sites, but with different dominant variants (4.3.1.1.EA1 in Blantyre, 4.3.1.1 in Dhaka, and 4.3.1.2 in Kathmandu). Multidrug resistance (ie, resistance to chloramphenicol, co-trimoxazole, and ampicillin) was common in Blantyre (138 [98%] of 141 cases) and Dhaka (143 [32%] of 452), but absent from Kathmandu. Quinolone-resistance mutations were common in Dhaka (451 [>99%] of 452) and Kathmandu (123 [89%] of 138), but not in Blantyre (three [2%] of 141). Azithromycin-resistance mutations in acrB were rare, appearing only in Dhaka (five [1%] of 452). Phylogenetic analyses showed that most cases derived from pre-existing, locally established pathogen variants; 702 (98%) of 713 drug-resistant infections resulted from local circulation of AMR variants, not imported variants or recent de novo emergence; and pathogen variants circulated across age groups. 479 (66%) of 731 cases clustered with others that were indistinguishable by point mutations; individual clusters included multiple age groups and persisted for up to 2·3 years, and AMR determinants were invariant within clusters. INTERPRETATION: Enteric fever was associated with locally established pathogen variants that circulate across age groups. AMR infections resulted from local transmission of resistant strains. These results form a baseline against which to monitor the impacts of control measures. FUNDING: Wellcome Trust, Bill & Melinda Gates Foundation, EU Horizon 2020, and UK National Institute for Health and Care Research.


Assuntos
Antibacterianos , Filogenia , Salmonella paratyphi A , Salmonella typhi , Febre Tifoide , Humanos , Bangladesh/epidemiologia , Nepal/epidemiologia , Febre Tifoide/epidemiologia , Febre Tifoide/microbiologia , Febre Tifoide/transmissão , Febre Tifoide/tratamento farmacológico , Salmonella typhi/genética , Salmonella typhi/efeitos dos fármacos , Criança , Antibacterianos/farmacologia , Adulto , Pré-Escolar , Malaui/epidemiologia , Salmonella paratyphi A/genética , Salmonella paratyphi A/efeitos dos fármacos , Masculino , Adolescente , Farmacorresistência Bacteriana/genética , Feminino , Lactente , Febre Paratifoide/epidemiologia , Febre Paratifoide/microbiologia , Febre Paratifoide/transmissão , Febre Paratifoide/tratamento farmacológico , Adulto Jovem , Genótipo , Genoma Bacteriano/genética , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Genômica
3.
Anal Methods ; 16(30): 5254-5262, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39011785

RESUMO

A highly accurate, rapid, portable, and robust platform for detecting Salmonella enterica serovar Typhi (S. Typhi) is crucial for early-stage diagnosis of typhoid to avert and control the outbreaks of this pathogen, which threaten global public health. This study presents a proof-of-concept for our developed label-free electrochemical DNA biosensor system for S. Typhi detection, which employs a printed circuit board gold electrode (PCBGE), integrated with a portable potentiostat reader. Initially, the functionalized DNA biosensor and target detection were characterized using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS) methods using a benchtop potentiostat. Interestingly, the newly developed DNA biosensor can identify target single-stranded DNA concentrations ranging from 10 nM to 20 µM, achieving a detection limit of 7.6 nM within a brief 5 minute timeframe. Under optimal detection conditions, the DNA biosensor exhibits remarkable selectivity, capable of distinguishing a single mismatch base pair from the target single-stranded DNA sequence. We then evaluated the feasibility of the developed DNA biosensor system as a diagnostic tool by detecting S. Typhi in 50 clinical samples using a portable potentiostat reader based on the DPV technique. Remarkably, the developed biosensor can distinctly distinguish between positive and negative samples, indicating that the miniaturised DNA biosensor system is practical for detecting S. Typhi in real biological samples. The developed DNA biosensor device in this work proves to be a promising point-of-care (POC) device for Salmonella detection due to its swift detection time, uncomplicated design, and streamlined workflow detection system.


Assuntos
Técnicas Biossensoriais , DNA Bacteriano , Técnicas Eletroquímicas , Salmonella typhi , Salmonella typhi/isolamento & purificação , Salmonella typhi/genética , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , DNA Bacteriano/análise , Febre Tifoide/diagnóstico , Febre Tifoide/microbiologia , Humanos , Limite de Detecção , Ouro/química , DNA de Cadeia Simples/química , Eletrodos
4.
mSystems ; 9(8): e0036524, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39058093

RESUMO

Bacterial relatedness measured using select chromosomal loci forms the basis of public health genomic surveillance. While approximating vertical evolution through this approach has proven exceptionally valuable for understanding pathogen dynamics, it excludes a fundamental dimension of bacterial evolution-horizontal gene transfer. Incorporating the accessory genome is the logical remediation and has recently shown promise in expanding epidemiological resolution for enteric pathogens. Employing k-mer-based Jaccard index analysis, and a novel genome length distance metric, we computed pangenome (i.e., core and accessory) relatedness for the globally important pathogen Salmonella enterica serotype Typhi (Typhi), and graphically express both vertical (homology-by-descent) and horizontal (homology-by-admixture) evolutionary relationships in a reticulate network of over 2,200 U.S. Typhi genomes. This analysis revealed non-random structure in the Typhi pangenome that is driven predominantly by the gain and loss of mobile genetic elements, confirming and expanding upon known epidemiological patterns, revealing novel plasmid dynamics, and identifying avenues for further genomic epidemiological exploration. With an eye to public health application, this work adds important biological context to the rapidly improving ways of analyzing bacterial genetic data and demonstrates the value of the accessory genome to infer pathogen epidemiology and evolution.IMPORTANCEGiven bacterial evolution occurs in both vertical and horizontal dimensions, inclusion of both core and accessory genetic material (i.e., the pangenome) is a logical step toward a more thorough understanding of pathogen dynamics. With an eye to public, and indeed, global health relevance, we couple contemporary tools for genomic analysis with decades of research on mobile genetic elements to demonstrate the value of the pangenome, known and unknown, annotated, and hypothetical, for stratification of Salmonella enterica serovar Typhi (Typhi) populations. We confirm and expand upon what is known about Typhi epidemiology, plasmids, and antimicrobial resistance dynamics, and offer new avenues of exploration to further deduce Typhi ecology and evolution, and ultimately to reduce the incidence of human disease.


Assuntos
Genoma Bacteriano , Sequências Repetitivas Dispersas , Salmonella typhi , Salmonella typhi/genética , Genoma Bacteriano/genética , Sequências Repetitivas Dispersas/genética , Plasmídeos/genética , Evolução Molecular , Humanos , Filogenia , Febre Tifoide/microbiologia , Febre Tifoide/epidemiologia
5.
BMC Infect Dis ; 24(1): 727, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048963

RESUMO

BACKGROUND: Understanding the source of typhoid infections and the genetic relatedness of Salmonella Typhi (S. Typhi) by cluster identification in endemic settings is critical for establishing coordinated public health responses for typhoid fever management. This study investigated the genotypic diversity, antibiotic resistance mechanisms, and clustering of 35 S.Typhi strains isolated from cases and carriers in the Mukuru Informal Settlement. METHODS: We studied 35 S.Typhi isolates, including 32 from cases and 3 from carriers, from study participants in the informal settlement of Mukuru, Nairobi, Kenya. Genomic DNA was extracted, and whole-genome sequencing (WGS) was performed to determine the phylogenetic relatedness of strains and detect antimicrobial resistance determinants (AMR). WGS data were analyzed using bioinformatics tools available at the Center for Genomic Epidemiology and Pathogenwatch platforms. RESULTS: Genotype 4.3.1.2 EA3 was found to be dominant at 46% (16/35), followed by 4.3.1.2 EA2 at 28% (10/35), and 4.3.1.1 EA1 at 27% (9/35). A comparison of the isolates with global strains from Pathogenwatch identified close clustering with strains from Uganda, Tanzania, Rwanda, and India. Three isolates (9%) distributed in each cluster were isolated from carriers. All genotype 4.3.1.2 EA3 isolates were genotypically multidrug-resistant to ampicillin, chloramphenicol, and trimethoprim-sulfamethoxazole. Single mutations in the quinolone resistance-determining region were identified in the gyrA (S83Y) and gyrB (S464F) genes. All isolates associated with multidrug resistance showed the presence of the IncQ1 plasmid with the following genes: blaTEM-1B, catA1, sul1, sul2, and dfrA7. CONCLUSION: The close phylogenetic relatedness between antimicrobial-resistant case isolates and carriage isolates indicates that typhoid carriage is a possible source of infection in the community. Comparative analysis with global isolates revealed that the Kenyan isolates share common lineages with strains from neighboring East African countries and India, suggesting regional dissemination of specific MDR clones. AMR was a major feature of the isolates. Surveillance and testing for antimicrobial susceptibility should inform options for the management of cases.


Assuntos
Antibacterianos , Variação Genética , Genótipo , Filogenia , Salmonella typhi , Febre Tifoide , Sequenciamento Completo do Genoma , Quênia/epidemiologia , Salmonella typhi/genética , Salmonella typhi/efeitos dos fármacos , Salmonella typhi/classificação , Salmonella typhi/isolamento & purificação , Humanos , Febre Tifoide/microbiologia , Febre Tifoide/epidemiologia , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Masculino , Adulto , Adolescente , Criança , Feminino , Pré-Escolar , Farmacorresistência Bacteriana/genética , Adulto Jovem
6.
PLoS Negl Trop Dis ; 18(6): e0011775, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38865361

RESUMO

BACKGROUND: Enteric fever is caused by Salmonella enterica serovars Typhi (S. Typhi) and Paratyphi A, B, and C. It continues to be a significant cause of morbidity and mortality worldwide. In highly endemic areas, children are disproportionately affected, and antimicrobial resistance reduces therapeutic options. It is estimated that 2-5% of enteric fever patients develop chronic asymptomatic infection. These carriers may act as reservoirs of infection; therefore, the prospective identification and treatment of carriers are critical for long-term disease control. We aimed to find the frequency of Salmonella Typhi carriers in patients undergoing cholecystectomy. We also compared the detection limit of culturing versus qPCR in detecting S. Typhi, performed a geospatial analysis of the carriers identified using this study, and evaluated the accuracy of anti-Vi and anti-YncE in identifying chronic typhoid carriage. METHODS: We performed a cross-sectional study in two centers in Pakistan. Gallbladder specimens were subjected to quantitative PCR (qPCR) and serum samples were analyzed for IgG against YncE and Vi by ELISA. We also mapped the residential location of those with a positive qPCR result. FINDINGS: Out of 988 participants, 3.4% had qPCR-positive gallbladder samples (23 S. Typhi and 11 S. Paratyphi). Gallstones were more likely to be qPCR positive than bile and gallbladder tissue. Anti-Vi and YncE were significantly correlated (r = 0.78 p<0.0001) and elevated among carriers as compared to qPCR negative controls, except for anti-Vi response in Paratyphi A. But the discriminatory values of these antigens in identifying carriers from qPCR negative controls were low. CONCLUSION: The high prevalence of typhoid carriers observed in this study suggests that further studies are required to gain information that will help in controlling future typhoid outbreaks in a superior manner than they are currently being managed.


Assuntos
Portador Sadio , Colecistectomia , Salmonella typhi , Febre Tifoide , Humanos , Estudos Transversais , Febre Tifoide/epidemiologia , Febre Tifoide/microbiologia , Feminino , Masculino , Portador Sadio/microbiologia , Portador Sadio/epidemiologia , Salmonella typhi/isolamento & purificação , Salmonella typhi/genética , Adulto , Paquistão/epidemiologia , Adulto Jovem , Pessoa de Meia-Idade , Adolescente , Doenças da Vesícula Biliar/microbiologia , Doenças da Vesícula Biliar/epidemiologia , Anticorpos Antibacterianos/sangue , Vesícula Biliar/microbiologia , Criança , Imunoglobulina G/sangue
7.
Nat Commun ; 15(1): 5258, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898034

RESUMO

Many bacterial pathogens, including the human exclusive pathogen Salmonella Typhi, express capsular polysaccharides as a crucial virulence factor. Here, through S. Typhi whole genome sequence analyses and functional studies, we found a list of single point mutations that make S. Typhi hypervirulent. We discovered a single point mutation in the Vi biosynthesis enzymes that control Vi polymerization or acetylation is enough to result in different capsule variants of S. Typhi. All variant strains are pathogenic, but the hyper Vi capsule variants are particularly hypervirulent, as demonstrated by the high morbidity and mortality rates observed in infected mice. The hypo Vi capsule variants have primarily been identified in Africa, whereas the hyper Vi capsule variants are distributed worldwide. Collectively, these studies increase awareness about the existence of different capsule variants of S. Typhi, establish a solid foundation for numerous future studies on S. Typhi capsule variants, and offer valuable insights into strategies to combat capsulated bacteria.


Assuntos
Cápsulas Bacterianas , Mutação de Sentido Incorreto , Polissacarídeos Bacterianos , Salmonella typhi , Febre Tifoide , Salmonella typhi/genética , Salmonella typhi/patogenicidade , Animais , Camundongos , Virulência/genética , Polissacarídeos Bacterianos/genética , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/metabolismo , Cápsulas Bacterianas/genética , Cápsulas Bacterianas/metabolismo , Febre Tifoide/microbiologia , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Feminino , Sequenciamento Completo do Genoma
8.
Commun Biol ; 7(1): 775, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942806

RESUMO

Antimicrobial resistance (AMR) poses a serious threat to the clinical management of typhoid fever. AMR in Salmonella Typhi (S. Typhi) is commonly associated with the H58 lineage, a lineage that arose comparatively recently before becoming globally disseminated. To better understand when and how H58 emerged and became dominant, we performed detailed phylogenetic analyses on contemporary genome sequences from S. Typhi isolated in the period spanning the emergence. Our dataset, which contains the earliest described H58 S. Typhi organism, indicates that ancestral H58 organisms were already multi-drug resistant (MDR). These organisms emerged spontaneously in India in 1987 and became radially distributed throughout South Asia and then globally in the ensuing years. These early organisms were associated with a single long branch, possessing mutations associated with increased bile tolerance, suggesting that the first H58 organism was generated during chronic carriage. The subsequent use of fluoroquinolones led to several independent mutations in gyrA. The ability of H58 to acquire and maintain AMR genes continues to pose a threat, as extensively drug-resistant (XDR; MDR plus resistance to ciprofloxacin and third generation cephalosporins) variants, have emerged recently in this lineage. Understanding where and how H58 S. Typhi originated and became successful is key to understand how AMR drives successful lineages of bacterial pathogens. Additionally, these data can inform optimal targeting of typhoid conjugate vaccines (TCVs) for reducing the potential for emergence and the impact of new drug-resistant variants. Emphasis should also be placed upon the prospective identification and treatment of chronic carriers to prevent the emergence of new drug resistant variants with the ability to spread efficiently.


Assuntos
Antibacterianos , Filogenia , Salmonella typhi , Febre Tifoide , Salmonella typhi/genética , Salmonella typhi/efeitos dos fármacos , Febre Tifoide/microbiologia , Febre Tifoide/tratamento farmacológico , Febre Tifoide/epidemiologia , Humanos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Haplótipos , Mutação , Genoma Bacteriano
9.
Sci Rep ; 14(1): 12811, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834738

RESUMO

Macrophages provide a crucial environment for Salmonella enterica serovar Typhi (S. Typhi) to multiply during typhoid fever, yet our understanding of how human macrophages and S. Typhi interact remains limited. In this study, we delve into the dynamics of S. Typhi replication within human macrophages and the resulting heterogeneous transcriptomic responses of macrophages during infection. Our study reveals key factors that influence macrophage diversity, uncovering distinct immune and metabolic pathways associated with different stages of S. Typhi intracellular replication in macrophages. Of note, we found that macrophages harboring replicating S. Typhi are skewed towards an M1 pro-inflammatory state, whereas macrophages containing non-replicating S. Typhi exhibit neither a distinct M1 pro-inflammatory nor M2 anti-inflammatory state. Additionally, macrophages with replicating S. Typhi were characterized by the increased expression of genes associated with STAT3 phosphorylation and the activation of the STAT3 transcription factor. Our results shed light on transcriptomic pathways involved in the susceptibility of human macrophages to intracellular S. Typhi replication, thereby providing crucial insight into host phenotypes that restrict and support S. Typhi infection.


Assuntos
Macrófagos , Fator de Transcrição STAT3 , Salmonella typhi , Febre Tifoide , Humanos , Macrófagos/metabolismo , Macrófagos/microbiologia , Salmonella typhi/genética , Febre Tifoide/microbiologia , Febre Tifoide/imunologia , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Perfilação da Expressão Gênica , Fenótipo , Transcriptoma , Fosforilação
10.
Microb Pathog ; 191: 106676, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38710290

RESUMO

Enteric fever, a persistent public health challenge in developing regions, is exacerbated by suboptimal socioeconomic conditions, contaminated water and food sources, and insufficient sanitation. This study delves into the antimicrobial susceptibility of Salmonella Typhi, uncovering the genetic underpinnings of its resistance. Analyzing 897 suspected cases, we identified a significant prevalence of typhoid fever, predominantly in males (58.3 %) and younger demographics. Alarmingly, our data reveals an escalation in resistance to both primary and secondary antibiotics, with cases of multi-drug resistant (MDR) and extensively drug-resistant (XDR) S. Typhi reaching 14.7 % and 43.4 %, respectively, in 2021. The Multiple Antibiotic Resistance (MAR) index exceeded 0.2 in over half of the isolates, signaling widespread antibiotic misuse. The study discerned 47 unique antibiotic resistance patterns and pinpointed carbapenem and macrolide antibiotics as the remaining effective treatments against XDR strains, underlining the critical need to preserve these drugs for severe cases. Molecular examinations identified blaTEM, blaSHV, and blaCTX-M genes in ceftriaxone-resistant strains, while qnrS was specific to ciprofloxacin-resistant variants. Notably, all examined strains exhibited a singular mutation in the gyrA gene, maintaining wild-type gyrB and parC genes. The erm(B) gene emerged as the primary determinant of azithromycin resistance. Furthermore, a distressing increase in resistance genes was observed over three years, with erm(B), blaTEM and qnrS showing significant upward trends. These findings are a clarion call for robust antimicrobial stewardship programs to curtail inappropriate antibiotic use and forestall the burgeoning threat of antibiotic resistance in S. Typhi.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana , Salmonella typhi , Febre Tifoide , Febre Tifoide/microbiologia , Febre Tifoide/epidemiologia , Salmonella typhi/efeitos dos fármacos , Salmonella typhi/genética , Humanos , Antibacterianos/farmacologia , Masculino , Feminino , Farmacorresistência Bacteriana Múltipla/genética , Adulto , Pré-Escolar , Adolescente , Criança , Adulto Jovem , Pessoa de Meia-Idade , Lactente , Prevalência , Idoso , Farmacorresistência Bacteriana/genética , Mutação , Proteínas de Bactérias/genética
11.
PLoS One ; 19(5): e0301624, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38713678

RESUMO

Salmonella enterica serovar Typhi (S. Typhi) is the causative agent of Typhoid fever. Blood culture is the gold standard for clinical diagnosis, but this is often difficult to employ in resource limited settings. Environmental surveillance of waste-impacted waters is a promising supplement to clinical surveillance, however validating methods is challenging in regions where S. Typhi concentrations are low. To evaluate existing S. Typhi environmental surveillance methods, a novel process control organism (PCO) was created as a biosafe surrogate. Using a previous described qPCR assay, a modified PCR amplicon for the staG gene was cloned into E. coli. We developed a target region that was recognized by the Typhoid primers in addition to a non-coding internal probe sequence. A multiplex qPCR reaction was developed that differentiates between the typhoid and control targets, with no cross-reactivity or inhibition of the two probes. The PCO was shown to mimic S. Typhi in lab-based experiments with concentration methods using primary wastewater: filter cartridge, recirculating Moore swabs, membrane filtration, and differential centrifugation. Across all methods, the PCO seeded at 10 CFU/mL and 100 CFU/mL was detected in 100% of replicates. The PCO is detected at similar quantification cycle (Cq) values across all methods at 10 CFU/mL (Average = 32.4, STDEV = 1.62). The PCO was also seeded into wastewater at collection sites in Vellore (India) and Blantyre (Malawi) where S. Typhi is endemic. All methods tested in both countries were positive for the seeded PCO. The PCO is an effective way to validate performance of environmental surveillance methods targeting S. Typhi in surface water.


Assuntos
Monitoramento Ambiental , Escherichia coli , Salmonella typhi , Salmonella typhi/genética , Salmonella typhi/isolamento & purificação , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Monitoramento Ambiental/métodos , Águas Residuárias/microbiologia , Febre Tifoide/microbiologia , Febre Tifoide/epidemiologia , Febre Tifoide/diagnóstico , Febre Tifoide/prevenção & controle , Humanos , Microbiologia da Água
12.
ACS Infect Dis ; 10(6): 1990-2001, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38815059

RESUMO

Conserved molecular signatures in multidrug-resistant Salmonella typhi can serve as novel therapeutic targets for mitigation of infection. In this regard, we present the S. typhi cell division activator protein (StCAP) as a conserved target across S. typhi variants. From in silico and fluorimetric assessments, we found that StCAP is a DNA-binding protein. Replacement of the identified DNA-interacting residue Arg34 of StCAP with Ala34 showed a dramatic (15-fold) increase in Kd value compared to the wild type (Kd 546 nm) as well as a decrease in thermal stability (10 °C shift). Out of the two screened molecules against the DNA-binding pocket of StCAP, eltrombopag, and nilotinib, the former displayed better binding. Eltrombopag inhibited the stand-alone S. typhi culture with an IC50 of 38 µM. The effect was much more pronounced on THP-1-derived macrophages (T1Mac) infected with S. typhi where colony formation was severely hindered with IC50 reduced further to 10 µM. Apoptotic protease activating factor1 (Apaf1), a key molecule for intrinsic apoptosis, was identified as an StCAP-interacting partner by pull-down assay against T1Mac. Further, StCAP-transfected T1Mac showed a significant increase in LC3 II (autophagy marker) expression and downregulation of caspase 3 protein. From these experiments, we conclude that StCAP provides a crucial survival advantage to S. typhi during infection, thereby making it a potent alternative therapeutic target.


Assuntos
Proteínas de Bactérias , Salmonella typhi , Salmonella typhi/efeitos dos fármacos , Salmonella typhi/genética , Salmonella typhi/patogenicidade , Humanos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Apoptose/efeitos dos fármacos , Macrófagos/microbiologia , Macrófagos/efeitos dos fármacos , Células THP-1 , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Autofagia/efeitos dos fármacos , Febre Tifoide/microbiologia , Divisão Celular/efeitos dos fármacos
13.
Biosens Bioelectron ; 259: 116408, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38781698

RESUMO

The effectiveness of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas14a1, widely utilized for pathogenic microorganism detection, has been limited by the requirement of a protospacer adjacent motif (PAM) on the target DNA strands. To overcome this limitation, this study developed a Single Primer isothermal amplification integrated-Cas14a1 biosensor (SPCas) for detecting Salmonella typhi that does not rely on a PAM sequence. The SPCas biosensor utilizes a novel primer design featuring an RNA-DNA primer and a 3'-biotin-modified primer capable of binding to the same single-stranded DNA (ssDNA) in the presence of the target gene. The RNA-DNA primer undergoes amplification and is blocked at the biotin-modified end. Subsequently, strand replacement is initiated to generate ssDNA assisted by RNase H and Bst enzymes, which activate the trans-cleavage activity of Cas14a1 even in the absence of a PAM sequence. Leveraging both cyclic chain replacement reaction amplification and Cas14a1 trans-cleavage activity, the SPCas biosensor exhibits a remarkable diagnostic sensitivity of 5 CFU/mL. Additionally, in the assessment of 20 milk samples, the SPCas platform demonstrated 100% diagnostic accuracy, which is consistent with the gold standard qPCR. This platform introduces a novel approach for developing innovative CRISPR-Cas-dependent biosensors without a PAM sequence.


Assuntos
Técnicas Biossensoriais , Sistemas CRISPR-Cas , Leite , Salmonella typhi , Técnicas Biossensoriais/métodos , Salmonella typhi/isolamento & purificação , Salmonella typhi/genética , Leite/microbiologia , Animais , Técnicas de Amplificação de Ácido Nucleico/métodos , DNA de Cadeia Simples/química , Limite de Detecção , Humanos , Febre Tifoide/diagnóstico , Febre Tifoide/microbiologia , DNA Bacteriano/genética , DNA Bacteriano/análise , DNA Bacteriano/isolamento & purificação
14.
mBio ; 15(5): e0060724, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38572992

RESUMO

Salmonella enterica serovar Typhi and Paratyphi A are the cause of typhoid and paratyphoid fever in humans, which are systemic life-threatening illnesses. Both serovars are exclusively adapted to the human host, where they can cause life-long persistent infection. A distinct feature of these serovars is the presence of a relatively high number of degraded coding sequences coding for metabolic pathways, most likely a consequence of their adaptation to a single host. As a result of convergent evolution, these serovars shared many of the degraded coding sequences although often affecting different genes in the same metabolic pathway. However, there are several coding sequences that appear intact in one serovar while clearly degraded in the other, suggesting differences in their metabolic capabilities. Here, we examined the functionality of metabolic pathways that appear intact in S. Typhi but that show clear signs of degradation in S. Paratyphi A. We found that, in all cases, the existence of single amino acid substitutions in S. Typhi metabolic enzymes, transporters, or transcription regulators resulted in the inactivation of these metabolic pathways. Thus, the inability of S. Typhi to metabolize Glucose-6-Phosphate or 3-phosphoglyceric acid is due to the silencing of the expression of the genes encoding the transporters for these compounds due to point mutations in the transcriptional regulatory proteins. In contrast, its inability to utilize glucarate or galactarate is due to the presence of point mutations in the transporter and enzymes necessary for the metabolism of these sugars. These studies provide additional support for the concept of adaptive convergent evolution of these two human-adapted S. enterica serovars and highlight a limitation of bioinformatic approaches to predict metabolic capabilities. IMPORTANCE: Salmonella enterica serovar Typhi and Paratyphi A are the cause of typhoid and paratyphoid fever in humans, which are systemic life-threatening illnesses. Both serovars can only infect the human host, where they can cause life-long persistent infection. Because of their adaptation to the human host, these bacterial pathogens have changed their metabolism, leading to the loss of their ability to utilize certain nutrients. In this study we examined the functionality of metabolic pathways that appear intact in S. Typhi but that show clear signs of degradation in S. Paratyphi A. We found that, in all cases, the existence of single amino acid substitutions in S. Typhi metabolic enzymes, transporters, or transcription regulators resulted in the inactivation of these metabolic pathways. These studies provide additional support for the concept of adaptive convergent evolution of these two human-adapted S. enterica serovars.


Assuntos
Redes e Vias Metabólicas , Salmonella typhi , Redes e Vias Metabólicas/genética , Salmonella typhi/genética , Salmonella typhi/metabolismo , Humanos , Genoma Bacteriano , Salmonella paratyphi A/genética , Salmonella paratyphi A/metabolismo , Mutação com Perda de Função , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Febre Tifoide/microbiologia , Sorogrupo
15.
PLoS Negl Trop Dis ; 18(4): e0012132, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38630840

RESUMO

BACKGROUND: Typhoid fever is a common cause of febrile illness in low- and middle-income countries. While multidrug-resistant (MDR) Salmonella Typhi (S. Typhi) has spread globally, fluoroquinolone resistance has mainly affected Asia. METHODS: Consecutively, 1038 blood cultures were obtained from patients of all age groups with fever and/or suspicion of serious systemic infection admitted at Mnazi Mmoja Hospital, Zanzibar in 2015-2016. S. Typhi were analyzed with antimicrobial susceptibility testing and with short read (61 strains) and long read (9 strains) whole genome sequencing, including three S. Typhi strains isolated in a pilot study 2012-2013. RESULTS: Sixty-three S. Typhi isolates (98%) were MDR carrying blaTEM-1B, sul1 and sul2, dfrA7 and catA1 genes. Low-level ciprofloxacin resistance was detected in 69% (43/62), with a single gyrase mutation gyrA-D87G in 41 strains, and a single gyrA-S83F mutation in the non-MDR strain. All isolates were susceptible to ceftriaxone and azithromycin. All MDR isolates belonged to genotype 4.3.1 lineage I (4.3.1.1), with the antimicrobial resistance determinants located on a composite transposon integrated into the chromosome. Phylogenetically, the MDR subgroup with ciprofloxacin resistance clusters together with two external isolates. CONCLUSIONS: We report a high rate of MDR and low-level ciprofloxacin resistant S. Typhi circulating in Zanzibar, belonging to genotype 4.3.1.1, which is widespread in Southeast Asia and African countries and associated with low-level ciprofloxacin resistance. Few therapeutic options are available for treatment of typhoid fever in the study setting. Surveillance of the prevalence, spread and antimicrobial susceptibility of S. Typhi can guide treatment and control efforts.


Assuntos
Antibacterianos , Ciprofloxacina , Farmacorresistência Bacteriana Múltipla , Genótipo , Testes de Sensibilidade Microbiana , Salmonella typhi , Febre Tifoide , Humanos , Salmonella typhi/genética , Salmonella typhi/efeitos dos fármacos , Salmonella typhi/isolamento & purificação , Salmonella typhi/classificação , Ciprofloxacina/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Antibacterianos/farmacologia , Febre Tifoide/microbiologia , Febre Tifoide/epidemiologia , Tanzânia/epidemiologia , Adolescente , Masculino , Criança , Adulto , Adulto Jovem , Feminino , Pré-Escolar , Sequenciamento Completo do Genoma , Pessoa de Meia-Idade , Lactente , Idoso
16.
Mol Immunol ; 169: 99-109, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552286

RESUMO

AIM: We investigated the molecular underpinnings of variation in immune responses to the live attenuated typhoid vaccine (Ty21a) by analyzing the baseline immunological profile. We utilized gene expression datasets obtained from the Gene Expression Omnibus (GEO) database (accession number: GSE100665) before and after immunization. We then employed two distinct computational approaches to identify potential baseline biomarkers associated with responsiveness to the Ty21a vaccine. MAIN METHODS: The first pipeline (knowledge-based) involved the retrieval of differentially expressed genes (DEGs), functional enrichment analysis, protein-protein interaction network construction, and topological network analysis of post-immunization datasets before gauging their pre-vaccination expression levels. The second pipeline utilized an unsupervised machine learning algorithm for data-driven feature selection on pre-immunization datasets. Supervised machine-learning classifiers were employed to computationally validate the identified biomarkers. KEY FINDINGS: Baseline activation of NKIRAS2 (a negative regulator of NF-kB signalling) and SRC (an adaptor for immune receptor activation) was negatively associated with Ty21a vaccine responsiveness, whereas LOC100134365 exhibited a positive association. The Stochastic Gradient Descent (SGD) algorithm accurately distinguished vaccine responders and non-responders, with 88.8%, 70.3%, and 85.1% accuracy for the three identified genes, respectively. SIGNIFICANCE: This dual-pronged novel analytical approach provides a comprehensive comparison between knowledge-based and data-driven methods for the prediction of baseline biomarkers associated with Ty21a vaccine responsiveness. The identified genes shed light on the intricate molecular mechanisms that influence vaccine efficacy from the host perspective while pushing the needle further towards the need for development of precise enteric vaccines and on the importance of pre-immunization screening.


Assuntos
Salmonella typhi , Vacinas Tíficas-Paratíficas , Salmonella typhi/genética , Vacinas Atenuadas , Antígenos de Bactérias , Biomarcadores
17.
mBio ; 15(4): e0045424, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38497655

RESUMO

Salmonella serovars Typhi and Paratyphi cause a prolonged illness known as enteric fever, whereas other serovars cause acute gastroenteritis. Mechanisms responsible for the divergent clinical manifestations of nontyphoidal and enteric fever Salmonella infections have remained elusive. Here, we show that S. Typhi and S. Paratyphi A can persist within human macrophages, whereas S. Typhimurium rapidly induces apoptotic macrophage cell death that is dependent on Salmonella pathogenicity island 2 (SPI2). S. Typhi and S. Paratyphi A lack 12 specific SPI2 effectors with pro-apoptotic functions, including nine that target nuclear factor κB (NF-κB). Pharmacologic inhibition of NF-κB or heterologous expression of the SPI2 effectors GogA or GtgA restores apoptosis of S. Typhi-infected macrophages. In addition, the absence of the SPI2 effector SarA results in deficient signal transducer and activator of transcription 1 (STAT1) activation and interleukin 12 production, leading to impaired TH1 responses in macrophages and humanized mice. The absence of specific nontyphoidal SPI2 effectors may allow S. Typhi and S. Paratyphi A to cause chronic infections. IMPORTANCE: Salmonella enterica is a common cause of gastrointestinal infections worldwide. The serovars Salmonella Typhi and Salmonella Paratyphi A cause a distinctive systemic illness called enteric fever, whose pathogenesis is incompletely understood. Here, we show that enteric fever Salmonella serovars lack 12 specific virulence factors possessed by nontyphoidal Salmonella serovars, which allow the enteric fever serovars to persist within human macrophages. We propose that this fundamental difference in the interaction of Salmonella with human macrophages is responsible for the chronicity of typhoid and paratyphoid fever, suggesting that targeting the nuclear factor κB (NF-κB) complex responsible for macrophage survival could facilitate the clearance of persistent bacterial infections.


Assuntos
Salmonella typhi , Salmonella , Febre Tifoide , Humanos , Animais , Camundongos , Salmonella typhi/genética , Febre Tifoide/microbiologia , NF-kappa B , Macrófagos/microbiologia
18.
mBio ; 15(4): e0340323, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38501873

RESUMO

AB5-type toxins are a diverse family of protein toxins composed of an enzymatic active (A) subunit and a pentameric delivery (B) subunit. Salmonella enterica serovar Typhi's typhoid toxin features two A subunits, CdtB and PltA, in complex with the B subunit PltB. Recently, it was shown that S. Typhi encodes a horizontally acquired B subunit, PltC, that also assembles with PltA/CdtB to produce a second form of typhoid toxin. S. Typhi therefore produces two AB5 toxins with the same A subunits but distinct B subunits, an evolutionary twist that is unique to typhoid toxin. Here, we show that, remarkably, the Salmonella bongori species independently evolved an analogous capacity to produce two typhoid toxins with distinct B subunits. S. bongori's alternate B subunit, PltD, is evolutionarily distant from both PltB and PltC and outcompetes PltB to form the predominant toxin. We show that, surprisingly, S. bongori elicits similar levels of CdtB-mediated intoxication as S. Typhi during infection of cultured human epithelial cells. This toxicity is exclusively due to the PltB toxin, and strains lacking pltD produce increased amounts of PltB toxin and exhibit increased toxicity compared to the wild type, suggesting that the acquisition of the PltD subunit potentially made S. bongori less virulent toward humans. Collectively, this study unveils a striking example of convergent evolution that highlights the importance of the poorly understood "two-toxin" paradigm for typhoid toxin biology and, more broadly, illustrates how the flexibility of A-B interactions has fueled the evolutionary diversification and expansion of AB5-type toxins. IMPORTANCE: Typhoid toxin is an important Salmonella Typhi virulence factor and an attractive target for therapeutic interventions to combat typhoid fever. The recent discovery of a second version of this toxin has substantial implications for understanding S. Typhi pathogenesis and combating typhoid fever. In this study, we discover that a remarkably similar two-toxin paradigm evolved independently in Salmonella bongori, which strongly suggests that this is a critical aspect of typhoid toxin biology. We observe significant parallels between how the two toxins assemble and their capacity to intoxicate host cells during infection in S. Typhi and S. bongori, which provides clues to the biological significance of this unusual toxin arrangement. More broadly, AB5 toxins with diverse activities and mechanisms are essential virulence factors for numerous important bacterial pathogens. This study illustrates the capacity for novel A-B interactions to evolve and thus provides insight into how such a diverse arsenal of toxins might have emerged.


Assuntos
Toxinas Bacterianas , Febre Tifoide , Humanos , Febre Tifoide/microbiologia , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Salmonella/metabolismo , Salmonella typhi/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
19.
PLoS Negl Trop Dis ; 18(2): e0011822, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38358956

RESUMO

Typhoid-conjugate vaccines (TCVs) provide an opportunity to reduce the burden of typhoid fever, caused by Salmonella Typhi, in endemic areas. As policymakers design vaccination strategies, accurate and high-resolution data on disease burden is crucial. However, traditional blood culture-based surveillance is resource-extensive, prohibiting its large-scale and sustainable implementation. Salmonella Typhi is a water-borne pathogen, and here, we tested the potential of Typhi-specific bacteriophage surveillance in surface water bodies as a low-cost tool to identify where Salmonella Typhi circulates in the environment. In 2021, water samples were collected and tested for the presence of Salmonella Typhi bacteriophages at two sites in Bangladesh: urban capital city, Dhaka, and a rural district, Mirzapur. Salmonella Typhi-specific bacteriophages were detected in 66 of 211 (31%) environmental samples in Dhaka, in comparison to 3 of 92 (3%) environmental samples from Mirzapur. In the same year, 4,620 blood cultures at the two largest pediatric hospitals of Dhaka yielded 215 (5%) culture-confirmed typhoid cases, and 3,788 blood cultures in the largest hospital of Mirzapur yielded 2 (0.05%) cases. 75% (52/69) of positive phage samples were collected from sewage. All isolated phages were tested against a panel of isolates from different Salmonella Typhi genotypes circulating in Bangladesh and were found to exhibit a diverse killing spectrum, indicating that diverse bacteriophages were isolated. These results suggest an association between the presence of Typhi-specific phages in the environment and the burden of typhoid fever, and the potential of utilizing environmental phage surveillance as a low-cost tool to assist policy decisions on typhoid control.


Assuntos
Bacteriófagos , Febre Tifoide , Vacinas Tíficas-Paratíficas , Humanos , Criança , Febre Tifoide/epidemiologia , Febre Tifoide/prevenção & controle , Bangladesh/epidemiologia , Salmonella typhi/genética , Água
20.
Lancet Microbe ; 5(3): e226-e234, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38387472

RESUMO

BACKGROUND: Ciprofloxacin is the first-line drug for treating typhoid fever in many countries in Africa with a high disease burden, but the emergence of non-susceptibility poses a challenge to public health programmes. Through enhanced surveillance as part of vaccine evaluation, we investigated the occurrence and potential determinants of ciprofloxacin non-susceptibility in Blantyre, Malawi. METHODS: We conducted systematic surveillance of typhoid fever cases and antibiotic prescription in two health centres in Blantyre, Malawi, between Oct 1, 2016, and Oct 31, 2019, as part of the STRATAA and TyVAC studies. In addition, blood cultures were taken from eligible patients presenting at Queen Elizabeth Central Hospital, Blantyre, as part of routine diagnosis. Inclusion criteria were measured or reported fever, or clinical suspicion of sepsis. Microbiologically, we identified Salmonella enterica serotype Typhi (S Typhi) isolates with a ciprofloxacin non-susceptible phenotype from blood cultures, and used whole-genome sequencing to identify drug-resistance mutations and phylogenetic relationships. We constructed generalised linear regression models to investigate associations between the number of ciprofloxacin prescriptions given per month to study participants and the proportion of S Typhi isolates with quinolone resistance-determining region (QRDR) mutations in the following month. FINDINGS: From 46 989 blood cultures from Queen Elizabeth Central Hospital, 502 S Typhi isolates were obtained, 30 (6%) of which had either decreased ciprofloxacin susceptibility, or ciprofloxacin resistance. From 11 295 blood cultures from STRATAA and TyVAC studies, 241 microbiologically confirmed cases of typhoid fever were identified, and 198 isolates from 195 participants sequenced (mean age 12·8 years [SD 10·2], 53% female, 47% male). Between Oct 1, 2016, and Aug 31, 2019, of 177 typhoid fever cases confirmed by whole-genome sequencing, four (2%) were caused by S Typhi with QRDR mutations, compared with six (33%) of 18 cases between Sept 1 and Oct 31, 2019. This increase was associated with a preceding spike in ciprofloxacin prescriptions. Every additional prescription of ciprofloxacin given to study participants in the preceding month was associated with a 4·2% increase (95% CI 1·8-7·0) in the relative risk of isolating S Typhi with a QRDR mutation (p=0·0008). Phylogenetic analysis showed that S Typhi isolates with QRDR mutations from September and October, 2019, belonged to two distinct subclades encoding two different QRDR mutations, and were closely related (4-10 single-nucleotide polymorphisms) to susceptible S Typhi endemic to Blantyre. INTERPRETATION: We postulate a causal relationship between increased ciprofloxacin prescriptions and an increase in fluoroquinolone non-susceptibility in S Typhi. Decreasing ciprofloxacin use by improving typhoid diagnostics, and reducing typhoid fever cases through the use of an efficacious vaccine, could help to limit the emergence of resistance. FUNDING: Wellcome Trust, Bill & Melinda Gates Foundation, and National Institute for Health and Care Research (UK).


Assuntos
Febre Tifoide , Vacinas Tíficas-Paratíficas , Humanos , Masculino , Feminino , Criança , Salmonella typhi/genética , Ciprofloxacina/farmacologia , Ciprofloxacina/uso terapêutico , Febre Tifoide/tratamento farmacológico , Febre Tifoide/epidemiologia , Malaui/epidemiologia , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...