Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.201
Filtrar
1.
Luminescence ; 39(9): e4896, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39268684

RESUMO

Layered transition metal dichalcogenides (TMDs), with an extensive surface area, intriguing tunable electrical and optical features, and a distinctive Van der Waals layered structure, yield outstanding sensing properties. Essentially, most TMDs originally existed in the crystallographic phase of a 2H trigonal prismatic structure, which is semiconducting in nature with poor electrocatalytic activity. In contrast, vanadium diselenide (VSe2) with its metastable metallic 1 T octahedral crystal structure has been proven to be an outstanding electrode material, embracing exceptional electrocatalytic behavior for various electrochemical (EC) applications. However, practically, VSe2 has hardly ever been explored in the field of biosensing technology. This study presents a novel EC biosensor based on the antibody of Salmonella Typhimurium (Anti-ST) immobilized on VSe2-supported Indium tin oxide (Anti-ST/VSe2/ITO) for quantitative and efficient Salmonella Typhimurium (ST) detection. The Anti-ST/VSe2/ITO bioelectrode displayed a linear relationship with ST concentration (1.3 × 10-107 CFU/ml) with a limit of detection (LOD) (0.096 CFU/ml) that is lower than previously reported ST biosensors and impressively high sensitivity (0.001996 µA.mL/CFU). Furthermore, the proposed electrode's electroanalytical activity was evaluated in spiked sugarcane juice, demonstrating distinguished applicability for specific ST detection in real samples.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Salmonella typhimurium , Salmonella typhimurium/isolamento & purificação , Salmonella typhimurium/imunologia , Compostos de Selênio/química , Eletrodos , Limite de Detecção , Imunoensaio/métodos
2.
Nat Commun ; 15(1): 6680, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107284

RESUMO

Synergistic combinations of immunotherapeutic agents can improve the performance of anti-cancer therapies but may lead to immune-mediated adverse effects. These side-effects can be overcome by using a tumor-specific delivery system. Here, we report a method of targeted immunotherapy using an attenuated Salmonella typhimurium (SAM-FC) engineered to release dual payloads: cytolysin A (ClyA), a cytolytic anti-cancer agent, and Vibrio vulnificus flagellin B (FlaB), a potent inducer of anti-tumor innate immunity. Localized secretion of ClyA from SAM-FC induces immunogenic cancer cell death and promotes release of tumor-specific antigens and damage-associated molecular patterns, which establish long-term antitumor memory. Localized secretion of FlaB promotes phenotypic and functional remodeling of intratumoral macrophages that markedly inhibits tumor metastasis in mice bearing tumors of mouse and human origin. Both primary and metastatic tumors from bacteria-treated female mice are characterized by massive infiltration of anti-tumorigenic innate immune cells and activated tumor-specific effector/memory T cells; however, the percentage of immunosuppressive cells is low. Here, we show that SAM-FC induces functional reprogramming of the tumor immune microenvironment by activating both the innate and adaptive arms of the immune system and can be used for targeted delivery of multiple immunotherapeutic payloads for the establishment of potent and long-lasting antitumor immunity.


Assuntos
Imunoterapia , Salmonella typhimurium , Microambiente Tumoral , Animais , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Salmonella typhimurium/imunologia , Salmonella typhimurium/efeitos dos fármacos , Feminino , Camundongos , Humanos , Imunoterapia/métodos , Linhagem Celular Tumoral , Imunidade Inata/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Flagelina/imunologia , Vibrio vulnificus/imunologia , Vibrio vulnificus/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem
3.
Anal Chim Acta ; 1320: 343006, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39142783

RESUMO

BACKGROUND: Salmonella, a foodborne pathogen poses significant threats to food safety and human health. Immunochromatographic (ICTS) sensors have gained popularity in the field of food safety due to their convenience, speed, and cost-effectiveness. However, most existing ICTS sensors rely on antibody sandwich structures which are limited by their dependence on high-quality paired antibodies and restricted sensitivity. For the first time, we combined multi-line ICTS strips with fluorescent bacterial probes to develop a label-free multi-line immunochromatographic sensor capable of detecting broad-spectrum Salmonella. Salmonella was labeled with the aggregation-induced luminescence material TCBPE, resulting in its transformation into a green fluorescent probe. RESULTS: Using this sensor, we successfully detected Salmonella typhimurium within the concentration range of 104-108 CFU/mL with a visual detection limit of 6.0 × 104 CFU/mL. Compared to single-line sensors, our multi-line sensor exhibited significantly improved fluorescence intensity resulting in enhanced detection sensitivity by 50 %. Furthermore, our developed multi-line ICTS sensor demonstrated successful detection of 18 different strains of Salmonella without any cross-reaction observed with 5 common foodborne pathogens tested. The applicability and reliability were validated using milk samples, cabbage juice samples as well and drinking water samples suggesting its potential for rapid and accurate detection of Salmonella in real-world scenarios across both the food industry and clinical settings. SIGNIFICANCE: In this experiment, we developed a TCBPE-based multiline immunochromatographic sensor. Specifically, Salmonella was labeled with the aggregation-induced luminescence material TCBPE, resulting in its transformation into a green fluorescent probe. Through the multi-line analysis system, the detection sensitivity and accuracy of the sensor are improved. In brief, the sensor does not require complex antibody labeling and paired antibodies, and only one antibody is needed to complete the detection process.


Assuntos
Cromatografia de Afinidade , Cromatografia de Afinidade/métodos , Cromatografia de Afinidade/instrumentação , Leite/microbiologia , Leite/química , Microbiologia de Alimentos , Animais , Corantes Fluorescentes/química , Salmonella/isolamento & purificação , Salmonella/imunologia , Contaminação de Alimentos/análise , Limite de Detecção , Salmonella typhimurium/isolamento & purificação , Salmonella typhimurium/imunologia , Brassica/química , Brassica/microbiologia
4.
Anal Chim Acta ; 1323: 343091, 2024 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-39182977

RESUMO

Magnetic nanoparticles are widely employed as signal labeling reporters in immunochromatographic test strips (ICTS) for detecting foodborne pathogens due to their outstanding anti-interference and magnetic enrichment performance. However, the insufficient colorimetric signal brightness of magnetic nanoparticles results in poor sensitivity, hindering their ability to meet the growing demand for advanced ICTS. Herein, we synthesized Fe3O4@CuS core-shell structure nanoparticles using a facile in-situ growth method. These Fe3O4@CuS nanoparticles exhibit a superior photothermal conversion efficiency of 42.12 % and a magnetization strength of 35 emu/g. We developed a dual-readout format ICTS based on Fe3O4@CuS, incorporating both colorimetric and photothermal formats to enhance sensitivity for Salmonella typhimurium detection. The limit of detection for Fe3O4@CuS-ICTS in the colorimetric and photothermal format was 5 × 104 CFU/mL and 7.7 × 10³ CFU/mL, respectively. Additionally, the average recoveries ranged from 91.25 % to 103.39 %, with variations from 2.2 % to 11.1 %, demonstrating good accuracy and precision. Therefore, this work suggests that Fe3O4@CuS nanoparticles, with their superior magnetic, optical, and photothermal properties, can serve as promising signal labeling reporters to improve the detection performance of ICTS and hold potential for constructing more accurate and sensitive point-of-care testing platforms.


Assuntos
Colorimetria , Nanopartículas de Magnetita , Leite , Salmonella typhimurium , Salmonella typhimurium/isolamento & purificação , Salmonella typhimurium/imunologia , Leite/microbiologia , Leite/química , Animais , Nanopartículas de Magnetita/química , Cromatografia de Afinidade/métodos , Limite de Detecção , Fitas Reagentes
5.
Gut Microbes ; 16(1): 2392877, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39189642

RESUMO

Salmonella enterica serovar Typhimurium (STm) causes gastroenteritis and can progress to reactive arthritis (ReA). STm forms biofilms in the gut that secrete the amyloid curli, which we previously demonstrated can trigger autoimmunity in mice. HLA-B27 is a genetic risk factor for ReA; activation of the unfolded protein response (UPR) due to HLA-B27 misfolding is thought to play a critical role in ReA pathogenesis. To determine whether curli exacerbates HLA-B27-induced UPR, bone marrow-derived macrophages (BMDMs) isolated from HLA-B27 transgenic (tg) mice were used. BMDMs treated with purified curli exhibited elevated UPR compared to C57BL/6, and curli-induced IL-6 was reduced by pre-treating macrophages with inhibitors of the IRE1α branch of the UPR. In BMDMs, intracellular curli colocalized with GRP78, a regulator of the UPR. In vivo, acute infection with wild-type STm increased UPR markers in the ceca of HLA-B27tg mice compared to C57BL/6. STm biofilms that contain curli were visible in the lumen of cecal tissue sections. Furthermore, curli was associated with macrophages in the lamina propria, colocalizing with GRP78. Together, these results suggest that UPR plays a role in the curli-induced inflammatory response, especially in the presence of HLA-B27, a possible mechanistic link between STm infection and genetic susceptibility to ReA.


Assuntos
Proteínas de Bactérias , Chaperona BiP do Retículo Endoplasmático , Endorribonucleases , Antígeno HLA-B27 , Macrófagos , Proteínas Serina-Treonina Quinases , Salmonella typhimurium , Resposta a Proteínas não Dobradas , Animais , Humanos , Camundongos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Endorribonucleases/metabolismo , Endorribonucleases/genética , Antígeno HLA-B27/genética , Antígeno HLA-B27/metabolismo , Antígeno HLA-B27/imunologia , Interleucina-6/metabolismo , Interleucina-6/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Infecções por Salmonella/imunologia , Infecções por Salmonella/microbiologia , Salmonella typhimurium/imunologia
6.
Vaccine ; 42(19S1): S101-S124, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39003017

RESUMO

Invasive non-typhoidal Salmonella (iNTS) disease is an under-recognized high-burden disease causing major health and socioeconomic issues in sub-Saharan Africa (sSA), predominantly among immune-naïve infants and young children, including those with recognized comorbidities such as HIV infection. iNTS disease is primarily caused by Salmonella enterica serovar Typhimurium sequence type (ST) 313 and 'African-restricted clades' of Salmonella Enteritidis ST11 that have emerged across the African continent as a series of epidemics associated with acquisition of new antimicrobial resistance. Due to genotypes with a high prevalence of antimicrobial resistance and scarcity of therapeutic options, these NTS serovars are designated by the World Health Organization as a priority pathogen for research and development of interventions, including vaccines, to address and reduce NTS associated bacteremia and meningitis in sSA. Novel and traditional vaccine technologies are being applied to develop vaccines against iNTS disease, and the results of the first clinical trials in the infant target population should become available in the near future. The "Vaccine Value Profile" (VVP) addresses information related predominantly to invasive disease caused by Salmonella Enteritidis and Salmonella Typhimurium prevalent in sSA. Information is included on stand-alone iNTS disease candidate vaccines and candidate vaccines targeting iNTS disease combined with another invasive serotype, Salmonella Typhi, that is also common across sSA. Out of scope for the first version of this VVP is a wider discussion on either diarrheagenic NTS disease (dNTS) also associated with Salmonella Enteritidis and Salmonella Typhimurium or the development of a multivalent Salmonella vaccines targeting key serovars for use globally. This VVP for vaccines to prevent iNTS disease is intended to provide a high-level, holistic assessment of the information and data that are currently available to inform the potential public health, economic, and societal value of pipeline vaccines and vaccine-like products. Future versions of this VVP will be updated to reflect ongoing activities such as vaccine development strategies and a "Full Vaccine Value Assessment" that will inform the value proposition of an iNTS disease vaccine. This VVP was developed by a working group of subject matter experts from academia, non-profit organizations, public private partnerships, and multi-lateral organizations, and in collaboration with stakeholders from the World Health Organization African Region. All contributors have extensive expertise on various elements of the iNTS disease VVP and collectively aimed to identify current research and knowledge gaps. The VVP was developed using only existing and publicly available information.


Assuntos
Infecções por Salmonella , Vacinas contra Salmonella , Salmonella enteritidis , Humanos , África Subsaariana/epidemiologia , Salmonella enteritidis/imunologia , Salmonella enteritidis/genética , Salmonella enteritidis/patogenicidade , Infecções por Salmonella/prevenção & controle , Infecções por Salmonella/epidemiologia , Infecções por Salmonella/microbiologia , Infecções por Salmonella/imunologia , Salmonella typhimurium/imunologia , Salmonella typhimurium/patogenicidade , Salmonella typhimurium/genética , Vacinas contra Salmonella/imunologia , Vacinas contra Salmonella/administração & dosagem
7.
Exp Biol Med (Maywood) ; 249: 10081, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974834

RESUMO

The lack of effective treatment options for an increasing number of cancer cases highlights the need for new anticancer therapeutic strategies. Immunotherapy mediated by Salmonella enterica Typhimurium is a promising anticancer treatment. Candidate strains for anticancer therapy must be attenuated while retaining their antitumor activity. Here, we investigated the attenuation and antitumor efficacy of two S. enterica Typhimurium mutants, ΔtolRA and ΔihfABpmi, in a murine melanoma model. Results showed high attenuation of ΔtolRA in the Galleria mellonella model, and invasion and survival in tumor cells. However, it showed weak antitumor effects in vitro and in vivo. Contrastingly, lower attenuation of the attenuated ΔihfABpmi strain resulted in regression of tumor mass in all mice, approximately 6 days after the first treatment. The therapeutic response induced by ΔihfABpmi was accompanied with macrophage accumulation of antitumor phenotype (M1) and significant increase in the mRNAs of proinflammatory mediators (TNF-α, IL-6, and iNOS) and an apoptosis inducer (Bax). Our findings indicate that the attenuated ΔihfABpmi exerts its antitumor activity by inducing macrophage infiltration or reprogramming the immunosuppressed tumor microenvironment to an activated state, suggesting that attenuated S. enterica Typhimurium strains based on nucleoid-associated protein genes deletion could be immunotherapeutic against cancer.


Assuntos
Salmonella typhimurium , Animais , Salmonella typhimurium/imunologia , Salmonella typhimurium/genética , Camundongos , Camundongos Endogâmicos C57BL , Melanoma/imunologia , Melanoma/genética , Melanoma/patologia , Imunoterapia/métodos , Macrófagos/imunologia , Macrófagos/metabolismo , Linhagem Celular Tumoral , Mutação , Feminino , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Melanoma Experimental/terapia , Modelos Animais de Doenças
8.
Virulence ; 15(1): 2384553, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39080852

RESUMO

Salmonella is a foodborne pathogen that causes disruption of intestinal mucosal immunity, leading to acute gastroenteritis in the host. In this study, we found that Salmonella Typhimurium (STM) infection of the intestinal tract of mice led to a significant increase in the proportion of Lacticaseibacillus, while the secretion of IL-22 from type 3 innate lymphoid cells (ILC3) increased significantly. Feeding Lacticaseibacillus rhamnosus GG (LGG) effectively alleviated the infection of STM in the mouse intestines. TLR2-/- mice experiments found that TLR2-expressing dendritic cells (DCs) are crucial for LGG's activation of ILC3. Subsequent in vitro experiments showed that heat-killed LGG (HK-LGG) could promote DCs to secrete IL-23, which in turn further promotes the activation of ILC3 and the secretion of IL-22. Finally, organoid experiments further verified that IL-22 secreted by ILC3 can enhance the intestinal mucosal immune barrier and inhibit STM infection. This study demonstrates that oral administration of LGG is a potential method for inhibiting STM infection.


Assuntos
Interleucina 22 , Interleucinas , Lacticaseibacillus rhamnosus , Linfócitos , Infecções por Salmonella , Salmonella typhimurium , Receptor 2 Toll-Like , Animais , Camundongos , Salmonella typhimurium/imunologia , Receptor 2 Toll-Like/imunologia , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Linfócitos/imunologia , Lacticaseibacillus rhamnosus/imunologia , Infecções por Salmonella/imunologia , Infecções por Salmonella/microbiologia , Interleucinas/imunologia , Interleucinas/metabolismo , Camundongos Knockout , Camundongos Endogâmicos C57BL , Células Dendríticas/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Imunidade Inata , Probióticos/administração & dosagem , Imunidade nas Mucosas
9.
Virulence ; 15(1): 2367783, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38937901

RESUMO

Helicobacter pylori causes globally prevalent infections that are highly related to chronic gastritis and even development of gastric carcinomas. With the increase of antibiotic resistance, scientists have begun to search for better vaccine design strategies to eradicate H. pylori colonization. However, while current strategies prefer to formulate vaccines with a single H. pylori antigen, their potential has not yet been fully realized. Outer membrane vesicles (OMVs) are a potential platform since they could deliver multiple antigens. In this study, we engineered three crucial H. pylori antigen proteins (UreB, CagA, and VacA) onto the surface of OMVs derived from Salmonella enterica serovar Typhimurium (S. Typhimurium) mutant strains using the hemoglobin protease (Hbp) autotransporter system. In various knockout strategies, we found that OMVs isolated from the ΔrfbP ΔfliC ΔfljB ΔompA mutants could cause distinct increases in immunoglobulin G (IgG) and A (IgA) levels and effectively trigger T helper 1- and 17-biased cellular immune responses, which perform a vital role in protecting against H. pylori. Next, OMVs derived from ΔrfbP ΔfliC ΔfljB ΔompA mutants were used as a vector to deliver different combinations of H. pylori antigens. The antibody and cytokine levels and challenge experiments in mice model indicated that co-delivering UreB and CagA could protect against H. pylori and antigen-specific T cell responses. In summary, OMVs derived from the S. Typhimurium ΔrfbP ΔfliC ΔfljB ΔompA mutant strain as the vector while importing H. pylori UreB and CagA as antigenic proteins using the Hbp autotransporter system would greatly benefit controlling H. pylori infection.


Outer membrane vesicles (OMVs), as a novel antigen delivery platform, has been used in vaccine design for various pathogens and even tumors. Salmonella enterica serovar Typhimurium (S. Typhimurium), as a bacterium that is easy to engineer and has both adjuvant efficacy and immune stimulation capacity, has become the preferred bacterial vector for purifying OMVs after Escherichia coli. This study focuses on the design of Helicobacter pylori ;(H. pylori) vaccines, utilizing genetically modified Salmonella OMVs to present several major antigens of H. pylori, including UreB, VacA and CagA. The optimal Salmonella OMV delivery vector and antigen combinations are screened and identified, providing new ideas for the development of H. pylori vaccines and an integrated antigen delivery platform for other difficult to develop vaccines for bacteria, viruses, and even tumors.


Assuntos
Antígenos de Bactérias , Proteínas de Bactérias , Infecções por Helicobacter , Helicobacter pylori , Salmonella typhimurium , Animais , Infecções por Helicobacter/prevenção & controle , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Helicobacter pylori/imunologia , Helicobacter pylori/genética , Camundongos , Salmonella typhimurium/imunologia , Salmonella typhimurium/genética , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/genética , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/genética , Feminino , Anticorpos Antibacterianos/imunologia , Anticorpos Antibacterianos/sangue , Imunoglobulina G , Engenharia Genética , Urease/imunologia , Urease/genética , Modelos Animais de Doenças
10.
Sci Rep ; 14(1): 14586, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918457

RESUMO

Natural killer (NK) cells play a key role in defense against Salmonella infections during the early phase of infection. Our previous work showed that the excretory/secretory products of Ascaris suum repressed NK activity in vitro. Here, we asked if NK cell functionality was influenced in domestic pigs during coinfection with Ascaris and Salmonella enterica serotype Typhimurium. Ascaris coinfection completely abolished the IL-12 and IL-18 driven elevation of IFN-γ production seen in CD16 + CD8α + perforin + NK cells of Salmonella single-infected pigs. Furthermore, Ascaris coinfection prohibited the Salmonella-driven rise in NK perforin levels and CD107a surface expression. In line with impaired effector functions, NK cells from Ascaris-single and coinfected pigs displayed elevated expression of the inhibitory KLRA1 and NKG2A receptors genes, contrasting with the higher expression of the activating NKp46 and NKp30 receptors in NK cells during Salmonella single infection. These differences were accompanied by the highly significant upregulation of T-bet protein expression in NK cells from Ascaris-single and Ascaris/Salmonella coinfected pigs. Together, our data strongly indicate a profound repression of NK functionality by an Ascaris infection which may hinder infected individuals from adequately responding to a concurrent bacterial infection.


Assuntos
Ascaríase , Coinfecção , Células Matadoras Naturais , Doenças dos Suínos , Animais , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Ascaríase/imunologia , Ascaríase/veterinária , Ascaríase/parasitologia , Coinfecção/imunologia , Coinfecção/microbiologia , Coinfecção/parasitologia , Suínos , Doenças dos Suínos/parasitologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/microbiologia , Salmonelose Animal/imunologia , Salmonella typhimurium/imunologia , Salmonella typhimurium/patogenicidade , Ascaris suum/imunologia , Interferon gama/metabolismo , Perforina/metabolismo , Interleucina-12/metabolismo , Proteínas com Domínio T/metabolismo , Proteínas com Domínio T/genética , Interleucina-18/metabolismo
11.
Front Immunol ; 15: 1396827, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855102

RESUMO

Glucocorticoids, which have long served as fundamental therapeutics for diverse inflammatory conditions, are still widely used, despite associated side effects limiting their long-term use. Among their key mediators is glucocorticoid-induced leucine zipper (GILZ), recognized for its anti-inflammatory and immunosuppressive properties. Here, we explore the immunomodulatory effects of GILZ in macrophages through transcriptomic analysis and functional assays. Bulk RNA sequencing of GILZ knockout and GILZ-overexpressing macrophages revealed significant alterations in gene expression profiles, particularly impacting pathways associated with the inflammatory response, phagocytosis, cell death, mitochondrial function, and extracellular structure organization activity. GILZ-overexpression enhances phagocytic and antibacterial activity against Salmonella typhimurium and Escherichia coli, potentially mediated by increased nitric oxide production. In addition, GILZ protects macrophages from pyroptotic cell death, as indicated by a reduced production of reactive oxygen species (ROS) in GILZ transgenic macrophages. In contrast, GILZ KO macrophages produced more ROS, suggesting a regulatory role of GILZ in ROS-dependent pathways. Additionally, GILZ overexpression leads to decreased mitochondrial respiration and heightened matrix metalloproteinase activity, suggesting its involvement in tissue remodeling processes. These findings underscore the multifaceted role of GILZ in modulating macrophage functions and its potential as a therapeutic target for inflammatory disorders, offering insights into the development of novel therapeutic strategies aimed at optimizing the benefits of glucocorticoid therapy while minimizing adverse effects.


Assuntos
Macrófagos , Mitocôndrias , Fagocitose , Piroptose , Fatores de Transcrição , Animais , Mitocôndrias/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Imunomodulação , Espécies Reativas de Oxigênio/metabolismo , Camundongos Knockout , Glucocorticoides/farmacologia , Camundongos Endogâmicos C57BL , Salmonella typhimurium/imunologia , Escherichia coli/imunologia
12.
Vet Microbiol ; 295: 110151, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38870752

RESUMO

Porcine circovirus type 2 (PCV2) stands as a predominant etiological agent in porcine circovirus-associated diseases. To manage the spread of the disease, it is necessary to develop a next-generation vaccine expressing PCV2 antigens that target the prevailing genotype such as PCV2d. A bacterial-mediated vaccine delivery by live-attenuated Salmonella has attracted interest for its low-cost production and highly effective vaccine delivery. Thus, in this study, we utilized the advantages of the Salmonella-mediated vaccine delivery by cloning PCV2d cap and rep into a eukaryotic expression plasmid pJHL204 and electroporation into an engineered live-attenuated Salmonella Typhimurium JOL2500 (Δlon, ΔcpxR, ΔsifA, Δasd). The eukaryotic antigen expression by JOL2995 (p204:cap) and JOL2996 (p204:rep) was confirmed in vitro and in vivo which showed efficient antigen delivery. Furthermore, vaccination of mice model with the vaccine candidates elicited humoral and cell-mediated immune responses as depicted by high levels of PCV2-specific antibodies, CD4+ and CD8+ T cells, and neutralizing antibodies, especially by JOL2995 (p204:cap) which correlated with the significant decrease in the viral load in PCV2d-challenged mice. Interestingly, JOL2996 (p204:rep) may not have elicited high levels of neutralizing antibodies and protective efficacy, but it elicited considerably higher cell-mediated immune responses. This study demonstrated Salmonella-mediated vaccine delivery system coupled with the eukaryotic expression vector can efficiently deliver and express the target PCV2d antigens for strong induction of immune response and protective efficacy in mice model, further supporting the potential application of the Salmonella-mediated vaccine delivery system as an effective novel approach in vaccine strategies for PCV2d.


Assuntos
Infecções por Circoviridae , Circovirus , Vetores Genéticos , Salmonella typhimurium , Vacinas Virais , Animais , Circovirus/imunologia , Circovirus/genética , Camundongos , Salmonella typhimurium/imunologia , Salmonella typhimurium/genética , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Infecções por Circoviridae/prevenção & controle , Infecções por Circoviridae/veterinária , Infecções por Circoviridae/imunologia , Suínos , Antígenos Virais/imunologia , Antígenos Virais/genética , Camundongos Endogâmicos BALB C , Anticorpos Antivirais/sangue , Feminino , Anticorpos Neutralizantes/sangue , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/genética , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia
13.
Front Immunol ; 15: 1376734, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911854

RESUMO

Introduction: Non-typhoidal Salmonella (NTS) generally causes self-limiting gastroenteritis. However, older adults (≥65 years) can experience more severe outcomes from NTS infection. We have previously shown that a live attenuated S. Typhimurium vaccine, CVD 1926 (I77 ΔguaBA ΔclpP ΔpipA ΔhtrA), was immunogenic in adult but not aged mice. Here we describe modification of CVD 1926 through deletion of steD, a Salmonella effector responsible for host immune escape, which we hypothesized would increase immunogenicity in aged mice. Methods: Mel Juso and/or mutuDC cells were infected with S. Typhimurium I77, CVD 1926, and their respective steD mutants, and the MHC-II levels were evaluated. Aged (18-month-old) C57BL/6 mice received two doses of PBS, CVD 1926, or CVD 1926 ΔsteD perorally (109 CFU) and the number of FliC-specific CD4+ T cells were determined. Lastly, aged C57BL/6 mice received three doses of PBS, CVD 1926, or CVD 1926 ΔsteD perorally (109 CFU) and then were challenged perorally with wild-type S. Typhimurium SL1344 (108 CFU). These animals were also evaluated for antibody responses. Results: MHC-II induction was higher in cells treated with steD mutants, compared to their respective parental strains. Compared to PBS-vaccinated mice, CVD 1926 ΔsteD elicited significantly more FliC-specific CD4+ T cells in the Peyer's Patches. There were no significant differences in FliC-specific CD4+ T cells in the Peyer's patches or spleen of CVD 1926- versus PBS-immunized mice. CVD 1926 and CVD 1926 ΔsteD induced similar serum and fecal anti-core and O polysaccharide antibody titers after three doses. After two immunizations, the proportion of seroconverters for CVD 1926 ΔsteD was 83% (10/12) compared to 42% (5/12) for CVD 1926. Compared to PBS-immunized mice, mice immunized with CVD 1926 ΔsteD had significantly lower S. Typhimurium counts in the spleen, cecum, and small intestine upon challenge. In contrast, there were no differences in bacterial loads in the tissues of PBS-vaccinated and CVD 1926-immunized animals. Conclusion: These data suggest that the steD deletion enhanced the immunogenicity of our live attenuated S. Typhimurium vaccine. Deletion of immune evasion genes could be a potential strategy to improve the immunogenicity of live attenuated vaccines in older adults.


Assuntos
Anticorpos Antibacterianos , Camundongos Endogâmicos C57BL , Vacinas contra Salmonella , Salmonella typhimurium , Vacinas Atenuadas , Animais , Vacinas contra Salmonella/imunologia , Vacinas contra Salmonella/administração & dosagem , Vacinas contra Salmonella/genética , Salmonella typhimurium/imunologia , Salmonella typhimurium/genética , Camundongos , Vacinas Atenuadas/imunologia , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Evasão da Resposta Imune , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética , Feminino , Deleção de Genes , Infecções por Salmonella/imunologia , Infecções por Salmonella/prevenção & controle , Infecções por Salmonella/microbiologia , Envelhecimento/imunologia , Linfócitos T CD4-Positivos/imunologia , Imunogenicidade da Vacina
14.
Vet Microbiol ; 294: 110131, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38805917

RESUMO

Outer membrane vesicles (OMVs) are membranous structures frequently observed in Gram-negative bacteria that contain bioactive substances. These vesicles are rich in bacterial antigens that can activate the host's immune system, making them a promising candidate vaccine to prevent and manage bacterial infections. The aim of this study was to assess the immunogenicity and protective efficacy of OMVs derived from Salmonella enterica serovar Typhimurium and S. Choleraesuis, while also focusing on enhancing OMV production. Initial experiments showed that OMVs from wild-type strains did not provide complete protection against homologous Salmonella challenge, possible due to the presence of flagella in the purified OMVs samples, which may elicit an unnecessary immune response. To address this, flagellin-deficient mutants of S. Typhimurium and S. Choleraesuis were constructed, designated rSC0196 and rSC0199, respectively. These mutants exhibited reduced cell motility and their OMVs were found to be flagellin-free. Immunization with non-flagellin OMVs derived from rSC0196 induced robust antibody responses and improved survival rates in mice, as compared to the OMVs derived from the wild-type UK-1. In order to enhance OMV production, deletions of ompA or tolR were introduced into rSC0196. The deletion of tolR not only increase the yield of OMVs, but also conferred complete protection against homologous S. Typhimurium challenge in mice. Collectively, these findings indicate that the flagellin-deficient OMVs with a tolR mutation have the potential to serve as a versatile vaccine platform, capable of inducing broad-spectrum protection against significant pathogens.


Assuntos
Proteínas da Membrana Bacteriana Externa , Camundongos Endogâmicos BALB C , Vacinas contra Salmonella , Salmonella typhimurium , Animais , Salmonella typhimurium/imunologia , Salmonella typhimurium/genética , Camundongos , Vacinas contra Salmonella/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Feminino , Flagelina/imunologia , Flagelina/genética , Salmonelose Animal/prevenção & controle , Salmonelose Animal/microbiologia , Salmonelose Animal/imunologia , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Membrana Externa Bacteriana/imunologia , Salmonella/imunologia , Salmonella/genética , Imunogenicidade da Vacina , Antígenos de Bactérias/imunologia
15.
Nat Commun ; 15(1): 4241, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762500

RESUMO

Glioblastoma multiforme (GBM) is a highly aggressive brain tumor characterized by invasive behavior and a compromised immune response, presenting treatment challenges. Surgical debulking of GBM fails to address its highly infiltrative nature, leaving neoplastic satellites in an environment characterized by impaired immune surveillance, ultimately paving the way for tumor recurrence. Tracking and eradicating residual GBM cells by boosting antitumor immunity is critical for preventing postoperative relapse, but effective immunotherapeutic strategies remain elusive. Here, we report a cavity-injectable bacterium-hydrogel superstructure that targets GBM satellites around the cavity, triggers GBM pyroptosis, and initiates innate and adaptive immune responses, which prevent postoperative GBM relapse in male mice. The immunostimulatory Salmonella delivery vehicles (SDVs) engineered from attenuated Salmonella typhimurium (VNP20009) seek and attack GBM cells. Salmonella lysis-inducing nanocapsules (SLINs), designed to trigger autolysis, are tethered to the SDVs, eliciting antitumor immune response through the intracellular release of bacterial components. Furthermore, SDVs and SLINs administration via intracavitary injection of the ATP-responsive hydrogel can recruit phagocytes and promote antigen presentation, initiating an adaptive immune response. Therefore, our work offers a local bacteriotherapy for stimulating anti-GBM immunity, with potential applicability for patients facing malignancies at a high risk of recurrence.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Recidiva Local de Neoplasia , Salmonella typhimurium , Glioblastoma/terapia , Glioblastoma/imunologia , Animais , Camundongos , Salmonella typhimurium/imunologia , Masculino , Recidiva Local de Neoplasia/prevenção & controle , Recidiva Local de Neoplasia/imunologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Humanos , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Piroptose , Imunidade Adaptativa , Imunidade Inata , Hidrogéis/química , Imunoterapia/métodos
16.
Vaccine ; 42(15): 3445-3454, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38631956

RESUMO

Major histocompatibility complex class II (MHC-II) molecules are involved in immune responses against pathogens and vaccine candidates' immunogenicity. Immunopeptidomics for identifying cancer and infection-related antigens and epitopes have benefited from advances in immunopurification methods and mass spectrometry analysis. The mouse anti-MHC-II-DR monoclonal antibody L243 (mAb-L243) has been effective in recognising MHC-II-DR in both human and non-human primates. It has also been shown to cross-react with other animal species, although it has not been tested in livestock. This study used mAb-L243 to identify Staphylococcus aureus and Salmonella enterica serovar Typhimurium peptides binding to cattle and swine macrophage MHC-II-DR molecules using flow cytometry, mass spectrometry and two immunopurification techniques. Antibody cross-reactivity led to identifying expressed MHC-II-DR molecules, together with 10 Staphylococcus aureus peptides in cattle and 13 S. enterica serovar Typhimurium peptides in swine. Such data demonstrates that MHC-II-DR expression and immunocapture approaches using L243 mAb represents a viable strategy for flow cytometry and immunopeptidomics analysis of bovine and swine antigen-presenting cells.


Assuntos
Anticorpos Monoclonais , Macrófagos , Salmonella typhimurium , Staphylococcus aureus , Animais , Bovinos , Suínos/imunologia , Staphylococcus aureus/imunologia , Anticorpos Monoclonais/imunologia , Macrófagos/imunologia , Salmonella typhimurium/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Reações Cruzadas/imunologia , Citometria de Fluxo , Espectrometria de Massas , Camundongos
17.
Biochemistry (Mosc) ; 89(3): 574-582, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38648774

RESUMO

Rabies is a zoonotic disease with high lethality. Most human deaths are associated with the bites received from dogs and cats. Vaccination is the most effective method of preventing rabies disease in both animals and humans. In this study, the ability of an adjuvant based on recombinant Salmonella typhimurium flagellin to increase protective activity of the inactivated rabies vaccine in mice was evaluated. A series of inactivated dry culture vaccine for dogs and cats "Rabikan" (strain Shchelkovo-51) with addition of an adjuvant at various dilutions were used. The control preparation was a similar series of inactivated dry culture vaccine without an adjuvant. Protective activity of the vaccine preparations was evaluated by the NIH potency test, which is the most widely used and internationally recommended method for testing effectiveness of the inactivated rabies vaccines. The value of specific activity of the tested rabies vaccine when co-administered with the adjuvant was significantly higher (48.69 IU/ml) than that of the vaccine without the adjuvant (3.75 IU/ml). Thus, recombinant flagellin could be considered as an effective adjuvant in the composition of future vaccine preparations against rabies virus.


Assuntos
Adjuvantes Imunológicos , Flagelina , Vacina Antirrábica , Raiva , Vacinas de Produtos Inativados , Vacina Antirrábica/imunologia , Vacina Antirrábica/administração & dosagem , Animais , Flagelina/imunologia , Camundongos , Raiva/prevenção & controle , Raiva/imunologia , Vacinas de Produtos Inativados/imunologia , Cães , Vírus da Raiva/imunologia , Salmonella typhimurium/imunologia , Feminino , Gatos
18.
Poult Sci ; 103(5): 103569, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447310

RESUMO

Non-typhoidal Salmonella infection is a significant health and economic burden in poultry industry. Developing an oral vaccine to induce robust mucosal immunity in the intestines of birds, especially cross protection against different Salmonella serotypes is challenging. Therefore, a potent oral vaccine platform that can mitigate different serotypes of Salmonella is warranted for the poultry industry. We reported earlier that the Salmonella enteritidis (SE) immunogenic outer membrane proteins (OMPs) and flagellin (FLA) entrapped in mannose chitosan nanoparticles (OMPs-FLA-mCS NPs) administered prime-boost (d-3 and 3-wk later) by oral inoculation elicits mucosal immunity and reduces challenge SE colonization by over 1 log10 CFU in birds. In this study, we sought to evaluate whether the SE antigens containing OMPs-FLA-mCS NPs vaccine induces cross-protection against Salmonella typhimurium (ST) in broilers. Our data indicated that the OMPs-FLA-mCS NPs vaccine induced higher cross-protective antibody responses compared to commercial Poulvac ST vaccine (contains a modified-live ST bacterium). Particularly, OMPs-FLA-mCS-NP vaccine elicited OMPs and FLA antigens specific increased production of secretory IgA and IgY antibodies in samples collected at both post-vaccination and post-challenge timepoints compared to commercial vaccine group. Notably, the vaccine reduced the challenge ST bacterial load by 0.8 log10 CFU in the cecal content, which was comparable to the outcome of Poulvac ST vaccination. In conclusion, our data suggested that orally administered OMPs-FLA-mCS-NP SE vaccine elicited cross protective mucosal immune responses against ST colonization in broilers. Thus, this candidate vaccine could be a viable option replacing the existing both live and killed Salmonella vaccines for birds.


Assuntos
Galinhas , Quitosana , Proteção Cruzada , Nanopartículas , Doenças das Aves Domésticas , Salmonelose Animal , Vacinas contra Salmonella , Salmonella enteritidis , Salmonella typhimurium , Animais , Galinhas/imunologia , Salmonella enteritidis/imunologia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/imunologia , Salmonelose Animal/prevenção & controle , Salmonelose Animal/imunologia , Quitosana/administração & dosagem , Quitosana/farmacologia , Vacinas contra Salmonella/imunologia , Vacinas contra Salmonella/administração & dosagem , Nanopartículas/administração & dosagem , Salmonella typhimurium/imunologia , Administração Oral , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia
19.
Microb Pathog ; 175: 105959, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36581307

RESUMO

The growing emergence of resistant bacteria is the current global concern for the humans and animals. Vaccination could be the desirable method to preventing such infectious diseases. Safe and effective vaccines are urgently needed to manage and prevent Salmonella contamination. Subunit vaccines are safe approaches for the protection against Salmonella spp. The bioinformatics methods were performed to determine the gene structure. Gene cassette (rLPSI) was ordered in pET28a (+), and cloned into E.coli BL21 (DE3), and the recombinant protein was expressed using IPTG (1 mM). Mice were immunized by subcutaneous administration of recombinant protein. Then, the mice were challenged by oral administration of 100LD50 of live S. Typhimurium. The Codon adaptation index of the chimeric gene was multiplied by 0.92. Validation results showed that >90% of residues lie in the desired or extra allowed area of the Ramachandran plot. The recombinant protein (65.9 kDa) was expressed in E.coli. Antibody titers in vaccinated mice were significantly different from those in the control groups. Recombinant protein immunization of the mice provided 90% and 70% protection against 10LD50 and 100LD50 of S. Typhimurium, respectively. In general, the results showed the high efficiency of rLPSI chimeric protein as a protective antigen against S. Typhimurium infection. The rLPSI chimeric protein could be an effective recombinant vaccine candidate against S. Typhimurium infection, but more research is needed.


Assuntos
Proteínas de Escherichia coli , Vacinas contra Salmonella , Salmonella typhimurium , Animais , Camundongos , Anticorpos Antibacterianos/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Escherichia coli/genética , Imunização , Camundongos Endogâmicos BALB C , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes/genética , Salmonella typhimurium/genética , Salmonella typhimurium/imunologia , Vacinas Atenuadas , Vacinas Sintéticas
20.
Nature ; 609(7926): 348-353, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35978195

RESUMO

The mammalian immune system uses various pattern recognition receptors to recognize invaders and host damage and transmits this information to downstream immunometabolic signalling outcomes. Laccase domain-containing 1 (LACC1) protein is an enzyme highly expressed in inflammatory macrophages and serves a central regulatory role in multiple inflammatory diseases such as inflammatory bowel diseases, arthritis and clearance of microbial infection1-4. However, the biochemical roles required for LACC1 functions remain largely undefined. Here we elucidated a shared biochemical function of LACC1 in mice and humans, converting L-citrulline to L-ornithine (L-Orn) and isocyanic acid and serving as a bridge between proinflammatory nitric oxide synthase (NOS2) and polyamine immunometabolism. We validated the genetic and mechanistic connections among NOS2, LACC1 and ornithine decarboxylase 1 (ODC1) in mouse models and bone marrow-derived macrophages infected by Salmonella enterica Typhimurium. Strikingly, LACC1 phenotypes required upstream NOS2 and downstream ODC1, and Lacc1-/- chemical complementation with its product L-Orn significantly restored wild-type activities. Our findings illuminate a previously unidentified pathway in inflammatory macrophages, explain why its deficiency may contribute to human inflammatory diseases and suggest that L-Orn could serve as a nutraceutical to ameliorate LACC1-associated immunological dysfunctions such as arthritis or inflammatory bowel disease.


Assuntos
Inflamação , Peptídeos e Proteínas de Sinalização Intracelular , Macrófagos , Óxido Nítrico Sintase Tipo II , Animais , Artrite/imunologia , Artrite/metabolismo , Citrulina/metabolismo , Cianatos/metabolismo , Humanos , Inflamação/enzimologia , Inflamação/imunologia , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Óxido Nítrico Sintase Tipo II/metabolismo , Ornitina/metabolismo , Ornitina Descarboxilase/metabolismo , Poliaminas/metabolismo , Salmonella typhimurium/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...