Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.047
Filtrar
1.
Science ; 384(6700): 1091-1095, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38843321

RESUMO

Successive cleavages of amyloid precursor protein C-terminal fragment with 99 residues (APP-C99) by γ-secretase result in amyloid-ß (Aß) peptides of varying lengths. Most cleavages have a step size of three residues. To elucidate the underlying mechanism, we determined the atomic structures of human γ-secretase bound individually to APP-C99, Aß49, Aß46, and Aß43. In all cases, the substrate displays the same structural features: a transmembrane α-helix, a three-residue linker, and a ß-strand that forms a hybrid ß-sheet with presenilin 1 (PS1). Proteolytic cleavage occurs just ahead of the substrate ß-strand. Each cleavage is followed by unwinding and translocation of the substrate α-helix by one turn and the formation of a new ß-strand. This mechanism is consistent with existing biochemical data and may explain the cleavages of other substrates by γ-secretase.


Assuntos
Secretases da Proteína Precursora do Amiloide , Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide , Presenilina-1 , Humanos , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/química , Especificidade por Substrato , Presenilina-1/química , Presenilina-1/metabolismo , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/química , Proteólise , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/química , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Cristalografia por Raios X , Modelos Moleculares
2.
Cardiovasc Toxicol ; 24(6): 587-597, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38691303

RESUMO

Vascular lesions frequently arise as complication in patients diagnosed with diabetes mellitus (DM). Presently, percutaneous coronary intervention (PCI) and antithrombotic therapy serve as primary treatments. However, in-stent restenosis persists as a challenging clinical issue following PCI, lacking sustained and effective treatment. Linarin (LN) exhibits diverse pharmacological activities and is regarded as a potential drug for treating various diseases, including DM. But its specific role in restenosis after vascular injury in DM patients remains unclear. A rat model of diabetes-related restenosis was established to evaluate the role of LN on neointimal hyperplasia. Vascular smooth muscle cells (VSMCs) stimulated by high glucose (HG, 30 mM) underwent LN treatment. Additionally, an overexpression plasmid of A disintegrin and metalloproteinases (ADAM10) was constructed to transfect VSMCs. We employed CCK-8, Brdu, wound-healing scratch, and transwell migration assays to evaluate the proliferation and migration of VSMCs. Furthermore, western blot and immunofluorescence assays were utilized to investigate the expressions of ADAM10 and the downstream Notch signaling pathway in vivo and in vitro models. LN notably alleviated intimal hyperplasia after vascular injury in DM rats and reduced the protein expression of ADAM10, alongside its downstream Notch1 signaling pathway-related proteins (Notch1, NICD and Hes1) in rat carotid artery tissues. LN effectively suppressed the proliferation and migration of VSMCs induced by HG, downregulating the protein expression of ADAM10, Notch1, NICD and Hes1. Moreover, our findings indicated that ADAM10 overexpression significantly reversed LN's effects on proliferation, migration, and the expression of Notch1 signaling pathway-related proteins in HG-treated VSMCs. LN demonstrates potential therapeutic efficacy in addressing restenosis after diabetic-related vascular injury, with the ADAM10 mediated Notch signaling pathway playing a pivotal role.


Assuntos
Proteína ADAM10 , Secretases da Proteína Precursora do Amiloide , Lesões das Artérias Carótidas , Movimento Celular , Proliferação de Células , Diabetes Mellitus Experimental , Proteínas de Membrana , Músculo Liso Vascular , Miócitos de Músculo Liso , Neointima , Ratos Sprague-Dawley , Transdução de Sinais , Animais , Proteína ADAM10/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Músculo Liso Vascular/enzimologia , Movimento Celular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/enzimologia , Proliferação de Células/efeitos dos fármacos , Masculino , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Células Cultivadas , Lesões das Artérias Carótidas/patologia , Lesões das Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/tratamento farmacológico , Lesões das Artérias Carótidas/enzimologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Hiperplasia , Receptores Notch/metabolismo , Receptor Notch1/metabolismo , Fatores de Transcrição HES-1/metabolismo , Fatores de Transcrição HES-1/genética , Modelos Animais de Doenças , Ratos , Reestenose Coronária/patologia , Reestenose Coronária/etiologia , Reestenose Coronária/metabolismo , Reestenose Coronária/prevenção & controle
3.
Drug Dev Res ; 85(4): e22214, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38816986

RESUMO

In this study, the synthesis of N-(5,6-methylenedioxybenzothiazole-2-yl)-2-[(substituted)thio/piperazine]acetamide/propanamide derivatives (3a-3k) and to investigate their acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and ß-secretase 1 (BACE-1) inhibition activity were aimed. Mass, 1H NMR, and 13C NMR spectra were utilized to determine the structure of the synthesized compounds. Compounds 3b, 3c, 3f, and 3j showed AChE inhibitory activity which compound 3c (IC50 = 0.030 ± 0.001 µM) showed AChE inhibitory activity as high as the reference drug donepezil (IC50 = 0.0201 ± 0.0010 µM). Conversely, none of the compounds showed BChE activity. Compounds 3c and 3j showed the highest BACE-1 inhibitory activity and IC50 value was found as 0.119 ± 0.004 µM for compound 3j whereas IC50 value was 0.110 ± 0.005 µM for donepezil, which is one of the reference substance. Molecular docking studies have been carried out using the data retrieved from the server of the Protein Data Bank (PDBID: 4EY7 and 2ZJM). Using in silico approach behavior active compounds (3c and 3j) and their binding modes clarified.


Assuntos
Acetilcolinesterase , Secretases da Proteína Precursora do Amiloide , Butirilcolinesterase , Inibidores da Colinesterase , Simulação de Acoplamento Molecular , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Butirilcolinesterase/metabolismo , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Humanos , Relação Estrutura-Atividade , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Acetamidas/síntese química , Acetamidas/farmacologia , Acetamidas/química , Piperazinas/farmacologia , Piperazinas/química , Piperazinas/síntese química
4.
Int J Mol Sci ; 25(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38791263

RESUMO

Stroke and Alzheimer's disease (AD) are prevalent age-related diseases; however, the relationship between these two diseases remains unclear. In this study, we aimed to investigate the ability of melatonin, a hormone produced by the pineal gland, to alleviate the effects of ischemic stroke leading to AD by observing the pathogenesis of AD hallmarks. We utilized SH-SY5Y cells under the conditions of oxygen-glucose deprivation (OGD) and oxygen-glucose deprivation and reoxygenation (OGD/R) to establish ischemic stroke conditions. We detected that hypoxia-inducible factor-1α (HIF-1α), an indicator of ischemic stroke, was highly upregulated at both the protein and mRNA levels under OGD conditions. Melatonin significantly downregulated both HIF-1α mRNA and protein expression under OGD/R conditions. We detected the upregulation of ß-site APP-cleaving enzyme 1 (BACE1) mRNA and protein expression under both OGD and OGD/R conditions, while 10 µM of melatonin attenuated these effects and inhibited beta amyloid (Aß) production. Furthermore, we demonstrated that OGD/R conditions were able to activate the BACE1 promoter, while melatonin inhibited this effect. The present results indicate that melatonin has a significant impact on preventing the aberrant development of ischemic stroke, which can lead to the development of AD, providing new insight into the prevention of AD and potential stroke treatments.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Melatonina , Neuroblastoma , Melatonina/farmacologia , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/etiologia , Doença de Alzheimer/patologia , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Linhagem Celular Tumoral , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Ácido Aspártico Endopeptidases/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Glucose/metabolismo , Peptídeos beta-Amiloides/metabolismo , Oxigênio/metabolismo , Hipóxia Celular/efeitos dos fármacos , Hipóxia/metabolismo
5.
Molecules ; 29(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38792065

RESUMO

A previous study reported that the ethanolic extract of the edible fern, Diplazium esculentum (Retz.) Sw. (DE), obtained from a non-optimized extraction condition exhibited anti-Alzheimer's disease (AD) properties through the inhibition of a rate-limiting enzyme in amyloid peptide formation, ß-secretase-1 (BACE-1). Nevertheless, a non-optimized or suboptimal extraction may lead to several issues, such as a reduction in extraction efficiency and increased time and plant materials. In this study, extraction of the DE was optimized to obtain appropriate BACE-1 inhibition using a Box-Behnken design (BBD) and response surface methodology (RSM). Data revealed that the optimal extraction condition was 70% (v/v) aqueous ethanol, 50 min extraction time, 30 °C extraction temperature, and 1:30 g/mL solid/liquid ratio, giving BACE-1 inhibition at 56.33%. In addition, the extract also exhibited significant antioxidant activities compared to the non-optimized extraction. Metabolomic phytochemical profiles and targeted phytochemical analyses showed that kaempferol, quercetin, and their derivatives as well as rosmarinic acid were abundant in the extract. The optimized DE extract also acted synergistically with donepezil, an AD drug suppressing BACE-1 activities. Data received from Drosophila-expressing human amyloid precursor proteins (APPs) and BACE-1, representing the amyloid hypothesis, showed that the optimized DE extract penetrated the fly brains, suppressed BACE-1 activities, and improved locomotor functions. The extract quenched the expression of glutathione S transferase D1 (GSTD1), inositol-requiring enzyme (IRE-1), and molecular chaperone-binding immunoglobulin (Bip), while donepezil suppressed these genes and other genes involved in antioxidant and endoplasmic reticulum (ER) stress response, including superoxide dismutase type 1 (SOD1), activating transcription factor 6 (ATF-6), and protein kinase R-like endoplasmic reticulum kinase (PERK). To sum up, the optimized extraction condition reduced extraction time while resulting in higher phytochemicals, antioxidants, and BACE-1 inhibitors.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Antioxidantes , Compostos Fitoquímicos , Extratos Vegetais , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Doença de Alzheimer/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Gleiquênias/química , Humanos , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/metabolismo
6.
Eur J Med Chem ; 271: 116450, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38701714

RESUMO

The complexity and multifaceted nature of Alzheimer's disease (AD) have driven us to further explore quinazoline scaffolds as multi-targeting agents for AD treatment. The lead optimization strategy was utilized in designing of new series of derivatives (AK-1 to AK-14) followed by synthesis, characterization, and pharmacological evaluation against human cholinesterase's (hChE) and ß-secretase (hBACE-1) enzymes. Amongst them, compounds AK-1, AK-2, and AK-3 showed good and significant inhibitory activity against both hAChE and hBACE-1 enzymes with favorable permeation across the blood-brain barrier. The most active compound AK-2 revealed significant propidium iodide (PI) displacement from the AChE-PAS region and was non-neurotoxic against SH-SY5Y cell lines. The lead molecule (AK-2) also showed Aß aggregation inhibition in a self- and AChE-induced Aß aggregation, Thioflavin-T assay. Further, compound AK-2 significantly ameliorated Aß-induced cognitive deficits in the Aß-induced Morris water maze rat model and demonstrated a significant rescue in eye phenotype in the Aꞵ-phenotypic drosophila model of AD. Ex-vivo immunohistochemistry (IHC) analysis on hippocampal rat brains showed reduced Aß and BACE-1 protein levels. Compound AK-2 suggested good oral absorption via pharmacokinetic studies and displayed a good and stable ligand-protein interaction in in-silico molecular modeling analysis. Thus, the compound AK-2 can be regarded as a lead molecule and should be investigated further for the treatment of AD.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Peptídeos beta-Amiloides , Inibidores da Colinesterase , Desenho de Fármacos , Quinazolinas , Quinazolinas/farmacologia , Quinazolinas/síntese química , Quinazolinas/química , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Humanos , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Acetilcolinesterase/metabolismo , Ratos , Relação Estrutura-Atividade , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Estrutura Molecular , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Relação Dose-Resposta a Droga , Butirilcolinesterase/metabolismo , Masculino
7.
Exp Neurol ; 377: 114805, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38729552

RESUMO

Staufen-1 (STAU1) is a double-stranded RNA-binding protein (RBP) involved in a variety of pathological conditions. In this study, we investigated the potential role of STAU1 in Alzheimer's disease (AD), in which two hallmarks are well-established as cerebral ß-amyloid protein (Aß) deposition and Tau-centered neurofibrillary tangles. We found that STAU1 protein level was significantly increased in cells that stably express full-length APP and the brain of APP/PS1 mice, an animal model of AD. STAU1 knockdown, as opposed to overexpression, significantly decreased the protein levels of ß-amyloid converting enzyme 1 (BACE1) and Aß. We further found that STAU1 extended the half-life of the BACE1 mRNA through binding to the 3' untranslated region (3'UTR). Transcriptome analysis revealed that STAU1 enhanced the expression of growth arrest and DNA damage 45 ß (GADD45B) upstream of P38 MAPK signaling, which contributed to STAU1-induced regulation of Tau phosphorylation at Ser396 and Thr181. Together, STAU1 promoted amyloidogenesis by inhibiting BACE1 mRNA decay, and augmented Tau phosphorylation through activating GADD45B in relation to P38 MAPK. Targeting STAU1 that acts on both amyloidogenesis and tauopathy may serve as an optimistic approach for AD treatment.


Assuntos
Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases , Proteínas de Ligação a RNA , Proteínas tau , Animais , Proteínas tau/metabolismo , Proteínas tau/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Camundongos , Fosforilação , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Ácido Aspártico Endopeptidases/metabolismo , Ácido Aspártico Endopeptidases/genética , Humanos , Camundongos Transgênicos , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Células Cultivadas , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética
8.
Arch Dermatol Res ; 316(6): 269, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38795191

RESUMO

Skin cutaneous melanoma (SKCM) is the skin malignancy with the highest mortality rate, and its morbidity rate is on the rise worldwide. Smoking is an independent marker of poor prognosis in melanoma. The α5-nicotinic acetylcholine receptor (α5-nAChR), one of the receptors for nicotine, is involved in the proliferation, migration and invasion of SKCM cells. Nicotine has been reported to promote the expression of a disintegrin and metalloproteinase 10 (ADAM10), which is the key gene involved in melanoma progression. Here, we explored the link between α5-nAChR and ADAM10 in nicotine-associated cutaneous melanoma. α5-nAChR expression was correlated with ADAM10 expression and lower survival in SKCM. α5-nAChR mediated nicotine-induced ADAM10 expression via STAT3. The α5-nAChR/ADAM10 signaling axis was involved in the stemness and migration of SKCM cells. Furthermore, α5-nAChR expression was associated with ADAM10 expression, EMT marker expression and stemness marker expression in nicotine-related mice homograft tissues. These results suggest the role of the α5-nAChR/ADAM10 signaling pathway in nicotine-induced melanoma progression.


Assuntos
Proteína ADAM10 , Secretases da Proteína Precursora do Amiloide , Movimento Celular , Progressão da Doença , Melanoma , Proteínas de Membrana , Nicotina , Receptores Nicotínicos , Fator de Transcrição STAT3 , Transdução de Sinais , Neoplasias Cutâneas , Proteína ADAM10/metabolismo , Proteína ADAM10/genética , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/metabolismo , Fator de Transcrição STAT3/metabolismo , Humanos , Animais , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Nicotina/efeitos adversos , Transdução de Sinais/efeitos dos fármacos , Melanoma/patologia , Melanoma/metabolismo , Melanoma/induzido quimicamente , Camundongos , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Masculino , Melanoma Maligno Cutâneo , Feminino , Proliferação de Células/efeitos dos fármacos
9.
J Alzheimers Dis ; 99(2): 431-445, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38701146

RESUMO

Given continued failure of BACE1 inhibitor programs at symptomatic and prodromal stages of Alzheimer's disease (AD), clinical trials need to target the earlier preclinical stage. However, trial design is complex in this population with negative diagnosis of classical hippocampal amnesia on standard memory tests. Besides recent advances in brain imaging, electroencephalogram, and fluid-based biomarkers, new cognitive markers should be established for earlier diagnosis that can optimize recruitment to BACE1 inhibitor trials in presymptomatic AD. Notably, accelerated long-term forgetting (ALF) is emerging as a sensitive cognitive measure that can discriminate between asymptomatic individuals with high risks for developing AD and healthy controls. ALF is a form of declarative memory impairment characterized by increased forgetting rates over longer delays (days to months) despite normal storage within the standard delays of testing (20-60 min). Therefore, ALF may represent a harbinger of preclinical dementia and the impairment of systems memory consolidation, during which memory traces temporarily stored in the hippocampus become gradually integrated into cortical networks. This review provides an overview of the utility of ALF in a rational design of next-generation BACE1 inhibitor trials in preclinical AD. I explore potential mechanisms underlying ALF and relevant early-stage biomarkers useful for BACE1 inhibitor evaluation, including synaptic protein alterations, astrocytic dysregulation and neuron hyperactivity in the hippocampal-cortical network. Furthermore, given the physiological role of the isoform BACE2 as an AD-suppressor gene, I also discuss the possible association between the poor selectivity of BACE1 inhibitors and their side effects (e.g., cognitive worsening) in prior clinical trials.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases , Diagnóstico Precoce , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/diagnóstico , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/metabolismo , Animais
10.
Nat Commun ; 15(1): 4479, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802343

RESUMO

Deposition of amyloid-ß (Aß) peptides in the brain is a hallmark of Alzheimer's disease. Aßs are generated through sequential proteolysis of the amyloid precursor protein by the γ-secretase complexes (GSECs). Aß peptide length, modulated by the Presenilin (PSEN) and APH-1 subunits of GSEC, is critical for Alzheimer's pathogenesis. Despite high relevance, mechanistic understanding of the proteolysis of Aß, and its modulation by APH-1, remain incomplete. Here, we report cryo-EM structures of human GSEC (PSEN1/APH-1B) reconstituted into lipid nanodiscs in apo form and in complex with the intermediate Aß46 substrate without cross-linking. We find that three non-conserved and structurally divergent APH-1 regions establish contacts with PSEN1, and that substrate-binding induces concerted rearrangements in one of the identified PSEN1/APH-1 interfaces, providing structural basis for APH-1 allosteric-like effects. In addition, the GSEC-Aß46 structure reveals an interaction between Aß46 and loop 1PSEN1, and identifies three other H-bonding interactions that, according to functional validation, are required for substrate recognition and efficient sequential catalysis.


Assuntos
Secretases da Proteína Precursora do Amiloide , Peptídeos beta-Amiloides , Microscopia Crioeletrônica , Proteínas de Membrana , Presenilina-1 , Humanos , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/química , Presenilina-1/metabolismo , Presenilina-1/química , Presenilina-1/genética , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/química , Proteínas de Membrana/metabolismo , Proteínas de Membrana/química , Endopeptidases/metabolismo , Endopeptidases/química , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/química , Ligação Proteica , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/química , Doença de Alzheimer/metabolismo , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/química , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/química , Modelos Moleculares , Proteólise
11.
Adipocyte ; 13(1): 2339418, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38706095

RESUMO

A Disintegrin And Metalloproteinase domain-containing protein 10 (ADAM10), is involved in several metabolic and inflammatory pathways. We speculated that ADAM10 plays a modulatory role in adipose tissue inflammation and metabolism. To this end, we studied adipose tissue-specific ADAM10 knock-out mice (aKO). While young, regular chow diet-fed aKO mice showed increased insulin sensitivity, following prolonged (33 weeks) high-fat diet (HFD) exposure, aKO mice developed obesity and insulin resistance. Compared to controls, aKO mice showed less inflammatory adipokine profile despite the significant increase in adiposity. In brown adipose tissue, aKO mice on HFD had changes in CD8+ T cell populations indicating a lesser inflammatory pattern. Following HFD, both aKO and control littermates demonstrated decreased adipose tissue pro-inflammatory macrophages, and increased anti-inflammatory accumulation, without differences between the genotypes. Collectively, our observations indicate that selective deletion of ADAM10 in adipocytes results in a mitigated inflammatory response, leading to increased insulin sensitivity in young mice fed with regular diet. This state of insulin sensitivity, following prolonged HFD, facilitates energy storage resulting in increased fat accumulation which ultimately leads to the development of a phenotype of obesity and insulin resistance. In conclusion, the data indicate that ADAM10 has a modulatory effect of inflammation and whole-body energy metabolism.


Assuntos
Proteína ADAM10 , Tecido Adiposo , Dieta Hiperlipídica , Camundongos Knockout , Animais , Masculino , Camundongos , Proteína ADAM10/metabolismo , Proteína ADAM10/genética , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Dieta Hiperlipídica/efeitos adversos , Inflamação/metabolismo , Resistência à Insulina , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Obesidade/metabolismo , Obesidade/etiologia , Fenótipo
12.
Cell Death Dis ; 15(5): 367, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806484

RESUMO

Mitochondria dysfunctions and mitophagy failure have been associated with several Alzheimer's disease (AD) related molecular actors including amyloid beta (Aß) and recently the amyloid precursor protein-C terminal fragments (APP-CTFs). The efficacy of the mitophagy process in neurons relies on regulated mitochondrial transport along axons involving a complex molecular machinery. The contribution of the amyloid precursor protein (APP) and its derived fragments to the mitochondrial transport machinery alterations in AD have not been investigated before. We report herein a change of the expression of mitochondrial transport proteins (SNPH and Miro1), motor adapters (TRANK1 and TRAK2), and components of the dynein and kinesin motors (i.e., IC1,2 and Kif5 (A, B, C) isoforms) by endogenous APP and by overexpression of APP carrying the familial Swedish mutation (APPswe). We show that APP-CTFs and Aß concomitantly regulate the expression of a set of transport proteins as demonstrated in APPswe cells treated with ß- and γ-secretase inhibitors and in cells Knock-down for presenilin 1 and 2. We further report the impact of APP-CTFs on the expression of transport proteins in AAV-injected C99 mice brains. Our data also indicate that both Aß oligomers (Aßo) and APP-CTFs impair the colocalization of mitochondria and transport proteins. This has been demonstrated in differentiated SH-SY5Y naive cells treated with Aßo and in differentiated SH-SY5Y and murine primary neurons expressing APPswe and treated with the γ-secretase inhibitor. Importantly, we uncover that the expression of a set of transport proteins is modulated in a disease-dependent manner in 3xTgAD mice and in human sporadic AD brains. This study highlights molecular mechanisms underlying mitochondrial transport defects in AD that likely contribute to mitophagy failure and disease progression.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Mitocôndrias , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Mitocôndrias/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Cinesinas/metabolismo , Transporte Biológico , Mitofagia , Proteínas do Tecido Nervoso , Proteínas rho de Ligação ao GTP , Peptídeos e Proteínas de Sinalização Intracelular
13.
Stem Cell Res Ther ; 15(1): 118, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659053

RESUMO

BACKGROUND: Cerebral organoids (COs) are the most advanced in vitro models that resemble the human brain. The use of COs as a model for Alzheimer's disease (AD), as well as other brain diseases, has recently gained attention. This study aimed to develop a human AD CO model using normal human pluripotent stem cells (hPSCs) that recapitulates the pathological phenotypes of AD and to determine the usefulness of this model for drug screening. METHODS: We established AD hPSC lines from normal hPSCs by introducing genes that harbor familial AD mutations, and the COs were generated using these hPSC lines. The pathological features of AD, including extensive amyloid-ß (Aß) accumulation, tauopathy, and neurodegeneration, were analyzed using enzyme-linked immunosorbent assay, Amylo-Glo staining, thioflavin-S staining, immunohistochemistry, Bielschowsky's staining, and western blot analysis. RESULTS: The AD COs exhibited extensive Aß accumulation. The levels of paired helical filament tau and neurofibrillary tangle-like silver deposits were highly increased in the AD COs. The number of cells immunoreactive for cleaved caspase-3 was significantly increased in the AD COs. In addition, treatment of AD COs with BACE1 inhibitor IV, a ß-secretase inhibitor, and compound E, a γ-secretase inhibitor, significantly attenuated the AD pathological features. CONCLUSION: Our model effectively recapitulates AD pathology. Hence, it is a valuable platform for understanding the mechanisms underlying AD pathogenesis and can be used to test the efficacy of anti-AD drugs.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Organoides , Células-Tronco Pluripotentes , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Organoides/metabolismo , Organoides/patologia , Células-Tronco Pluripotentes/metabolismo , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Proteínas tau/metabolismo , Proteínas tau/genética , Ácido Aspártico Endopeptidases/metabolismo , Ácido Aspártico Endopeptidases/genética , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Biológicos
14.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(2): 207-212, 2024 Apr 18.
Artigo em Chinês | MEDLINE | ID: mdl-38595235

RESUMO

OBJECTIVE: To explore the expression relationship and significance of long chain non-coding RNA nuclear-enriched abundant transcript 1 (LncRNA NEAT1) and miR-27a-3p in serum and cerebrospinal fluid of patients with Alzheimer disease (AD). METHODS: Sixty-six AD patients received by the department of neurology of our hospital from October 2019 to September 2021 were gathered, according to the clinical dementia rating scale score, they were grouped into mild group (≤1 point, n=41) and moderate-to-severe group (>1 point, n=25). Another 66 cases of serum and cerebrospinal fluid samples from outpatient physical examination personnel were regarded as the control group. The general information on all subjects was recorded and cognition was assessed; real-time quantitative PCR was performed to measure the expression levels of miR-27a-3p and NEAT1 in serum and cerebrospinal fluid; enzyme-linked immunosorbent assay was performed to measure the protein levels of ß-amyloid precursor protein cleaving enzyme 1 (BACE1), ß-amyloid (Aß) 40 and Aß42 in cerebrospinal fluid; Spearman' s method was performed to analyze the correlation of serum miR-27a-3p and NEAT1 levels with mini-mental state examination (MMSE) and montreal cognitive assessment (MoCA) scores; Pearson method was performed to analyze the correlation between serum miR-27a-3p and NEAT1 levels and Aß deposition standard uptake value ratio (SUVR) and cerebrospinal fluid miR-27a-3p, NEAT1, BACE1, Aß42 and Aß40 levels. RESULTS: The MMSE score [21 (17, 25), 9(7, 11) vs. 27 (21, 34)], MoCA score [17 (12, 21), 10 (7, 13) vs. 27 (21, 31)], serum miR-27a-3p level (0.55±0.13, 0.46±0.06 vs. 0.97±0.22), cerebrospinal fluid miR-27a-3p (0.48±0.10, 0.35±0.10 vs. 1.03±0.31), Aß42 levels [(303.55±36.77) ng/L, (231.45±34.14) ng/L vs. (499.99±53.63) ng/L] and Aß42/Aß40 ratio (0.030±0.008, 0.022±0.007 vs. 0.048±0.010) of AD patients in mild group and moderate-to-severe group were all lower than those in the control group, and the moderate-to-severe group were lower than the mild group (all P < 0.05); the serum NEAT1 level (2.31±0.64, 3.13±0.76 vs. 1.05±0.20), SUVR (1.50±0.29, 1.76±0.52 vs. 0.74±0.15), and cerebrospinal fluid NEAT1 (3.51±1.24, 4.30±1.65 vs. 1.01±0.23) and BACE1 levels [(55.78±5.98) µg/L, (72.32±16.08) µg/L vs. (21.39±3.73) µg/L] were higher than those in the control group, and the moderate-to-severe group were higher than the mild group (all P < 0.05). Serum NEAT1 level in AD patients was positively correlated with SUVR, cerebrospinal fluid NEAT1 and BACE1 (r=0.350, 0.606, 0.341, P < 0.05), and negatively correlated with MMSE score and MoCA score (r=-0.473, -0.482, all P < 0.05); serum miR-27a-3p level was positively correlated with cerebrospinal fluid miR-27a-3p level, MMSE score and MoCA score (r=0.695, 0.424, 0.412, all P < 0.05), and negatively correlated with SUVR and cerebrospinal fluid BACE1 level (r=-0.521, -0.447, all P < 0.05). CONCLUSION: The expression trends of NEAT1 and miR-27a-3p in the serum and cerebrospinal fluid of AD patients are consistent, the level of NEAT1 is increased, and the level of miR-27a-3p is decreased. The levels of the two are negatively correlated, which is related to the degree of Aß deposition in the brain of AD patients and is involved in the progression of AD.


Assuntos
Doença de Alzheimer , MicroRNAs , RNA Longo não Codificante , Humanos , Doença de Alzheimer/genética , Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases , Fragmentos de Peptídeos/líquido cefalorraquidiano , MicroRNAs/genética
15.
Biomed Pharmacother ; 174: 116577, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593704

RESUMO

INTRODUCTION: Total ginsenosides (TG), the major active constituents of ginseng, have been proven to be beneficial in treatment of Alzheimer's disease (AD). However, the underlying mechanism of TG remains unclear. METHODS: APP/PS1 mice and N2a/APP695 cells were used as in vivo and in vitro model, respectively. Morris water maze (MWM) was used to investigate behavioral changes of mice; neuronal pathological changes were assessed by hematoxylin and eosin (H&E) and nissl staining; immunofluorescence staining was used to examine amyloid beta (Aß) deposition; Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) were used to examine the expression of relative amyloidogenic genes and proteins. Moreover, the antagonist of PPARγ, GW9662, was used to determine whether the effects of TG on Aß production were associated with PPARγ activity. RESULTS: TG treatment increased the spatial learning and memory abilities of APP/PS1 mice while decreasing the Aß accumulation in the cortex and hippocampus. In N2a/APP695 cells, TG treatment attenuated the secretion of Aß1-40 and Aß1-42 acting as an PPARγ agonist by inhibiting the translocation of NF-κB p65. Additionally, TG treatment also decreased the expression of amyloidogenic pathway related gene BACE1, PS1 and PS2. CONCLUSIONS: TG treatment reduced the production of Aß both in vivo and in vitro. Activating PPARγ might be a potential therapeutic target of TG in facilitating Aß clearance and ameliorating cognitive deficiency in APP/PS1 mice.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Ginsenosídeos , PPAR gama , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Ginsenosídeos/farmacologia , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fragmentos de Peptídeos/metabolismo , PPAR gama/efeitos dos fármacos , PPAR gama/metabolismo , Presenilina-1/genética
16.
Cancer Lett ; 590: 216845, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38589004

RESUMO

Pancreatic adenocarcinoma (PDAC) is highly resistant to conventional chemotherapeutic interventions, resulting in exceptionally low survival rates. The limited efficacy can in part be attributed to dose limitations and treatment cessation urged by toxicity of currently used chemotherapy. The advent of targeted delivery strategies has kindled hope for circumventing off-target toxicity. We have previously reported a PDAC-specific mesoporous silica nanoparticle (MSN) containing a protease linker responsive to ADAM9, a PDAC-enriched extracellularly deposited protease. Upon loading with paclitaxel these ADAM9-MSNs reduced side effects both in vitro and in vivo, however, disappointing antitumor efficacy was observed in vivo. Here, we propose that an efficient uptake of MSNs by tumor cells might underlie the lack of antitumor efficacy of MSNs functionalized with linker responsive to extracellular proteases. Harnessing this premise to improve antitumor efficacy, we performed an in silico analysis to identify PDAC-enriched intracellular proteases. We report the identification of BACE2, CAPN2 and DPP3 as PDAC enriched intracellular proteases, and report the synthesis of BACE2-, CAPN2- and DPP3-responsive MSNs. Extensive preclinical assessments revealed that paclitaxel-loaded CAPN2- and DPP3-MSNs exhibit high PDAC specificity in vitro as opposed to free paclitaxel. The administration of paclitaxel-loaded CAPN2- and DPP3-MSNs in vivo confirmed the reduction of leukopenia and induced no organ damage. Promisingly, in two mouse models CAPN2-MSNs reduced tumor growth at least as efficiently as free paclitaxel. Taken together, our results pose CAPN2-MSNs as a promising nanocarrier for the targeted delivery of chemotherapeutics in PDAC.


Assuntos
Calpaína , Portadores de Fármacos , Nanopartículas , Paclitaxel , Neoplasias Pancreáticas , Dióxido de Silício , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Dióxido de Silício/química , Humanos , Animais , Paclitaxel/farmacologia , Paclitaxel/administração & dosagem , Nanopartículas/química , Linhagem Celular Tumoral , Calpaína/metabolismo , Portadores de Fármacos/química , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos , Porosidade , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Camundongos Nus , Feminino
17.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38673989

RESUMO

Mertk, a type I receptor tyrosine kinase and member of the TAM family of receptors, has important functions in promoting efferocytosis and resolving inflammation under physiological conditions. In recent years, Mertk has also been linked to pathophysiological roles in cancer, whereby, in several cancer types, including solid cancers and leukemia/lymphomas. Mertk contributes to oncogenic features of proliferation and cell survival as an oncogenic tyrosine kinase. In addition, Mertk expressed on macrophages, including tumor-associated macrophages, promotes immune evasion in cancer and is suggested to act akin to a myeloid checkpoint inhibitor that skews macrophages towards inhibitory phenotypes that suppress host T-cell anti-tumor immunity. In the present study, to better understand the post-translational regulation mechanisms controlling Mertk expression in monocytes/macrophages, we used a PMA-differentiated THP-1 cell model to interrogate the regulation of Mertk expression and developed a novel Mertk reporter cell line to study the intracellular trafficking of Mertk. We show that PMA treatment potently up-regulates Mertk as well as components of the ectodomain proteolytic processing platform ADAM17, whereas PMA differentially regulates the canonical Mertk ligands Gas6 and Pros1 (Gas6 is down-regulated and Pros1 is up-regulated). Under non-stimulated homeostatic conditions, Mertk in PMA-differentiated THP1 cells shows active constitutive proteolytic cleavage by the sequential activities of ADAM17 and the Presenilin/γ-secretase complex, indicating that Mertk is cleaved homeostatically by the combined sequential action of ADAM17 and γ-secretase, after which the cleaved intracellular fragment of Mertk is degraded in a proteasome-dependent mechanism. Using chimeric Flag-Mertk-EGFP-Myc reporter receptors, we confirm that inhibitors of γ-secretase and MG132, which inhibits the 26S proteasome, stabilize the intracellular fragment of Mertk without evidence of nuclear translocation. Finally, the treatment of cells with active γ-carboxylated Gas6, but not inactive Warfarin-treated non-γ-carboxylated Gas6, regulates a distinct proteolytic itinerary-involved receptor clearance and lysosomal proteolysis. Together, these results indicate that pleotropic and complex proteolytic activities regulate Mertk ectodomain cleavage as a homeostatic negative regulatory event to safeguard against the overactivation of Mertk.


Assuntos
Proteína ADAM17 , Secretases da Proteína Precursora do Amiloide , Proteólise , c-Mer Tirosina Quinase , Humanos , c-Mer Tirosina Quinase/metabolismo , c-Mer Tirosina Quinase/genética , Proteína ADAM17/metabolismo , Proteína ADAM17/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células THP-1 , Macrófagos/metabolismo , Proteína S/metabolismo , Monócitos/metabolismo , Acetato de Tetradecanoilforbol/farmacologia
18.
ACS Nano ; 18(18): 11753-11768, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38649866

RESUMO

The association between dysfunctional microglia and amyloid-ß (Aß) is a fundamental pathological event and increases the speed of Alzheimer's disease (AD). Additionally, the pathogenesis of AD is intricate and a single drug may not be enough to achieve a satisfactory therapeutic outcome. Herein, we reported a facile and effective gene therapy strategy for the modulation of microglia function and intervention of Aß anabolism by ROS-responsive biomimetic exosome-liposome hybrid nanovesicles (designated as TSEL). The biomimetic nanovesicles codelivery ß-site amyloid precursor protein cleaving enzyme-1 (BACE1) siRNA (siBACE1) and TREM2 plasmid (pTREM2) gene drug efficiently penetrate the blood-brain barrier and enhance the drug accumulation at AD lesions with the help of exosomes homing ability and angiopep-2 peptides. Specifically, an upregulation of TREM2 expression can reprogram microglia from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 phenotype while also restoring its capacity to phagocytose Aß and its nerve repair function. In addition, siRNA reduces the production of Aß plaques at the source by knocking out the BACE1 gene, which is expected to further enhance the therapeutic effect of AD. The in vivo study suggests that TSEL through the synergistic effect of two gene drugs can ameliorate APP/PS1 mice cognitive impairment by regulating the activated microglial phenotype, reducing the accumulation of Aß, and preventing the retriggering of neuroinflammation. This strategy employs biomimetic nanovesicles for the delivery of dual nucleic acids, achieving synergistic gene therapy for AD, thus offering more options for the treatment of AD.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases , Materiais Biomiméticos , Terapia Genética , Doença de Alzheimer/terapia , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Animais , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Camundongos , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/química , Técnicas de Transferência de Genes , Microglia/metabolismo , Microglia/efeitos dos fármacos , Microglia/patologia , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Humanos , Lipossomos/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Biomimética , Exossomos/metabolismo , Exossomos/química , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética
19.
Neurol Res ; 46(5): 416-425, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38577889

RESUMO

OBJECTIVE: Previous studies have revealed that Propane-2-sulfonic acid octadec-9-enyl-amide(N15) exerts a protective role in the inflammatory response after ischemic stroke and in neuronal damage. However, little is known about N15 in Alzheimer's disease (AD). The aim of this study was to investigate the effects of N15 on AD and explore the underlying molecular mechanism. METHODS: AD mice model was established by lateral ventricular injection with Aß25-35. N15 was daily intraperitoneal administered for 28 days. Morris Water Maze was used to evaluate the neurocognitive function of the mice. The expression of PPARα/γ, brain-derived neurotrophic factor (BDNF), Neurotrophin-3 (NT3), ADAM10, PS1 and BACE1 were measured by qPCR. Aß amyloid in the hippocampus was measured by Congo red assay. Toluidine blue staining was used to detect the neuronal apoptosis. Protein levels of ADAM10, PS1 and BACE1 were determined using immunoblotting. RESULTS: N15 treatment significantly reduced neurocognitive dysfunction, which also significantly activated the expression of PPARα/γ at an optimal dose of 200 mg/kg. Administration of N15 alleviated the formation of Aß amyloid in the hippocampus of AD mice, enhanced the BDNF mRNA expression, decreased the mRNA and protein levels of PS1 and BACE1, upregulated ADAM10 mRNA and protein levels. CONCLUSION: N15 exerts its neuroprotective effects through the activation of PPARα/γ and may be a potential drug for the treatment of AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , PPAR alfa , Ácidos Sulfônicos , Animais , Masculino , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos , PPAR alfa/agonistas , PPAR alfa/metabolismo , PPAR gama/agonistas , PPAR gama/metabolismo , Ácidos Sulfônicos/farmacologia , Agonistas PPAR-gama/farmacologia
20.
Eur J Med Chem ; 271: 116409, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38663285

RESUMO

Inspite of established symptomatic relief drug targets, a multi targeting approach is highly in demand to cure Alzheimer's disease (AD). Simultaneous inhibition of cholinesterase (ChE), ß secretase-1 (BACE-1) and Dyrk1A could be promising in complete cure of AD. A series of 18 diaryl triazine based molecular hybrids were successfully designed, synthesized, and tested for their hChE, hBACE-1, Dyrk1A and Aß aggregation inhibitory potentials. Compounds S-11 and S-12 were the representative molecules amongst the series with multi-targeted inhibitory effects. Compound S-12 showed hAChE inhibition (IC50 value = 0.486 ± 0.047 µM), BACE-1 inhibition (IC50 value = 0.542 ± 0.099 µM) along with good anti-Aß aggregation effects in thioflavin-T assay. Only compound S-02 of the series has shown Dyrk1A inhibition (IC50 value = 2.000 ± 0.360 µM). Compound S-12 has also demonstrated no neurotoxic liabilities against SH-SY5Y as compared to donepezil. The in vivo behavioral studies of the compound S-12 in the scopolamine- and Aß-induced animal models also demonstrated attanuation of learning and memory functions in rats models having AD-like characteristics. The ex vivo studies, on the rat hippocampal brain demonstrated reduction in certain biochemical markers of the AD brain with a significant increase in ACh level. The Western blot and Immunohistochemistry further revealed lower tau, APP and BACE-1 molecular levels. The drosophilla AD model also revealed improved eyephenotype after treatment with compound S-12. The molecular docking studies of the compounds suggested that compound S-12 was interacting with the ChE-PAS & CAS residues and catalytic dyad residues of the BACE-1 enzymes. The 100 ns molecular dynamics simulation studies of the ligand-protein complexed with hAChE and hBACE-1 also suggested stable ligand-protein confirmation throughout the simulation run.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Inibidores da Colinesterase , Desenho de Fármacos , Triazinas , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Humanos , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Ratos , Relação Estrutura-Atividade , Acetilcolinesterase/metabolismo , Triazinas/química , Triazinas/farmacologia , Triazinas/síntese química , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/metabolismo , Estrutura Molecular , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Simulação de Acoplamento Molecular , Quinases Dyrk , Relação Dose-Resposta a Droga , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Masculino , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Butirilcolinesterase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA