Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.128
Filtrar
1.
Physiol Rep ; 12(16): e70001, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39161054

RESUMO

Brain-derived neurotrophic factor (BDNF) content and signaling has been identified as one potential regulator of amyloid precursor protein (APP) processing. Recently published work has demonstrated that BDNF reduces BACE1 activity while also elevating the inhibition of GSK3ß in the prefrontal cortex of male C57BL/6J mice. These results provide evidence that BDNF alters APP processing by reducing BACE1 activity, which may act through GSK3ß inhibition. The purpose of this study was to further explore the role of GSK3ß in BDNF-induced regulation on BACE1 activity. We utilized a cell culture and an in vitro activity assay model to pharmacologically target BDNF and GSK3ß signaling to confirm its involvement in the BDNF response. Treatment of differentiated SH-SY5Y neuronal cells with 75 ng/mL BDNF resulted in elevated pTrkB content, pAkt content, pGSK3ß content, and reduced BACE1 activity. An in vitro BACE1 activity assay utilizing mouse prefrontal cortex (n = 6/group) supplemented with BDNF, BDNF + ANA12 (Trkb antagonist), or BDNF + wortmannin (Akt inhibitor) demonstrated that BDNF reduced BACE1 activity; however, in the presence of TrkB or Akt inhibition, this effect was abolished. An in vitro ADAM10 activity assay utilizing mouse prefrontal cortex (n = 6/group) supplemented with BDNF, BDNF + ANA12 (Trkb antagonist), or BDNF + wortmannin (Akt inhibitor) demonstrated that BDNF did not alter ADAM10 activity. However, inhibiting BDNF signaling reduced ADAM10 activity. Collectively these studies suggest that GSK3ß inhibition may be necessary for BDNF-induced reductions in BACE1 activity. These findings will allow for the optimization of future therapeutic strategies by selectively targeting TrkB activation and GSK3ß inhibition.


Assuntos
Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases , Fator Neurotrófico Derivado do Encéfalo , Glicogênio Sintase Quinase 3 beta , Camundongos Endogâmicos C57BL , Neurônios , Proteínas Proto-Oncogênicas c-akt , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Humanos , Ácido Aspártico Endopeptidases/metabolismo , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Camundongos , Masculino , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Transdução de Sinais , Linhagem Celular Tumoral , Receptor trkB/metabolismo , Receptor trkB/antagonistas & inibidores , Glicoproteínas de Membrana/metabolismo
2.
J Clin Invest ; 134(16)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39145447

RESUMO

Production, aggregation, and clearance of the amyloid ß peptide (Aß) are important processes governing the initial pathogenesis of Alzheimer's disease (AD). Inhibition of ß-site amyloid precursor protein (APP) cleaving enzyme (BACE1) (one of two key proteases responsible for Aß production) as an AD-therapeutic approach so far has failed to yield a successful drug. BACE1 and its homologue BACE2 are frequently inhibited by the same inhibitors. Several genetic and cerebral organoid modeling studies suggest that BACE2 has dose-dependent AD-suppressing activity, which makes its unwanted inhibition potentially counterproductive for AD treatment. The in vivo effects of an unwanted cross inhibition of BACE2 have so far been impossible to monitor because of the lack of an easily accessible pharmacodynamic marker specific for BACE2 cleavage. In this issue of the JCI, work led by Stefan F. Lichtenthaler identifies soluble VEGFR3 (sVEGFR3) as a pharmacodynamic plasma marker for BACE2 activity not shared with BACE1.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/metabolismo , Ácido Aspártico Endopeptidases/genética , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Animais , Peptídeos beta-Amiloides/metabolismo , Biomarcadores/metabolismo
3.
Science ; 385(6708): adl2992, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39088624

RESUMO

Late-onset Alzheimer's disease (LOAD) is the most common form of Alzheimer's disease (AD). However, modeling sporadic LOAD that endogenously captures hallmark neuronal pathologies such as amyloid-ß (Aß) deposition, tau tangles, and neuronal loss remains an unmet need. We demonstrate that neurons generated by microRNA (miRNA)-based direct reprogramming of fibroblasts from individuals affected by autosomal dominant AD (ADAD) and LOAD in a three-dimensional environment effectively recapitulate key neuropathological features of AD. Reprogrammed LOAD neurons exhibit Aß-dependent neurodegeneration, and treatment with ß- or γ-secretase inhibitors before (but not subsequent to) Aß deposit formation mitigated neuronal death. Moreover inhibiting age-associated retrotransposable elements in LOAD neurons reduced both Aß deposition and neurodegeneration. Our study underscores the efficacy of modeling late-onset neuropathology of LOAD through high-efficiency miRNA-based neuronal reprogramming.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Reprogramação Celular , Fibroblastos , MicroRNAs , Neurônios , Esferoides Celulares , Humanos , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Reprogramação Celular/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Neurônios/metabolismo , Neurônios/patologia
4.
Molecules ; 29(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39125105

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder marked by the accumulation of amyloid-beta plaques and hyperphosphorylated tau proteins, leading to cognitive decline and neuronal death. However, despite extensive research, there are still no effective treatments for this condition. In this study, a series of chloride-substituted Ramalin derivatives is synthesized to optimize their antioxidant, anti-inflammatory, and their potential to target key pathological features of Alzheimer's disease. The effect of the chloride position on these properties is investigated, specifically examining the potential of these derivatives to inhibit tau aggregation and beta-site amyloid precursor protein cleaving enzyme 1 (BACE-1) activity. Our findings demonstrate that several derivatives, particularly RA-3Cl, RA-4Cl, RA-26Cl, RA-34Cl, and RA-35Cl, significantly inhibit tau aggregation with inhibition rates of approximately 50%. For BACE-1 inhibition, Ramalin and RA-4Cl also significantly decrease BACE-1 expression in N2a cells by 40% and 38%, respectively, while RA-23Cl and RA-24Cl showed inhibition rates of 30% and 35% in SH-SY5Y cells. These results suggest that chloride-substituted Ramalin derivatives possess promising multifunctional properties for AD treatment, warranting further investigation and optimization for clinical applications.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases , Proteínas tau , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Humanos , Proteínas tau/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/metabolismo , Cloretos/química , Antioxidantes/farmacologia , Antioxidantes/síntese química , Antioxidantes/química , Agregados Proteicos/efeitos dos fármacos , Linhagem Celular Tumoral , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química
5.
Cell Mol Life Sci ; 81(1): 333, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112663

RESUMO

Synaptic dysfunction is an early pathogenic event leading to cognitive decline in Huntington's disease (HD). We previously reported that the active ADAM10 level is increased in the HD cortex and striatum, causing excessive proteolysis of the synaptic cell adhesion protein N-Cadherin. Conversely, ADAM10 inhibition is neuroprotective and prevents cognitive decline in HD mice. Although the breakdown of cortico-striatal connection has been historically linked to cognitive deterioration in HD, dendritic spine loss and long-term potentiation (LTP) defects identified in the HD hippocampus are also thought to contribute to the cognitive symptoms of the disease. The aim of this study is to investigate the contribution of ADAM10 to spine pathology and LTP defects of the HD hippocampus. We provide evidence that active ADAM10 is increased in the hippocampus of two mouse models of HD, leading to extensive proteolysis of N-Cadherin, which has a widely recognized role in spine morphology and synaptic plasticity. Importantly, the conditional heterozygous deletion of ADAM10 in the forebrain of HD mice resulted in the recovery of spine loss and ultrastructural synaptic defects in CA1 pyramidal neurons. Meanwhile, normalization of the active ADAM10 level increased the pool of synaptic BDNF protein and activated ERK neuroprotective signaling in the HD hippocampus. We also show that the ADAM10 inhibitor GI254023X restored LTP defects and increased the density of mushroom spines enriched with GluA1-AMPA receptors in HD hippocampal neurons. Notably, we report that administration of the TrkB antagonist ANA12 to HD hippocampal neurons reduced the beneficial effect of GI254023X, indicating that the BDNF receptor TrkB contributes to mediate the neuroprotective activity exerted by ADAM10 inhibition in HD. Collectively, these findings indicate that ADAM10 inhibition coupled with TrkB signaling represents an efficacious strategy to prevent hippocampal synaptic plasticity defects and cognitive dysfunction in HD.


Assuntos
Proteína ADAM10 , Secretases da Proteína Precursora do Amiloide , Hipocampo , Doença de Huntington , Potenciação de Longa Duração , Proteínas de Membrana , Receptor trkB , Transdução de Sinais , Animais , Proteína ADAM10/metabolismo , Proteína ADAM10/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Camundongos , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Hipocampo/metabolismo , Hipocampo/patologia , Receptor trkB/metabolismo , Receptor trkB/antagonistas & inibidores , Potenciação de Longa Duração/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças , Caderinas/metabolismo , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/patologia , Neuroproteção , Masculino , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/genética , Camundongos Knockout
6.
Int J Mol Sci ; 25(13)2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38999999

RESUMO

This study investigates the clustering patterns of human ß-secretase 1 (BACE-1) inhibitors using complex network methodologies based on various distance functions, including Euclidean, Tanimoto, Hamming, and Levenshtein distances. Molecular descriptor vectors such as molecular mass, Merck Molecular Force Field (MMFF) energy, Crippen partition coefficient (ClogP), Crippen molar refractivity (MR), eccentricity, Kappa indices, Synthetic Accessibility Score, Topological Polar Surface Area (TPSA), and 2D/3D autocorrelation entropies are employed to capture the diverse properties of these inhibitors. The Euclidean distance network demonstrates the most reliable clustering results, with strong agreement metrics and minimal information loss, indicating its robustness in capturing essential structural and physicochemical properties. Tanimoto and Hamming distance networks yield valuable clustering outcomes, albeit with moderate performance, while the Levenshtein distance network shows significant discrepancies. The analysis of eigenvector centrality across different networks identifies key inhibitors acting as hubs, which are likely critical in biochemical pathways. Community detection results highlight distinct clustering patterns, with well-defined communities providing insights into the functional and structural groupings of BACE-1 inhibitors. The study also conducts non-parametric tests, revealing significant differences in molecular descriptors, validating the clustering methodology. Despite its limitations, including reliance on specific descriptors and computational complexity, this study offers a comprehensive framework for understanding molecular interactions and guiding therapeutic interventions. Future research could integrate additional descriptors, advanced machine learning techniques, and dynamic network analysis to enhance clustering accuracy and applicability.


Assuntos
Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/química , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/química , Ácido Aspártico Endopeptidases/metabolismo , Humanos , Análise por Conglomerados , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Inibidores de Proteases/metabolismo , Modelos Moleculares , Relação Estrutura-Atividade , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia
7.
Infect Immun ; 92(8): e0013324, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-38953668

RESUMO

Staphylococcus aureus α-hemolysin (Hla) is a pore-forming toxin critical for the pathogenesis of skin and soft tissue infections, which causes the pathognomonic lesion of cutaneous necrosis (dermonecrosis) in mouse models. To determine the mechanism by which dermonecrosis develops during S. aureus skin infection, mice were given control serum, Hla-neutralizing antiserum, or an inhibitor of Hla receptor [A-disintegrin and metalloprotease 10 (ADAM10) inhibitor] followed by subcutaneous infection by S. aureus, and the lesions were evaluated using immunohistochemistry and immunofluorescence. Hla induced apoptosis in the vascular endothelium at 6 hours post-infection (hpi), followed by apoptosis in keratinocytes at 24 hpi. The loss of vascular endothelial (VE)-cadherin expression preceded the loss of epithelial-cadherin expression. Hla also induced hypoxia in the keratinocytes at 24 hpi following vascular injury. Treatment with Hla-neutralizing antibody or ADAM10 inhibitor attenuated early cleavage of VE-cadherin, cutaneous hypoxia, and dermonecrosis. These findings suggest that Hla-mediated vascular injury with cutaneous hypoxia underlies the pathogenesis of S. aureus-induced dermonecrosis.


Assuntos
Proteína ADAM10 , Toxinas Bacterianas , Caderinas , Proteínas Hemolisinas , Queratinócitos , Necrose , Staphylococcus aureus , Animais , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/toxicidade , Camundongos , Toxinas Bacterianas/toxicidade , Toxinas Bacterianas/metabolismo , Staphylococcus aureus/patogenicidade , Queratinócitos/microbiologia , Queratinócitos/metabolismo , Proteína ADAM10/metabolismo , Caderinas/metabolismo , Apoptose , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Antígenos CD/metabolismo , Proteínas de Membrana/metabolismo , Infecções Cutâneas Estafilocócicas/microbiologia , Infecções Cutâneas Estafilocócicas/patologia , Infecções Cutâneas Estafilocócicas/imunologia , Pele/patologia , Pele/microbiologia , Feminino , Endotélio Vascular/patologia , Endotélio Vascular/microbiologia , Endotélio Vascular/metabolismo , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/patologia , Modelos Animais de Doenças
8.
J Med Chem ; 67(12): 10152-10167, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38842406

RESUMO

The prevailing but not undisputed amyloid cascade hypothesis places the ß-site of APP cleaving enzyme 1 (BACE1) center stage in Alzheimer's Disease pathogenesis. Here, we investigated functional properties of BACE1 with novel tag- and antibody-free labeling tools, which are conjugates of the BACE1-inhibitor IV (also referred to as C3) linked to different impermeable Alexa Fluor dyes. We show that these fluorescent small molecules bind specifically to BACE1, with a 1:1 labeling stoichiometry at their orthosteric site. This is a crucial property especially for single-molecule and super-resolution microscopy approaches, allowing characterization of the dyes' labeling capabilities in overexpressing cell systems and in native neuronal tissue. With multiple colors at hand, we evaluated BACE1-multimerization by Förster resonance energy transfer (FRET) acceptor-photobleaching and single-particle imaging of native BACE1. In summary, our novel fluorescent inhibitors, termed Alexa-C3, offer unprecedented insights into protein-protein interactions and diffusion behavior of BACE1 down to the single molecule level.


Assuntos
Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/metabolismo , Humanos , Corantes Fluorescentes/química , Animais , Células HEK293 , Imagem Individual de Molécula/métodos
9.
J Clin Invest ; 134(16)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888964

RESUMO

The ß-secretase ß-site APP cleaving enzyme (BACE1) is a central drug target for Alzheimer's disease. Clinically tested, BACE1-directed inhibitors also block the homologous protease BACE2. Yet little is known about physiological BACE2 substrates and functions in vivo. Here, we identify BACE2 as the protease shedding the lymphangiogenic vascular endothelial growth factor receptor 3 (VEGFR3). Inactivation of BACE2, but not BACE1, inhibited shedding of VEGFR3 from primary human lymphatic endothelial cells (LECs) and reduced release of the shed, soluble VEGFR3 (sVEGFR3) ectodomain into the blood of mice, nonhuman primates, and humans. Functionally, BACE2 inactivation increased full-length VEGFR3 and enhanced VEGFR3 signaling in LECs and also in vivo in zebrafish, where enhanced migration of LECs was observed. Thus, this study identifies BACE2 as a modulator of lymphangiogenic VEGFR3 signaling and demonstrates the utility of sVEGFR3 as a pharmacodynamic plasma marker for BACE2 activity in vivo, a prerequisite for developing BACE1-selective inhibitors for safer prevention of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases , Transdução de Sinais , Receptor 3 de Fatores de Crescimento do Endotélio Vascular , Peixe-Zebra , Animais , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/enzimologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/metabolismo , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Células Endoteliais/metabolismo , Células Endoteliais/enzimologia , Células Endoteliais/patologia , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Peixe-Zebra/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
10.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230481, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38853546

RESUMO

Group I metabotropic glutamate receptors (Gp1-mGluRs) exert a host of effects on cellular functions, including enhancement of protein synthesis and the associated facilitation of long-term potentiation (LTP) and induction of long-term depression (LTD). However, the complete cascades of events mediating these events are not fully understood. Gp1-mGluRs trigger α-secretase cleavage of amyloid precursor protein, producing soluble amyloid precursor protein-α (sAPPα), a known regulator of LTP. However, the α-cleavage of APP has not previously been linked to Gp1-mGluR's actions. Using rat hippocampal slices, we found that the α-secretase inhibitor tumour necrosis factor-alpha protease inhibitor-1, which inhibits both disintegrin and metalloprotease 10 (ADAM10) and 17 (ADAM17) activity, blocked or reduced the ability of the Gp1-mGluR agonist (R,S)-3,5-dihydroxyphenylglycine (DHPG) to stimulate protein synthesis, metaplastically prime future LTP and elicit sub-maximal LTD. In contrast, the specific ADAM10 antagonist GI254023X did not affect the regulation of plasticity, suggesting that ADAM17 but not ADAM10 is involved in mediating these effects of DHPG. However, neither drug affected LTD that was strongly induced by either high-concentration DHPG or paired-pulse synaptic stimulation. Our data suggest that moderate Gp1-mGluR activation triggers α-secretase sheddase activity targeting APP or other membrane-bound proteins as part of a more complex signalling cascade than previously envisioned. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Assuntos
Secretases da Proteína Precursora do Amiloide , Hipocampo , Potenciação de Longa Duração , Depressão Sináptica de Longo Prazo , Biossíntese de Proteínas , Receptores de Glutamato Metabotrópico , Animais , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ratos , Receptores de Glutamato Metabotrópico/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , Biossíntese de Proteínas/efeitos dos fármacos , Hipocampo/metabolismo , Proteína ADAM17/metabolismo , Proteína ADAM10/metabolismo , Ratos Sprague-Dawley , Masculino , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Proteínas de Membrana/metabolismo
11.
J Med Chem ; 67(12): 10248-10262, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38848667

RESUMO

Herein, we describe the design and synthesis of γ-secretase modulator (GSM) clinical candidate PF-06648671 (22) for the treatment of Alzheimer's disease. A key component of the design involved a 2,5-cis-tetrahydrofuran (THF) linker to impart conformational rigidity and lock the compound into a putative bioactive conformation. This effort was guided using a pharmacophore model since crystallographic information was not available for the membrane-bound γ-secretase protein complex at the time of this work. PF-06648671 achieved excellent alignment of whole cell in vitro potency (Aß42 IC50 = 9.8 nM) and absorption, distribution, metabolism, and excretion (ADME) parameters. This resulted in favorable in vivo pharmacokinetic (PK) profile in preclinical species, and PF-06648671 achieved a human PK profile suitable for once-a-day dosing. Furthermore, PF-06648671 was found to have favorable brain availability in rodent, which translated into excellent central exposure in human and robust reduction of amyloid ß (Aß) 42 in cerebrospinal fluid (CSF).


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Peptídeos beta-Amiloides , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Doença de Alzheimer/tratamento farmacológico , Humanos , Animais , Peptídeos beta-Amiloides/metabolismo , Ratos , Relação Estrutura-Atividade , Camundongos , Masculino , Descoberta de Drogas , Furanos/farmacologia , Furanos/farmacocinética , Furanos/síntese química , Furanos/química , Furanos/uso terapêutico , Ratos Sprague-Dawley , Encéfalo/metabolismo
12.
J Comput Chem ; 45(23): 2024-2033, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38725239

RESUMO

In binding free energy calculations, simulations must sample all relevant conformations of the system in order to obtain unbiased results. For instance, different ligands can bind to different metastable states of a protein, and if these protein conformational changes are not sampled in relative binding free energy calculations, the contribution of these states to binding is not accounted for and thus calculated binding free energies are inaccurate. In this work, we investigate the impact of different beta-sectretase 1 (BACE1) protein conformations obtained from x-ray crystallography on the binding of BACE1 inhibitors. We highlight how these conformational changes are not adequately sampled in typical molecular dynamics simulations. Furthermore, we show that insufficient sampling of relevant conformations induces substantial error in relative binding free energy calculations, as judged by a variation in calculated relative binding free energies up to 2 kcal/mol depending on the starting protein conformation. These results emphasize the importance of protein conformational sampling and pose this BACE1 system as a challenge case for further method development in the area of enhanced protein conformational sampling, either in combination with binding calculations or as an endpoint correction.


Assuntos
Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Termodinâmica , Secretases da Proteína Precursora do Amiloide/química , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/química , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/metabolismo , Humanos , Cristalografia por Raios X , Ligantes
13.
Ageing Res Rev ; 98: 102342, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38762102

RESUMO

Alzheimer's disease (AD) is a chronic neurological condition that has become a leading cause of cognitive decline in elder individuals. Hardly any effective medication has been developed to halt the progression of AD due to the disease's complexity. Several theories have been put forward to clarify the mechanisms underlying AD etiology. The identification of amyloid plaques as a hallmark of AD has sparked the development of numerous drugs targeting the players involved in the amyloidogenic pathway, such as the ß-site of amyloid precursor protein cleavage enzyme 1 (BACE1) blockers. Over the last ten years, preclinical and early experimental research has led several pharmaceutical companies to prioritize producing BACE1 inhibitors. Despite all these efforts, earlier discovered inhibitors were discontinued in consideration of another second-generation small molecules and recent BACE1 antagonists failed in the final stages of clinical trials because of the complications associated either with toxicity or effectiveness. In addition to discussing the difficulties associated with development of BACE1 inhibitors, this review aims to provide an overview of BACE1 and offer perspectives on the causes behind the failure of five recent BACE1 inhibitors, that would be beneficial for choosing effective treatment approaches in the future.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases , Humanos , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Ácido Aspártico Endopeptidases/metabolismo , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Animais , Descoberta de Drogas
14.
J Alzheimers Dis ; 99(2): 431-445, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38701146

RESUMO

Given continued failure of BACE1 inhibitor programs at symptomatic and prodromal stages of Alzheimer's disease (AD), clinical trials need to target the earlier preclinical stage. However, trial design is complex in this population with negative diagnosis of classical hippocampal amnesia on standard memory tests. Besides recent advances in brain imaging, electroencephalogram, and fluid-based biomarkers, new cognitive markers should be established for earlier diagnosis that can optimize recruitment to BACE1 inhibitor trials in presymptomatic AD. Notably, accelerated long-term forgetting (ALF) is emerging as a sensitive cognitive measure that can discriminate between asymptomatic individuals with high risks for developing AD and healthy controls. ALF is a form of declarative memory impairment characterized by increased forgetting rates over longer delays (days to months) despite normal storage within the standard delays of testing (20-60 min). Therefore, ALF may represent a harbinger of preclinical dementia and the impairment of systems memory consolidation, during which memory traces temporarily stored in the hippocampus become gradually integrated into cortical networks. This review provides an overview of the utility of ALF in a rational design of next-generation BACE1 inhibitor trials in preclinical AD. I explore potential mechanisms underlying ALF and relevant early-stage biomarkers useful for BACE1 inhibitor evaluation, including synaptic protein alterations, astrocytic dysregulation and neuron hyperactivity in the hippocampal-cortical network. Furthermore, given the physiological role of the isoform BACE2 as an AD-suppressor gene, I also discuss the possible association between the poor selectivity of BACE1 inhibitors and their side effects (e.g., cognitive worsening) in prior clinical trials.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases , Diagnóstico Precoce , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/diagnóstico , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/metabolismo , Animais
15.
Eur J Med Chem ; 271: 116450, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38701714

RESUMO

The complexity and multifaceted nature of Alzheimer's disease (AD) have driven us to further explore quinazoline scaffolds as multi-targeting agents for AD treatment. The lead optimization strategy was utilized in designing of new series of derivatives (AK-1 to AK-14) followed by synthesis, characterization, and pharmacological evaluation against human cholinesterase's (hChE) and ß-secretase (hBACE-1) enzymes. Amongst them, compounds AK-1, AK-2, and AK-3 showed good and significant inhibitory activity against both hAChE and hBACE-1 enzymes with favorable permeation across the blood-brain barrier. The most active compound AK-2 revealed significant propidium iodide (PI) displacement from the AChE-PAS region and was non-neurotoxic against SH-SY5Y cell lines. The lead molecule (AK-2) also showed Aß aggregation inhibition in a self- and AChE-induced Aß aggregation, Thioflavin-T assay. Further, compound AK-2 significantly ameliorated Aß-induced cognitive deficits in the Aß-induced Morris water maze rat model and demonstrated a significant rescue in eye phenotype in the Aꞵ-phenotypic drosophila model of AD. Ex-vivo immunohistochemistry (IHC) analysis on hippocampal rat brains showed reduced Aß and BACE-1 protein levels. Compound AK-2 suggested good oral absorption via pharmacokinetic studies and displayed a good and stable ligand-protein interaction in in-silico molecular modeling analysis. Thus, the compound AK-2 can be regarded as a lead molecule and should be investigated further for the treatment of AD.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Peptídeos beta-Amiloides , Inibidores da Colinesterase , Desenho de Fármacos , Quinazolinas , Quinazolinas/farmacologia , Quinazolinas/síntese química , Quinazolinas/química , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Humanos , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Acetilcolinesterase/metabolismo , Ratos , Relação Estrutura-Atividade , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Estrutura Molecular , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Relação Dose-Resposta a Droga , Butirilcolinesterase/metabolismo , Masculino
16.
Drug Dev Res ; 85(4): e22214, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38816986

RESUMO

In this study, the synthesis of N-(5,6-methylenedioxybenzothiazole-2-yl)-2-[(substituted)thio/piperazine]acetamide/propanamide derivatives (3a-3k) and to investigate their acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and ß-secretase 1 (BACE-1) inhibition activity were aimed. Mass, 1H NMR, and 13C NMR spectra were utilized to determine the structure of the synthesized compounds. Compounds 3b, 3c, 3f, and 3j showed AChE inhibitory activity which compound 3c (IC50 = 0.030 ± 0.001 µM) showed AChE inhibitory activity as high as the reference drug donepezil (IC50 = 0.0201 ± 0.0010 µM). Conversely, none of the compounds showed BChE activity. Compounds 3c and 3j showed the highest BACE-1 inhibitory activity and IC50 value was found as 0.119 ± 0.004 µM for compound 3j whereas IC50 value was 0.110 ± 0.005 µM for donepezil, which is one of the reference substance. Molecular docking studies have been carried out using the data retrieved from the server of the Protein Data Bank (PDBID: 4EY7 and 2ZJM). Using in silico approach behavior active compounds (3c and 3j) and their binding modes clarified.


Assuntos
Acetilcolinesterase , Secretases da Proteína Precursora do Amiloide , Butirilcolinesterase , Inibidores da Colinesterase , Simulação de Acoplamento Molecular , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Butirilcolinesterase/metabolismo , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Humanos , Relação Estrutura-Atividade , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Acetamidas/síntese química , Acetamidas/farmacologia , Acetamidas/química , Piperazinas/farmacologia , Piperazinas/química , Piperazinas/síntese química
17.
Molecules ; 29(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38792065

RESUMO

A previous study reported that the ethanolic extract of the edible fern, Diplazium esculentum (Retz.) Sw. (DE), obtained from a non-optimized extraction condition exhibited anti-Alzheimer's disease (AD) properties through the inhibition of a rate-limiting enzyme in amyloid peptide formation, ß-secretase-1 (BACE-1). Nevertheless, a non-optimized or suboptimal extraction may lead to several issues, such as a reduction in extraction efficiency and increased time and plant materials. In this study, extraction of the DE was optimized to obtain appropriate BACE-1 inhibition using a Box-Behnken design (BBD) and response surface methodology (RSM). Data revealed that the optimal extraction condition was 70% (v/v) aqueous ethanol, 50 min extraction time, 30 °C extraction temperature, and 1:30 g/mL solid/liquid ratio, giving BACE-1 inhibition at 56.33%. In addition, the extract also exhibited significant antioxidant activities compared to the non-optimized extraction. Metabolomic phytochemical profiles and targeted phytochemical analyses showed that kaempferol, quercetin, and their derivatives as well as rosmarinic acid were abundant in the extract. The optimized DE extract also acted synergistically with donepezil, an AD drug suppressing BACE-1 activities. Data received from Drosophila-expressing human amyloid precursor proteins (APPs) and BACE-1, representing the amyloid hypothesis, showed that the optimized DE extract penetrated the fly brains, suppressed BACE-1 activities, and improved locomotor functions. The extract quenched the expression of glutathione S transferase D1 (GSTD1), inositol-requiring enzyme (IRE-1), and molecular chaperone-binding immunoglobulin (Bip), while donepezil suppressed these genes and other genes involved in antioxidant and endoplasmic reticulum (ER) stress response, including superoxide dismutase type 1 (SOD1), activating transcription factor 6 (ATF-6), and protein kinase R-like endoplasmic reticulum kinase (PERK). To sum up, the optimized extraction condition reduced extraction time while resulting in higher phytochemicals, antioxidants, and BACE-1 inhibitors.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Antioxidantes , Compostos Fitoquímicos , Extratos Vegetais , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Doença de Alzheimer/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Gleiquênias/química , Humanos , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/metabolismo
18.
J Chem Inf Model ; 64(9): 3855-3864, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38623052

RESUMO

Allosteric modulation plays a critical role in enzyme functionality and requires a deep understanding of the interactions between the active and allosteric sites. γ-Secretase (GS) is a key therapeutic target in the treatment of Alzheimer's disease (AD), through its role in the synthesis of amyloid ß peptides that accumulate in AD patients. This study explores the structure and dynamic effects of GS modulation by E2012 binding, employing well-tempered metadynamics and conventional molecular dynamics simulations across three binding scenarios: (1) GS enzyme with and without L458 inhibitor, (2) the GS-substrate complex together with the modulator E2012 in two different binding modes, and (3) E2012 interacting with a C99 substrate fragment. Our findings reveal that the presence of L458 induces conformational changes that contribute to stabilization of the GS enzyme dynamics, previously reported as a key factor that allowed the resolution of the cryo-EM structure and the enhanced binding of E2012. Furthermore, we identified the most favorable binding site for E2012 within the GS-substrate complex, uncovering significant modulatory effects and a complex network of interactions that influence the position of the substrate for catalysis. In addition, we explore a potential substrate-modulator binding before the formation of the enzyme-substrate complex. The insights gained from our study emphasize the importance of these interactions in the development of potential therapeutic interventions that target the functionality of the GS enzyme in AD.


Assuntos
Alanina/análogos & derivados , Secretases da Proteína Precursora do Amiloide , Simulação de Dinâmica Molecular , Ligação Proteica , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/química , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Especificidade por Substrato , Humanos , Conformação Proteica , Regulação Alostérica/efeitos dos fármacos , Azepinas
19.
Stem Cell Res Ther ; 15(1): 118, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659053

RESUMO

BACKGROUND: Cerebral organoids (COs) are the most advanced in vitro models that resemble the human brain. The use of COs as a model for Alzheimer's disease (AD), as well as other brain diseases, has recently gained attention. This study aimed to develop a human AD CO model using normal human pluripotent stem cells (hPSCs) that recapitulates the pathological phenotypes of AD and to determine the usefulness of this model for drug screening. METHODS: We established AD hPSC lines from normal hPSCs by introducing genes that harbor familial AD mutations, and the COs were generated using these hPSC lines. The pathological features of AD, including extensive amyloid-ß (Aß) accumulation, tauopathy, and neurodegeneration, were analyzed using enzyme-linked immunosorbent assay, Amylo-Glo staining, thioflavin-S staining, immunohistochemistry, Bielschowsky's staining, and western blot analysis. RESULTS: The AD COs exhibited extensive Aß accumulation. The levels of paired helical filament tau and neurofibrillary tangle-like silver deposits were highly increased in the AD COs. The number of cells immunoreactive for cleaved caspase-3 was significantly increased in the AD COs. In addition, treatment of AD COs with BACE1 inhibitor IV, a ß-secretase inhibitor, and compound E, a γ-secretase inhibitor, significantly attenuated the AD pathological features. CONCLUSION: Our model effectively recapitulates AD pathology. Hence, it is a valuable platform for understanding the mechanisms underlying AD pathogenesis and can be used to test the efficacy of anti-AD drugs.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Organoides , Células-Tronco Pluripotentes , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Organoides/metabolismo , Organoides/patologia , Células-Tronco Pluripotentes/metabolismo , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Proteínas tau/metabolismo , Proteínas tau/genética , Ácido Aspártico Endopeptidases/metabolismo , Ácido Aspártico Endopeptidases/genética , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Biológicos
20.
Arch Pharm (Weinheim) ; 357(8): e2400115, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38657203

RESUMO

This study examines the synthesis and evaluation of 11 newly developed compounds as potential anti-Alzheimer's agents that occur via cholinesterase and ß-secretase inhibition. The compounds were tested for their inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) using the modified Ellman method. The results showed that several compounds exhibited significant inhibition of AChE, particularly compounds 6d, 7a, and 7e, which demonstrated high inhibitory activity at lower concentrations, with IC50 values of 0.120, 0.039, and 0.063 µM, respectively. However, the compounds showed limited effectiveness against BChE, with only a few compounds exhibiting moderate inhibition. Compound 7e showed an inhibitory effect against BACE-1 close to that of the standard drug. Structural analysis revealed that the compounds with substituted benzothiazole and thiazole moieties exhibited the most promising inhibitory activity. This study provides valuable insights into the potential of these synthesized derivatives as a treatment against Alzheimer's disease. Moreover, the structure, stability, and properties of the active compounds were further investigated using density functional theory calculations. As a final note, the utilization of molecular docking and molecular dynamics simulation studies allowed us to elucidate the action mechanism of the active compounds and gain insights into the structure-activity relationship against AChE and ß-secretase proteins. These computational techniques provide valuable information on the binding modes, interactions with target enzymes, dynamic behavior, and conformational changes of the compounds, enabling a comprehensive understanding of their biological activity.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Butirilcolinesterase , Inibidores da Colinesterase , Desenho de Fármacos , Simulação de Acoplamento Molecular , Oxidiazóis , Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Estrutura-Atividade , Oxidiazóis/farmacologia , Oxidiazóis/síntese química , Oxidiazóis/química , Butirilcolinesterase/metabolismo , Acetilcolinesterase/metabolismo , Humanos , Estrutura Molecular , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Simulação de Dinâmica Molecular , Relação Dose-Resposta a Droga , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...