Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.231
Filtrar
1.
J Environ Sci (China) ; 150: 134-148, 2025 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-39306390

RESUMO

Biological nitrogen fixation (BNF) is a crucial process that provides bioavailable nitrogen and supports primary production in freshwater lake ecosystems. However, the characteristics of diazotrophic community and nitrogenase activity in freshwater lake sediments remain poorly understood. Here, we investigated the diazotrophic communities and nitrogenase activities in the sediments of three large river-connected freshwater lakes in eastern China using 15N-isotope tracing and nifH sequencing. The sediments in these lakes contained diverse nitrogenase genes that were phylogenetically grouped into Clusters I and III. The diazotrophic communities in the sediments were dominated by stochastic processes in Hongze Lake and Taihu Lake, which had heterogeneous habitats and shallower water depths, while in Poyang Lake, which had deeper water and a shorter hydraulic retention time, the assembly of the diazotrophic community in the sediments was dominated by homogeneous selection processes. Temperature and water depth were also found the key environmental factors affecting the sediment diazotrophic communities. Sediment nitrogenase activities varied in the three lakes and within distinct regions of an individual lake, ranging from 0 to 14.58 nmol/(kg·hr). Nitrogenase activity was significantly correlated with ferric iron, total phosphorus, and organic matter contents. Our results suggested that freshwater lake sediment contain high diversity of nitrogen-fixing microorganisms with potential metabolic diversity, and the community assembly patterns and nitrogenase activities varied with the lake habitat.


Assuntos
Lagos , Fixação de Nitrogênio , Nitrogenase , Lagos/microbiologia , China , Nitrogenase/metabolismo , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Rios/microbiologia , Ecossistema , Filogenia
2.
Geobiology ; 22(5): e12618, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39262196

RESUMO

Thermospores, the dormant resting stages of thermophilic bacteria, have been shown to be frequent but enigmatic components of cold marine sediments around the world. Multiple hypotheses have been proposed to explain their distribution, emphasizing their potential as model organisms for studying microbial dispersal via ocean currents. In the Arctic Ocean, the abundance and diversity of thermospores have previously been assumed to be low. However, this assessment has been based on data mainly from the western fjords of Svalbard, thus leaving most of the Arctic unexplored. Here, we expand the knowledge about the distribution of thermospores in the Arctic Ocean by investigating the abundance and diversity of thermospores in heated shelf sediments from three sites in the outer Laptev Sea. Two of the sites are located in an area with methane-emitting cold seeps with a thermogenic source signature suggestive of an origin in a deep hydrocarbon reservoir, while the third site is a reference site not known to be impacted by seepage. We found that activity of viable thermospore populations was more prominent at one of the investigated seep sites. This finding is supported by both radiotracer growth experiments showing thermophilic, sulfate-reducing activity triggered by heating, as well as 16S gene sequence analyses showing significantly enriched ASVs affiliated to the phylum Firmicutes following high-temperature incubations. An enrichment of the sulfate-reducing, endospore-forming class Desulfotomaculia in heated samples compared to unheated samples was also observed. Furthermore, several ASVs identified at the seep site are closely related to thermospore-producing bacteria associated with the deep biosphere, including hydrocarbon and hydrothermal systems. Based on the combined information from induced activity, estimated abundance, and phylogenetic composition using 16S rRNA gene sequencing, we propose likely source environments and dispersal vectors for thermospores in the Arctic Ocean.


Assuntos
Bactérias , Sedimentos Geológicos , Sedimentos Geológicos/microbiologia , Regiões Árticas , Bactérias/genética , Bactérias/classificação , Temperatura Alta , RNA Ribossômico 16S/genética , Filogenia , Svalbard
3.
Environ Monit Assess ; 196(10): 918, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256206

RESUMO

The impact of pollution on the Ologe Lagoon was assessed by comparing physicochemical properties, hydrocarbon concentrations and microbial community structures of the sediments obtained from distinct sites of the lagoon. The locations were the human activity site (OLHAS), industrial-contaminated sites (OLICS) and relatively undisturbed site (OLPS). The physicochemical properties, heavy metal concentrations and hydrocarbon profiles were determined using standard methods. The microbial community structures of the sediments were determined using shotgun next-generation sequencing (NGS), taxonomic profiling was performed using centrifuge and statistical analysis was done using statistical analysis for metagenomics profile (STAMP) and Microsoft Excel. The result showed acidic pH across all sampling points, while the nitrogen content at OLPS was low (7.44 ± 0.085 mg/L) as compared with OLHAS (44.380 ± 0.962 mg/L) and OLICS (59.485 ± 0.827 mg/L). The levels of the cadmium, lead and nickel in the three sites were above the regulatory limits. The gas chromatography flame ionization detector (GC-FID) profile revealed hydrocarbon contaminations with nC14 tetradecane > alpha xylene > nC9 nonane > acenaphthylene more enriched at OLPS. Structurally, the sediments metagenomes consisted of 43 phyla,75 classes each, 165, 161, 166 orders, 986, 927 and 866 bacterial genera and 1476, 1129, 1327 species from OLHAS, OLICS and OLPS, respectively. The dominant phyla in the sediments were Proteobacteria, Firmicutes, Actinobacteria, and Chloroflexi. The principal component ordination (PCO) showed that OLPS microbial community had a total variance of 87.7% PCO1, setting it apart from OLHAS and OLICS. OLICS and OLHAS were separated by PCO2 accounting for 12.3% variation, and the most polluted site is the OLPS.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Microbiota , Poluentes Químicos da Água , Nigéria , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Metais Pesados/análise , Efeitos Antropogênicos , Bactérias/classificação , Bactérias/genética , Hidrocarbonetos/análise
4.
Microbiome ; 12(1): 176, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39300577

RESUMO

BACKGROUND: The Andean Altiplano hosts a repertoire of high-altitude lakes with harsh conditions for life. These lakes are undergoing a process of desiccation caused by the current climate, leaving terraces exposed to extreme atmospheric conditions and serving as analogs to Martian paleolake basins. Microbiomes in Altiplano lake terraces have been poorly studied, enclosing uncultured lineages and a great opportunity to understand environmental adaptation and the limits of life on Earth. Here we examine the microbial diversity and function in ancient sediments (10.3-11 kyr BP (before present)) from a terrace profile of Laguna Lejía, a sulfur- and metal/metalloid-rich saline lake in the Chilean Altiplano. We also evaluate the physical and chemical changes of the lake over time by studying the mineralogy and geochemistry of the terrace profile. RESULTS: The mineralogy and geochemistry of the terrace profile revealed large water level fluctuations in the lake, scarcity of organic carbon, and high concentration of SO42--S, Na, Cl and Mg. Lipid biomarker analysis indicated the presence of aquatic/terrestrial plant remnants preserved in the ancient sediments, and genome-resolved metagenomics unveiled a diverse prokaryotic community with still active microorganisms based on in silico growth predictions. We reconstructed 591 bacterial and archaeal metagenome-assembled genomes (MAGs), of which 98.8% belonged to previously unreported species. The most abundant and widespread metabolisms among MAGs were the reduction and oxidation of S, N, As, and halogenated compounds, as well as aerobic CO oxidation, possibly as a key metabolic trait in the organic carbon-depleted sediments. The broad redox and CO2 fixation pathways among phylogenetically distant bacteria and archaea extended the knowledge of metabolic capacities to previously unknown taxa. For instance, we identified genomic potential for dissimilatory sulfate reduction in Bacteroidota and α- and γ-Proteobacteria, predicted an enzyme for ammonia oxidation in a novel Actinobacteriota, and predicted enzymes of the Calvin-Benson-Bassham cycle in Planctomycetota, Gemmatimonadota, and Nanoarchaeota. CONCLUSIONS: The high number of novel bacterial and archaeal MAGs in the Laguna Lejía indicates the wide prokaryotic diversity discovered. In addition, the detection of genes in unexpected taxonomic groups has significant implications for the expansion of microorganisms involved in the biogeochemical cycles of carbon, nitrogen, and sulfur. Video Abstract.


Assuntos
Archaea , Bactérias , Variação Genética , Sedimentos Geológicos , Lagos , Lagos/microbiologia , Archaea/genética , Archaea/metabolismo , Archaea/classificação , Sedimentos Geológicos/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bactérias/isolamento & purificação , Chile , Filogenia , Microbiota , Extremófilos/metabolismo , Extremófilos/genética , Extremófilos/classificação , RNA Ribossômico 16S/genética
5.
Sci Rep ; 14(1): 21831, 2024 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294256

RESUMO

Nanomaterials, with their small size, surface characteristics, and antibacterial properties, are extensively employed across environmental, energy, biomedical, agricultural, and other industries. This study examined the antibacterial efficacy of magnesium hydroxide (Mg(OH)2) nanoparticles (NPs) against sulfate-reducing bacteria (SRB) within sediments. The inhibitory effects of two types of Mg(OH)2 NPs with distinct particle sizes (20.3 and 29.6 nm) and concentrations (0-10.0 mg/mL) were examined under optimal treatment conditions. The antibacterial mechanisms of Mg(OH)2 NPs through direct contact and dissolution effects were determined. The results revealed a correlation between the concentration, particle size, and inhibitory activity, with the smallest NPs (20.3 nm) at the highest concentration (10.0 mg/mL) substantially reducing SRB counts from 8.77 ± 0.18 to 6.48 ± 0.13 log10 colony forming units/mL after 6 h treatment. Treatment with high concentrations of Mg(OH)2 NPs induced cellular damage, reduced intracellular lactate dehydrogenase activity, and elevated intracellular catalase activity and H2O2 content, suggesting that the contact effect of NPs stimulated SRB. This leads to oxidative stress response and structural damage to the cell membrane, which has emerged as the primary driver of the antibacterial action of Mg(OH)2 NPs. This study presents a novel nanomaterial that can inhibit and control SRB in natural sedimentary environments.


Assuntos
Antibacterianos , Sedimentos Geológicos , Hidróxido de Magnésio , Sulfatos , Hidróxido de Magnésio/química , Hidróxido de Magnésio/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Sedimentos Geológicos/microbiologia , Sulfatos/química , Sulfatos/farmacologia , Nanopartículas/química , Peróxido de Hidrogênio/farmacologia , Tamanho da Partícula , Bactérias/efeitos dos fármacos , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana
6.
Bioengineered ; 15(1): 2396642, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39219315

RESUMO

Fiberbanks refer to a type of fibrous sediment originated by the forestry and wood pulping industry in Sweden. These anthropogenic sediments are significantly contaminated with potentially toxic elements, and a diverse array of organic pollutants. Additionally, these sediments are of environmental concern due to their potential role in greenhouse gas emissions. Given the environmental risks posed by these sediments, the development of effective remediation strategies is of critical importance. However, no specialized methods have been established yet for the cleanup of this specific type of contaminated sediments. To identify effective fungal species for the mycoremediation of the fiberbank substrate, we performed a detailed screening experiment. In this research, we primarily aimed at assessing both the growth capacity and the proficiency in degrading organic pollutants of 26 native white-rot fungi (WRF) species. These species were sourced from natural forest environments in northern Sweden. The experimental setup involved evaluating the WRF on plates containing fiberbank material with a central Hagem-agar disc to closely monitor the interaction of these species with fiberbank substrates. Among the fungi tested, Laetiporus sulphureus exhibited the highest growth area percentage at 72%, followed by Hymenochaete tabacina at 68% and Diplomitoporus crustulinus at 67%. For the removal of 2-3 ring polycyclic aromatic hydrocarbons (PAHs), Phellinus punctatus led with 68%, with Cystostereum muraii at 57% and Diplomitoporus crustulinus at 49%. Regarding the removal percentage of 4-6 ring PAHs, Diplomitoporus crustulinus showed the highest efficiency at 44%, followed by Phlebia tremellosa at 40% and Phlebiopsis gigantea at 28%.


Assuntos
Biodegradação Ambiental , Suécia , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química
7.
Artigo em Inglês | MEDLINE | ID: mdl-39230938

RESUMO

Three Gram-stain-negative, aerobic, non-motile, chemoheterotrophic, short-rod-shaped bacteria, designated CDY1-MB1T, CDY2-MB3, and BDY3-MB2, were isolated from three marine sediment samples collected in the eastern Pacific Ocean. Phylogenetic analysis based on 16S rRNA gene sequences indicated that these strains were related to the genus Aequorivita and close to the type strain of Aequorivita vitellina F4716T (with similarities of 98.0-98.1%). Strain CDY1-MB1T can grow at 15-37 °C (optimum 30 °C) and in media with pH 6-9 (optimum, pH 7), and tolerate up to 10% (w/v) NaCl. The predominant cellular fatty acids of strain CDY1-MB1T were iso-C15 : 0 (20.7%) and iso-C17 : 0 3-OH (12.8%); the sole respiratory quinone was menaquinone 6; the major polar lipids were phosphatidylethanolamine, two unidentified aminolipids and two unidentified polar lipids. The digital DNA-DNA hybridization/average nucleotide identity values between strains CDY1-MB1T, CDY2-MB3, and BDY3-MB2 and A. vitellina F4716T were 24.7%/81.6-81.7%, thereby indicating that strain CDY1-MB1T should represent a novel species of the genus Aequorivita. The genomic DNA G+C contents were 37.6 % in all three strains. Genomic analysis showed the presence of genes related to nitrogen and sulphur cycling, as well as metal reduction. The genetic traits of these strains indicate their possible roles in nutrient cycling and detoxification processes, potentially shaping the deep-sea ecosystem's health and resilience. Based upon the consensus of phenotypic and genotypic analyses, strain CDY1-MB1T should be classified as a novel species of the genus Aequorivita, for which the name Aequorivita flava sp. nov. is proposed. The type strain is CDY1-MB1T (=MCCC 1A16935T=KCTC 102223T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Sedimentos Geológicos , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Água do Mar , Análise de Sequência de DNA , Vitamina K 2 , Sedimentos Geológicos/microbiologia , RNA Ribossômico 16S/genética , Ácidos Graxos/química , Oceano Pacífico , Vitamina K 2/análogos & derivados , Vitamina K 2/análise , DNA Bacteriano/genética , Água do Mar/microbiologia , Fosfolipídeos/análise , Fosfatidiletanolaminas , Flavobacteriaceae/isolamento & purificação , Flavobacteriaceae/genética , Flavobacteriaceae/classificação
8.
J Hazard Mater ; 479: 135638, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39217937

RESUMO

Microplastics in aquatic ecosystems harbor numerous microorganisms, including pathogenic species. The ingestion of these microplastics by commercial fish poses a threat to the ecosystem and human livelihood. Coastal lagoons are highly vulnerable to microplastic and microbiological pollution, yet limited understanding of the risks complicates management. Here, we present the main bacterial groups, including potentially pathogenic species, identified on microplastics in waters, sediments, and commercial fish from Ciénaga Grande de Santa Marta (CGSM), the largest coastal lagoon in Colombia. DNA metabarcoding allowed identifying 1760 bacterial genera on microplastics, with Aeromonas and Acinetobacter as the most frequent and present in all three matrices. The greatest bacterial richness and diversity were recorded on microplastics from sediments, followed by waters and fish. Biochemical analyses yielded 19 species of potentially pathogenic culturable bacteria on microplastics. Aeromonas caviae was the most frequent and, along with Pantoea sp., was found on microplastics in all three matrices. Enterobacter roggenkampii and Pseudomonas fluorescens were also found on microplastics from waters and fish. We propose management strategies for an Early Warning System against microbiological and microplastic pollution risks in coastal lagoons, illustrated by CGSM. This includes forming inter-institutional alliances for research and monitoring, accompanied by strengthening governance and health infrastructures.


Assuntos
Bactérias , Sedimentos Geológicos , Microplásticos , Animais , Sedimentos Geológicos/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Peixes/microbiologia , Poluentes Químicos da Água/análise , Colômbia , Monitoramento Ambiental , Microbiologia da Água , Água do Mar/microbiologia
9.
J Hazard Mater ; 479: 135627, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39217948

RESUMO

Unraveling the geochemical and microbial controls on methylmercury (MeHg) dynamics in mangrove sediments is important, as MeHg can potentially pose risks to marine biota and people that rely on these ecosystems. While the important role of sulfate-reducing bacteria in MeHg formation has been examined in this ecologically important habitat, the contribution of non-Hg methylating communities on MeHg production remains particularly unclear. Here, we collected sediment samples from 13 mangrove forests in south China and examined the geochemical parameters and microbial communities related to the Hg methylation. MeHg concentrations were significantly correlated to the OM-related parameters such as organic carbon content, total nitrogen, and dissolved organic carbon concentrations, suggesting the importance of OM in the MeHg production. Sulfate-reducing bacteria were the major Hg-methylators in mangrove sediments. Desulfobacteraceae and Desulfobulbaceae dominated the Hg-methylating microbes. Classification random forest analysis detected strong co-occurrence between Hg methylators and putative non-Hg methylators, thus suggesting that both types of microorganisms contribute to the MeHg dynamics in the sediments. Our study provides an overview of MeHg contamination in south China and advances our understanding of Hg methylation in mangrove ecosystems.


Assuntos
Sedimentos Geológicos , Compostos de Metilmercúrio , Poluentes Químicos da Água , Áreas Alagadas , Compostos de Metilmercúrio/análise , Compostos de Metilmercúrio/metabolismo , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , China , Metilação , Bactérias/metabolismo , Deltaproteobacteria/metabolismo , Monitoramento Ambiental
10.
NPJ Biofilms Microbiomes ; 10(1): 78, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227595

RESUMO

Protists are less studied for their role and diversity in ecosystems. Notably, protists have played and still play an important role in microbialites. Microbialites, or lithified microbial mats, represent the oldest evidence of fossil biofilms (~3.5 Gyr). Modern microbialites may offer a unique proxy to study the potential role of protists within a geological context. We examined protist diversity in freshwater (Kelly and Pavilion Lake in British Columbia, Canada) and marine (Highborne Cay, Bahamas) to hypersaline (Shark Bay, Australia) microbialites to decipher their geomicrobiological role. The freshwater microbialite communities were clearly distinct from their marine and hypersaline counterparts. Chlorophytes had higher numerical abundance in freshwater microbialites; whereas pennate diatoms dominated numerically in marine microbialites. Despite the differences, protists across ecosystems may have adopted similar roles and functions. We suggest a consistent biogeochemical role of protists across microbialites globally; but that salinity may shape protist composition and evolution in these ecosystems.


Assuntos
Ecossistema , Salinidade , Colúmbia Britânica , Eucariotos/classificação , Biodiversidade , Água Doce/microbiologia , Biofilmes/crescimento & desenvolvimento , Água do Mar/microbiologia , Austrália , Diatomáceas/crescimento & desenvolvimento , Sedimentos Geológicos/microbiologia
11.
Sci Rep ; 14(1): 21260, 2024 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261551

RESUMO

In the present study, we developed and validated an experimental life support system (ELSS) designed to investigate coral reef associated bacterial communities. The microcosms in the ELSS consisted of coral reef sediment, synthetic seawater, and specimens of five benthic reef species. These included two hard corals Montipora digitata and Montipora capricornis, a soft coral Sarcophyton glaucum, a zoanthid Zoanthus sp., and a sponge Chondrilla sp.. Physicochemical parameters and bacterial communities in the ELSS were similar to those observed at shallow coral reef sites. Sediment bacterial evenness and higher taxonomic composition were more similar to natural-type communities at days 29 and 34 than at day 8 after transfer to the microcosms, suggesting microbial stabilization after an initial recovery period. Biotopes were compositionally distinct but shared a number of ASVs. At day 34, sediment specific ASVs were found in hosts and visa versa. Transplantation significantly altered the bacterial community composition of M. digitata and Chondrilla sp., suggesting microbial adaptation to altered environmental conditions. Altogether, our results support the suitability of the ELSS developed in this study as a model system to investigate coral reef associated bacterial communities using multi-factorial experiments.


Assuntos
Antozoários , Bactérias , Recifes de Corais , Microbiota , Animais , Antozoários/microbiologia , Bactérias/classificação , Bactérias/genética , Sistemas de Manutenção da Vida , Sedimentos Geológicos/microbiologia , Água do Mar/microbiologia
12.
Environ Microbiol Rep ; 16(5): e13315, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39267241

RESUMO

Blue holes are vertical water-filled openings in carbonate rock that exhibit complex morphology, ecology, and water chemistry. In this study, macroscopic microbial mat structures found in complete anoxic conditions in the Faanu Mudugau Blue Hole (Maldives) were studied by metagenomic methods. Such communities have likely been evolutionary isolated from the surrounding marine environment for more than 10,000 years since the Blue Hole formation during the last Ice Age. A total of 48 high-quality metagenome-assembled genomes (MAGs) were recovered, predominantly composed of the phyla Chloroflexota, Proteobacteria and Desulfobacterota. None of these MAGs have been classified to species level (<95% ANI), suggesting the discovery of several new microbial taxa. In particular, MAGs belonging to novel bacterial genera within the order Dehalococcoidales accounted for 20% of the macroscopic mat community. Genome-resolved metabolic analysis of this dominant microbial fraction revealed a mixotrophic lifestyle based on energy conservation via fermentation, hydrogen metabolism and anaerobic CO2 fixation through the Wood-Ljungdahl pathway. Interestingly, these bacteria showed a high proportion of ancestral genes in their genomes providing intriguing perspectives on mechanisms driving microbial evolution in this peculiar environment. Overall, our results provide new knowledge for understanding microbial life under extreme conditions in blue hole environments.


Assuntos
Metagenoma , Metagenômica , Filogenia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Sedimentos Geológicos/microbiologia , Genoma Bacteriano/genética , Anaerobiose , Deltaproteobacteria/genética , Deltaproteobacteria/classificação , Deltaproteobacteria/isolamento & purificação , Deltaproteobacteria/metabolismo , Chloroflexi/genética , Chloroflexi/classificação , Chloroflexi/isolamento & purificação , Chloroflexi/metabolismo , Proteobactérias/genética , Proteobactérias/classificação , Proteobactérias/isolamento & purificação , Microbiota
13.
Artigo em Inglês | MEDLINE | ID: mdl-39269446

RESUMO

A Gram-stain-negative, strictly aerobic, motile, flagellated, rod-shaped, halotolerant, and poly-ß-hydroxyalkanoate-producing bacterium, designated DP4N28-3T, was isolated from offshore sediment surrounding hard coral in the Dapeng peninsula (Guangdong, PR China). Growth occurred at 15-35 °C (optimal at 30 °C), pH 6.0-9.5 (optimal at 6.0-7.0), and 0.0-30.0 % NaCl concentration (w/v, optimal at 0.0-2.0 %), showing halotolerance. Phylogeny based on 16S rRNA gene sequences, five housekeeping genes, and genome sequences identified Pseudohoeflea suaedae DSM 23348T (98.1 %, 16S rRNA gene sequence similarity) as the most related species to strain DP4N28-3T. Average nucleotide identity, digital DNA-DNA hybridization, and average amino acid identity values between strain DP4N28-3T and P. suaedae DSM 23348T were all below the threshold of species demarcation. Major phenotypic differences were the flagella type and the limited sources of single carbon utilization by strain DP4N28-3T, which only included acetic acid, acetoacetic acid, d-glucuronic acid, and glucuronamide. Strain DP4N28-3T harboured the class I poly-ß-hydroxyalkanoate synthase gene (phaC) and produced poly-ß-hydroxybutyrate. The fatty acids were summed feature 8 (C18 : 1 ω6c and/or C18 : 1 ω7c, 49.4 %) and C16 : 0 (13.4 %). The major cellular polar lipids consisted of phosphatidylcholine, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylglycerol, and sulfoquinovosyl diacylglycerol. The respiratory quinone was Q-10. The results of the phylogenetic, genomic, phenotypic, and chemotaxonomic analysis indicated that the isolated strain represents the type strain of a novel species. Based on these results, strain DP4N28-3T (=MCCC 1K05639T=KCTC 82803T) is proposed as the type strain of the novel species Pseudohoeflea coraliihabitans sp. nov.


Assuntos
Antozoários , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Sedimentos Geológicos , Hidroxibutiratos , Hibridização de Ácido Nucleico , Filogenia , Poliésteres , RNA Ribossômico 16S , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , China , Hidroxibutiratos/metabolismo , DNA Bacteriano/genética , Poliésteres/metabolismo , Sedimentos Geológicos/microbiologia , Animais , Antozoários/microbiologia , Poli-Hidroxibutiratos
14.
Antonie Van Leeuwenhoek ; 118(1): 4, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39269642

RESUMO

A Gram-stain-negative, aerobic, motile and rod-shaped bacterium, the color of the bacterial colony ranges from light yellow to yellow, designated YC-2023-2T, was isolated from sediment sample of Yuncheng salt lake. Growth occurred at 15-45℃ (optimum 37℃), pH 6.0-9.0 (optimum pH 7.0-8.0) and with 0-8.0% NaCl (w/v, optimum 2.0%). The phylogenetic analysis based on 16S rRNA gene sequences showed that strain YC-2023-2T belonged to the family Kordiimonadaceae. The closely related members were Gimibacter soli 6D33T (92.38%), Kordiimonas lipolytica M41T (91.88%), Eilatimonas milleporae DSM 25217T (91.88%) and Kordiimonas gwangyangensis JCM 12864T (91.84%). The genome of strain YC-2023-2T was 2957513 bp, and the genomic DNA G+C content was 63.91%. The main respiratory quinone was Q-10 and the major fatty acids (>10%) were iso-C15:0, C16:0, C19:0 cyclo ω8c, Summed Feature 8 (C18:1 ω6c or C18:1 ω7c) and Summed Feature 9 (iso-C17:1 ω9c or C16:0 10-methyl). The major polar lipids consisted of phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, unidentified glycolipid, unidentified lipid, and two unidentified aminolipids. Based on the phylogenetic, phenotypic and chemotaxonomic characteristics, strain YC-2023-2T is proposed to represent a novel species of a novel genus named Yunchengibacter salinarum gen. nov., sp. nov., within the family Kordiimonadaceae. The type strain is YC-2023-2T (= GDMCC 1.4502T = KCTC 8546T).


Assuntos
Composição de Bases , DNA Bacteriano , Ácidos Graxos , Sedimentos Geológicos , Lagos , Filogenia , RNA Ribossômico 16S , Sedimentos Geológicos/microbiologia , Lagos/microbiologia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Ácidos Graxos/análise , Técnicas de Tipagem Bacteriana , China , Análise de Sequência de DNA , Cloreto de Sódio/metabolismo
15.
Geobiology ; 22(5): e12617, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39295594

RESUMO

The increased difference in the sulfur isotopic compositions of sedimentary sulfate (carbonate-associated sulfate: CAS) and sulfide (chromium-reducible sulfur: CRS) during the Ediacaran Shuram excursion is attributed to increased oceanic sulfate concentration in association with the oxidation of the global ocean and atmosphere. However, recent studies on the isotopic composition of pyrites have revealed that CRS in sediments has diverse origins of pyrites. These pyrites are formed either in the water column/shallow sediments, where the system is open with respect to sulfate, or in deep sediments, where the system is closed with respect to sulfate. The δ34S value of sulfate in the open system is equal to that of seawater; on the contrary, the δ34S value of sulfate in the closed system is higher than that of seawater. Therefore, obtaining the isotopic composition of pyrites formed in an open system, which most likely retain microbial sulfur isotope fractionation, is essential to reconstruct the paleo-oceanic sulfur cycle. In this study, we carried out multiple sulfur isotope analyses of CRS and mechanically separated pyrite grains (>100 µm) using a fluorination method, in addition to secondary ion mass spectrometry (SIMS) analyses of in situ δ34S values of pyrite grains in drill core samples of Member 3 of the Ediacaran Doushantuo Formation in the Three Gorges area, South China. The isotope fractionation of microbial sulfate reduction (MSR) in the limestone layers of the upper part of Member 3 was calculated to be 34ε = 55.7‰ and 33λ = 0.5129 from the δ34S and Δ33S' values of medium-sized pyrite grains ranging from 100 to 300 µm and the average δ34S and Δ33S' values of CAS. Model calculations revealed that the influence of sulfur disproportionation on the δ34S values of these medium-sized pyrite grains was insignificant. In contrast, within the dolostone layers of the middle part of Member 3, isotope fractionation was determined to be 34ε = 47.5‰. The 34ε value in the middle part of Member 3 was calculated from the average δ34S values of the rim of medium-sized pyrite grains and the average δ34S values of CAS. This observation revealed an increase in microbial sulfur isotope fractionation during the Shuram excursion at the drill core site. Furthermore, our investigation revealed correlations between δ34SCRS values and CRS concentrations and between CRS and TOC concentrations, implying that organic matter load to sediments controlled the δ34SCRS values rather than oceanic sulfate concentrations. However, these CRS and TOC concentrations are local parameters that can change only at the kilometer scale with local redox conditions and the intensity of primary production. Therefore, the decreasing δ34SCRS values likely resulted from local redox conditions and not from a global increase in the oceanic sulfate concentration.


Assuntos
Sedimentos Geológicos , Isótopos de Enxofre , Enxofre , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , China , Isótopos de Enxofre/análise , Enxofre/análise , Enxofre/metabolismo , Água do Mar/química , Água do Mar/microbiologia , Sulfetos/análise , Sulfetos/metabolismo , Sulfatos/análise , Sulfatos/metabolismo , Oceanos e Mares , Ferro
16.
PLoS One ; 19(9): e0309971, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39231176

RESUMO

Microbiologically Influenced Corrosion (MIC) is one of the main threats for marine infrastructures, leading to severe safety and environmental risks associated with structural failures and/or leakages of dangerous fluids, together with potential huge economic losses and reputational damage for the involved parts. For a safe design and a proper installation of infrastructure systems in contact with the seabed, a deep knowledge of the site-specific microbial community of the sediments should be beneficial. Therefore, in addition to the simple detection or the sole quantification of Sulphate-Reducing Bacteria (SRB), the whole characterization of the microbial members involved in MIC phenomena is desirable. In this study, 16S rRNA-based comparison between bacterial communities thriving in offshore and nearshore marine sediments was performed, with a focus on the main bacterial groups putatively responsible for MIC. The nearshore sediments were significantly enriched in bacterial members associated with human and organic compounds contamination belonging to the Bacteroidota, Desulfobacterota, and Firmicutes phyla, while the offshore sediments hosted Alphaproteobacteria, Nitrospinota, and Nitrospirota members, representative of a low anthropogenic impact. Quantitative PCR targeting the dsrA gene and detailed community analyses revealed that the nearshore sediments were significantly enriched in SRB mainly affiliated to the Desulfobulbus and Desulfosarcina genera potentially involved in biocorrosion, compared to the offshore ones. These results suggest that the bacterial community associated with the high concentration of organic compounds derived by an elevated anthropogenic impact is likely to favour MIC. Such observations highlight the importance of microbiological investigations as prevention strategy against MIC processes, aiming both at characterizing sites for the establishment of new infrastructures and at monitoring those already installed.


Assuntos
Bactérias , Sedimentos Geológicos , RNA Ribossômico 16S , Sedimentos Geológicos/microbiologia , Corrosão , RNA Ribossômico 16S/genética , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Microbiota , Filogenia
17.
Artigo em Inglês | MEDLINE | ID: mdl-39235837

RESUMO

Two bacterial strains, Y60-23T and HN-65T, were isolated from marine sediment samples collected from Xiaoshi Island, Weihai, and Dongzhai Harbour, Haikou, PR China, respectively. Based on the 16S rRNA gene sequences, strain Y60-23T exhibited 96.0% similarity to its most related type strain Hyphobacterium vulgare KCTC 52487T, while strain HN-65T exhibited 97.3% similarity to its most related type strain Hyphobacterium indicum 2ED5T. The 16S rRNA gene sequence similarity between the two strains was 95.8%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strains Y60-23T and HN-65T belonged to the genus Hyphobacterium. Cells of strains Y60-23T and HN-65T were rod-shaped, Gram-stain-negative, aerobic, non-motile, prosthecate and multiplied by binary fission. The major cellular fatty acids (>10.0%) of strain Y60-23T were C18 : 1 ω7c and C17 : 0, while those of strain HN-65T were iso-C17 : 1 ω9c, iso-C17 : 0 and C18 : 1 ω7c. The major respiratory quinone in both strains was ubiquinone-10 (Q-10) and the major polar lipids were monoglycosyl diglyceride, sulfoquinovosyl diacylglycerol and glucuronopyranosyl diglyceride. The genomic DNA G+C contents of strains Y60-23T and HN-65T were 63.9 and 60.7 mol%, respectively. The average nucleotide identity value between the two strains was 72.1% and the DNA-DNA hybridization value was 18.4%, clearly distinguishing them from each other. According to the results of the phenotypic, chemotaxonomic, phylogenetic and genomic analyses, the two strains represented two novel species within the genus Hyphobacterium, for which the names Hyphobacterium marinum sp. nov. and Hyphobacterium lacteum sp. nov. were proposed with the type strains Y60-23T (=MCCC 1H01433T=KCTC 8172T) and HN-65T (=MCCC 1H01434T=KCTC 8169T), respectively.


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Sedimentos Geológicos , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Sedimentos Geológicos/microbiologia , RNA Ribossômico 16S/genética , Ácidos Graxos/química , Ácidos Graxos/análise , DNA Bacteriano/genética , China , Hyphomicrobiaceae/genética , Hyphomicrobiaceae/classificação , Hyphomicrobiaceae/isolamento & purificação , Hibridização de Ácido Nucleico , Água do Mar/microbiologia , Ubiquinona/análogos & derivados , Fosfolipídeos/análise
18.
Environ Microbiol Rep ; 16(4): e13314, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39086173

RESUMO

Widespread marine microbiomes exhibit compositional and functional differentiation as a result of adaptation driven by environmental characteristics. We investigated the microbial communities in both seawater and sediments on the slope (7-9 km) and the bottom (9-11 km) of the Challenger Deep of the Mariana Trench to explore community differentiation. Both metagenome-assembled genomes (MAGs) and 16S rRNA amplicon sequence variants (ASVs) showed that the microbial composition in the seawater was similar to that of sediment on the slope, while distinct from that of sediment in the bottom. This scenario suggested a potentially stronger community interaction between seawater and sediment on the slope, which was further confirmed by community assembly and population movement analyses. The metagenomic analysis also indicates a specific stronger potential of nitrate reduction and sulphate assimilation in the bottom seawater, while more versatile nitrogen and sulphur cycling pathways occur on the slope, reflecting functional differentiations among communities in conjunction with environmental features. This work implies that microbial community differentiation occurred in the different hadal niches, and was likely an outcome of microbial adaptation to the extreme hadal trench environment, especially the associated hydrological and geological conditions, which should be considered and measured in situ in future studies.


Assuntos
Bactérias , Sedimentos Geológicos , Microbiota , RNA Ribossômico 16S , Água do Mar , Água do Mar/microbiologia , Sedimentos Geológicos/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , RNA Ribossômico 16S/genética , Filogenia , Metagenômica , Metagenoma , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , Archaea/metabolismo
19.
Nat Commun ; 15(1): 6560, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095478

RESUMO

Methanogenic hydrocarbon degradation can be carried out by archaea that couple alkane oxidation directly to methanogenesis, or by syntrophic associations of bacteria with methanogenic archaea. However, metagenomic analyses of methanogenic environments have revealed other archaea with potential for alkane degradation but apparent inability to form methane, suggesting the existence of other modes of syntrophic hydrocarbon degradation. Here, we provide experimental evidence supporting the existence of a third mode of methanogenic degradation of hydrocarbons, mediated by syntrophic cooperation between archaeal partners. We collected sediment samples from a hot spring sediment in Tengchong, China, and enriched Hadarchaeota under methanogenic conditions at 60 °C, using hexadecane as substrate. We named the enriched archaeon Candidatus Melinoarchaeum fermentans DL9YTT1. We used 13C-substrate incubations, metagenomic, metatranscriptomic and metabolomic analyses to show that Ca. Melinoarchaeum uses alkyl-coenzyme M reductases (ACRs) to activate hexadecane via alkyl-CoM formation. Ca. Melinoarchaeum likely degrades alkanes to carbon dioxide, hydrogen and acetate, which can be used as substrates by hydrogenotrophic and acetoclastic methanogens such as Methanothermobacter and Methanothrix.


Assuntos
Alcanos , Archaea , Metano , Alcanos/metabolismo , Metano/metabolismo , Archaea/metabolismo , Archaea/genética , Fontes Termais/microbiologia , Sedimentos Geológicos/microbiologia , Filogenia , Oxirredutases/metabolismo , Oxirredutases/genética , China , Dióxido de Carbono/metabolismo , Biodegradação Ambiental , Oxirredução
20.
Environ Microbiol ; 26(8): e16674, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39146976

RESUMO

One of the significant challenges in microbiology is to understand the extent and mechanisms of evolution within life beneath the surface of the Earth. The population bottleneck that microbes in deep marine sediment experience implies that mutational and population genetic forces could lead to higher levels of relaxed selection and an increase in pseudogenes. To investigate this hypothesis, a group of Thalassospira strains were isolated from subseafloor sediment that is 3 to 6 million years old, as reported by Orsi and colleagues in 2021. These isolates, representing lineages that have been buried for millions of years, offer an excellent opportunity to study the evolution of life beneath the seafloor over a long period. The existence of closely related strains from environments on the surface of the Earth enabled us to examine the impact of selection within each group. We discovered that isolates from beneath the seafloor show lineage-specific similarities to Thalassospira from the surface world, both in the overall intensity of selection on the genome and in the specific genes affected by mutation. We found no signs of increased relaxed selection or other notable genomic changes in the genomes of the Thalassospira isolates from beneath the seafloor, suggesting that these subseafloor isolates were awakened from a million-year near-stasis. The unique genomic characteristics of each Thalassospira lineage from beneath the seafloor must then reflect genetic changes that surface-inhabiting decendants acquired in the past 3-6 million years. Remarkably, Thalassospira lineages beneath the surface appear to have stably maintained their genomes in the midst of metabolic dormancy and extremely long generation times.


Assuntos
Genoma Bacteriano , Sedimentos Geológicos , Filogenia , Sedimentos Geológicos/microbiologia , Seleção Genética , Evolução Molecular , Genômica , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...