Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.785
Filtrar
1.
Environ Microbiol Rep ; 16(3): e13269, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38822640

RESUMO

Recombinational repair is an important mechanism that allows DNA replication to overcome damaged templates, so the DNA is duplicated timely and correctly. The RecFOR pathway is one of the common ways to load RecA, while the RuvABC complex operates in the resolution of DNA intermediates. We have generated deletions of recO, recR and ruvB genes in Thermus thermophilus, while a recF null mutant could not be obtained. The recO deletion was in all cases accompanied by spontaneous loss of function mutations in addA or addB genes, which encode a helicase-exonuclease also key for recombination. The mutants were moderately affected in viability and chromosome segregation. When we generated these mutations in a Δppol/addAB strain, we observed that the transformation efficiency was maintained at the typical level of Δppol/addAB, which is 100-fold higher than that of the wild type. Most mutants showed increased filamentation phenotypes, especially ruvB, which also had DNA repair defects. These results suggest that in T. thermophilus (i) the components of the RecFOR pathway have differential roles, (ii) there is an epistatic relationship of the AddAB complex over the RecFOR pathway and (iii) that neither of the two pathways or their combination is strictly required for viability although they are necessary for normal DNA repair and chromosome segregation.


Assuntos
Proteínas de Bactérias , DNA Helicases , Thermus thermophilus , Thermus thermophilus/genética , Thermus thermophilus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Reparo do DNA/genética , Deleção de Genes , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Segregação de Cromossomos/genética , DNA Bacteriano/genética , Mutação
2.
PLoS Genet ; 20(6): e1011329, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38913752

RESUMO

Precise regulation of chromosome dynamics in the germline is essential for reproductive success across species. Yet, the mechanisms underlying meiotic chromosomal events such as homolog pairing and chromosome segregation are not fully understood in many species. Here, we employ Oligopaint DNA FISH to investigate mechanisms of meiotic homolog pairing and chromosome segregation in the holocentric pantry moth, Plodia interpunctella, and compare our findings to new and previous studies in the silkworm moth, Bombyx mori, which diverged from P. interpunctella over 100 million years ago. We find that pairing in both Bombyx and Plodia spermatogenesis is initiated at gene-rich chromosome ends. Additionally, both species form rod shaped cruciform-like bivalents at metaphase I. However, unlike the telomere-oriented chromosome segregation mechanism observed in Bombyx, Plodia can orient bivalents in multiple different ways at metaphase I. Surprisingly, in both species we find that kinetochores consistently assemble at non-telomeric loci toward the center of chromosomes regardless of where chromosome centers are located in the bivalent. Additionally, sister kinetochores do not seem to be paired in these species. Instead, four distinct kinetochores are easily observed at metaphase I. Despite this, we find clear end-on microtubule attachments and not lateral microtubule attachments co-orienting these separated kinetochores. These findings challenge the classical view of segregation where paired, poleward-facing kinetochores are required for accurate homolog separation in meiosis I. Our studies here highlight the importance of exploring fundamental processes in non-model systems, as employing novel organisms can lead to the discovery of novel biology.


Assuntos
Bombyx , Segregação de Cromossomos , Meiose , Mariposas , Espermatogênese , Animais , Segregação de Cromossomos/genética , Mariposas/genética , Mariposas/fisiologia , Masculino , Espermatogênese/genética , Meiose/genética , Bombyx/genética , Bombyx/fisiologia , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Microtúbulos/genética , Pareamento Cromossômico/genética , Cromossomos de Insetos/genética , Hibridização in Situ Fluorescente , Metáfase , Telômero/genética , Telômero/metabolismo , Cinética
3.
Nature ; 631(8019): 134-141, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38867047

RESUMO

Mosaic loss of the X chromosome (mLOX) is the most common clonal somatic alteration in leukocytes of female individuals1,2, but little is known about its genetic determinants or phenotypic consequences. Here, to address this, we used data from 883,574 female participants across 8 biobanks; 12% of participants exhibited detectable mLOX in approximately 2% of leukocytes. Female participants with mLOX had an increased risk of myeloid and lymphoid leukaemias. Genetic analyses identified 56 common variants associated with mLOX, implicating genes with roles in chromosomal missegregation, cancer predisposition and autoimmune diseases. Exome-sequence analyses identified rare missense variants in FBXO10 that confer a twofold increased risk of mLOX. Only a small fraction of associations was shared with mosaic Y chromosome loss, suggesting that distinct biological processes drive formation and clonal expansion of sex chromosome missegregation. Allelic shift analyses identified X chromosome alleles that are preferentially retained in mLOX, demonstrating variation at many loci under cellular selection. A polygenic score including 44 allelic shift loci correctly inferred the retained X chromosomes in 80.7% of mLOX cases in the top decile. Our results support a model in which germline variants predispose female individuals to acquiring mLOX, with the allelic content of the X chromosome possibly shaping the magnitude of clonal expansion.


Assuntos
Aneuploidia , Cromossomos Humanos X , Células Clonais , Leucócitos , Mosaicismo , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Alelos , Doenças Autoimunes/genética , Bancos de Espécimes Biológicos , Segregação de Cromossomos/genética , Cromossomos Humanos X/genética , Cromossomos Humanos Y/genética , Células Clonais/metabolismo , Células Clonais/patologia , Exoma/genética , Proteínas F-Box/genética , Predisposição Genética para Doença/genética , Mutação em Linhagem Germinativa , Leucemia/genética , Leucócitos/metabolismo , Modelos Genéticos , Herança Multifatorial/genética , Mutação de Sentido Incorreto/genética
4.
PLoS Genet ; 20(6): e1011162, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38885280

RESUMO

Very little is known about the process of meiosis in the apicomplexan parasite Cryptosporidium despite the essentiality of sex in its life cycle. Most cell lines only support asexual growth of Cryptosporidium parvum (C. parvum), but stem cell derived intestinal epithelial cells grown under air-liquid interface (ALI) conditions support the sexual cycle. To examine chromosomal dynamics during meiosis in C. parvum, we generated two transgenic lines of parasites that were fluorescently tagged with mCherry or GFP on chromosomes 1 or 5, respectively. Infection of ALI cultures or Ifngr1-/- mice with mCherry and GFP parasites resulted in cross-fertilization and the formation of "yellow" oocysts, which contain 4 haploid sporozoites that are the product of meiosis. Recombinant oocysts from the F1 generation were purified and used to infect HCT-8 cultures, and phenotypes of the progeny were observed by microscopy. All possible phenotypes predicted by independent segregation were represented equally (~25%) in the population, indicating that C. parvum chromosomes exhibit a Mendelian inheritance pattern. The most common pattern observed from the outgrowth of single oocysts included all possible parental and recombinant phenotypes derived from a single meiotic event, suggesting a high rate of crossover. To estimate the frequency of crossover, additional loci on chromosomes 1 and 5 were tagged and used to monitor intrachromosomal crosses in Ifngr1-/- mice. Both chromosomes showed a high frequency of crossover compared to other apicomplexans with map distances (i.e., 1% recombination) of 3-12 kb. Overall, a high recombination rate may explain many unique characteristics observed in Cryptosporidium spp. such as high rates of speciation, wide variation in host range, and rapid evolution of host-specific virulence factors.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Meiose , Oocistos , Recombinação Genética , Animais , Cryptosporidium parvum/genética , Camundongos , Criptosporidiose/parasitologia , Criptosporidiose/genética , Meiose/genética , Humanos , Receptores de Interferon/genética , Receptor de Interferon gama , Segregação de Cromossomos/genética , Esporozoítos/genética , Camundongos Knockout , Fenótipo
5.
PLoS Genet ; 20(6): e1011302, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38829899

RESUMO

Cryptococcus neoformans is an opportunistic, human fungal pathogen which undergoes fascinating switches in cell cycle control and ploidy when it encounters stressful environments such as the human lung. Here we carry out a mechanistic analysis of the spindle checkpoint which regulates the metaphase to anaphase transition, focusing on Mps1 kinase and the downstream checkpoint components Mad1 and Mad2. We demonstrate that Cryptococcus mad1Δ or mad2Δ strains are unable to respond to microtubule perturbations, continuing to re-bud and divide, and die as a consequence. Fluorescent tagging of Chromosome 3, using a lacO array and mNeonGreen-lacI fusion protein, demonstrates that mad mutants are unable to maintain sister-chromatid cohesion in the absence of microtubule polymers. Thus, the classic checkpoint functions of the SAC are conserved in Cryptococcus. In interphase, GFP-Mad1 is enriched at the nuclear periphery, and it is recruited to unattached kinetochores in mitosis. Purification of GFP-Mad1 followed by mass spectrometric analysis of associated proteins show that it forms a complex with Mad2 and that it interacts with other checkpoint signalling components (Bub1) and effectors (Cdc20 and APC/C sub-units) in mitosis. We also demonstrate that overexpression of Mps1 kinase is sufficient to arrest Cryptococcus cells in mitosis, and show that this arrest is dependent on both Mad1 and Mad2. We find that a C-terminal fragment of Mad1 is an effective in vitro substrate for Mps1 kinase and map several Mad1 phosphorylation sites. Some sites are highly conserved within the C-terminal Mad1 structure and we demonstrate that mutation of threonine 667 (T667A) leads to loss of checkpoint signalling and abrogation of the GAL-MPS1 arrest. Thus Mps1-dependent phosphorylation of C-terminal Mad1 residues is a critical step in Cryptococcus spindle checkpoint signalling. We conclude that CnMps1 protein kinase, Mad1 and Mad2 proteins have all conserved their important, spindle checkpoint signalling roles helping ensure high fidelity chromosome segregation.


Assuntos
Proteínas de Ciclo Celular , Cryptococcus neoformans , Proteínas Mad2 , Fuso Acromático , Cryptococcus neoformans/genética , Cryptococcus neoformans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Mad2/metabolismo , Proteínas Mad2/genética , Fuso Acromático/metabolismo , Fuso Acromático/genética , Transdução de Sinais , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Pontos de Checagem da Fase M do Ciclo Celular/genética , Mitose/genética , Cinetocoros/metabolismo , Segregação de Cromossomos/genética , Microtúbulos/metabolismo , Microtúbulos/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética
6.
Mol Cell Biol ; 44(6): 209-225, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779933

RESUMO

Proper chromosome segregation is required to ensure chromosomal stability. The centromere (CEN) is a unique chromatin domain defined by CENP-A and is responsible for recruiting the kinetochore (KT) during mitosis, ultimately regulating microtubule spindle attachment and mitotic checkpoint function. Upregulation of many CEN/KT genes is commonly observed in cancer. Here, we show that although FOXM1 occupies promoters of many CEN/KT genes with MYBL2, FOXM1 overexpression alone is insufficient to drive the FOXM1-correlated transcriptional program. CENP-F is canonically an outer kinetochore component; however, it functions with FOXM1 to coregulate G2/M transcription and proper chromosome segregation. Loss of CENP-F results in altered chromatin accessibility at G2/M genes and reduced FOXM1-MBB complex formation. We show that coordinated CENP-FFOXM1 transcriptional regulation is a cancer-specific function. We observe a small subset of CEN/KT genes including CENP-C, that are not regulated by FOXM1. Upregulation of CENP-C in the context of CENP-A overexpression leads to increased chromosome missegregation and cell death suggesting that escape of CENP-C from FOXM1 regulation is a cancer survival mechanism. Together, we show that FOXM1 and CENP-F coordinately regulate G2/M genes, and this coordination is specific to a subset of genes to allow for maintenance of chromosome instability levels and subsequent cell survival.


Assuntos
Centrômero , Proteínas Cromossômicas não Histona , Segregação de Cromossomos , Proteína Forkhead Box M1 , Cinetocoros , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética , Humanos , Cinetocoros/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Centrômero/metabolismo , Segregação de Cromossomos/genética , Linhagem Celular Tumoral , Mitose/genética , Proteína Centromérica A/metabolismo , Proteína Centromérica A/genética , Transcrição Gênica , Regulação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Cromatina/metabolismo , Cromatina/genética , Regiões Promotoras Genéticas/genética , Proteínas dos Microfilamentos
7.
Cell Mol Life Sci ; 81(1): 194, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653846

RESUMO

Sex chromosome aneuploidies are among the most common variations in human whole chromosome copy numbers, with an estimated prevalence in the general population of 1:400 to 1:1400 live births. Unlike whole-chromosome aneuploidies of autosomes, those of sex chromosomes, such as the 47, XXY aneuploidy that causes Klinefelter Syndrome (KS), often originate from the paternal side, caused by a lack of crossover (CO) formation between the X and Y chromosomes. COs must form between all chromosome pairs to pass meiotic checkpoints and are the product of meiotic recombination that occurs between homologous sequences of parental chromosomes. Recombination between male sex chromosomes is more challenging compared to both autosomes and sex chromosomes in females, as it is restricted within a short region of homology between X and Y, called the pseudo-autosomal region (PAR). However, in normal individuals, CO formation occurs in PAR with a higher frequency than in any other region, indicating the presence of mechanisms that promote the initiation and processing of recombination in each meiotic division. In recent years, research has made great strides in identifying genes and mechanisms that facilitate CO formation in the PAR. Here, we outline the most recent and relevant findings in this field. XY chromosome aneuploidy in humans has broad-reaching effects, contributing significantly also to Turner syndrome, spontaneous abortions, oligospermia, and even infertility. Thus, in the years to come, the identification of genes and mechanisms beyond XY aneuploidy is expected to have an impact on the genetic counseling of a wide number of families and adults affected by these disorders.


Assuntos
Pareamento Cromossômico , Segregação de Cromossomos , Meiose , Humanos , Animais , Pareamento Cromossômico/genética , Masculino , Meiose/genética , Camundongos , Segregação de Cromossomos/genética , Feminino , Aneuploidia , Cromossomos Humanos X/genética , Cromossomos Humanos Y/genética , Cromossomos Sexuais/genética , Troca Genética/genética
8.
Life Sci Alliance ; 7(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38575358

RESUMO

For establishing sister chromatid cohesion and proper chromosome segregation in mitosis in fission yeast, the acetyltransferase Eso1 plays a key role. Eso1 acetylates cohesin complexes, at two conserved lysine residues K105 and K106 of the cohesin subunit Psm3. Although Eso1 also contributes to reductional chromosome segregation in meiosis, the underlying molecular mechanisms have remained elusive. Here, we purified meiosis-specific Rec8 cohesin complexes localized at centromeres and identified a new acetylation at Psm3-K1013, which largely depends on the meiotic kinetochore factor meikin (Moa1). Our molecular genetic analyses indicate that Psm3-K1013 acetylation cooperates with canonical acetylation at Psm3-K105 and K106, and plays a crucial role in establishing reductional chromosome segregation in meiosis.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Coesinas , Segregação de Cromossomos/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Acetilação , Meiose/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
9.
Nat Commun ; 15(1): 2737, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548820

RESUMO

Bacterial chromosomes are folded into tightly regulated three-dimensional structures to ensure proper transcription, replication, and segregation of the genetic information. Direct visualization of chromosomal shape within bacterial cells is hampered by cell-wall confinement and the optical diffraction limit. Here, we combine cell-shape manipulation strategies, high-resolution fluorescence microscopy techniques, and genetic engineering to visualize the shape of unconfined bacterial chromosome in real-time in live Bacillus subtilis cells that are expanded in volume. We show that the chromosomes predominantly exhibit crescent shapes with a non-uniform DNA density that is increased near the origin of replication (oriC). Additionally, we localized ParB and BsSMC proteins - the key drivers of chromosomal organization - along the contour of the crescent chromosome, showing the highest density near oriC. Opening of the BsSMC ring complex disrupted the crescent chromosome shape and instead yielded a torus shape. These findings help to understand the threedimensional organization of the chromosome and the main protein complexes that underlie its structure.


Assuntos
Bacillus subtilis , Segregação de Cromossomos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Segregação de Cromossomos/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Complexo de Reconhecimento de Origem/metabolismo , Replicação do DNA/genética , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/metabolismo , DNA Bacteriano/metabolismo , Origem de Replicação
10.
PLoS Genet ; 20(3): e1011185, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38489251

RESUMO

The segregation of homologous chromosomes during meiosis typically requires tight end-to-end chromosome pairing. However, in Drosophila spermatogenesis, male flies segregate their chromosomes without classic synaptonemal complex formation and without recombination, instead compartmentalizing homologs into subnuclear domains known as chromosome territories (CTs). How homologs find each other in the nucleus and are separated into CTs has been one of the biggest riddles in chromosome biology. Here, we discuss our current understanding of pairing and CT formation in flies and review recent data on how homologs are linked and partitioned during meiosis in male flies.


Assuntos
Recombinação Genética , Complexo Sinaptonêmico , Animais , Masculino , Complexo Sinaptonêmico/genética , Meiose/genética , Pareamento Cromossômico/genética , Drosophila/genética , Segregação de Cromossomos/genética
11.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167116, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447882

RESUMO

The Aurora-A kinase (AurkA) and its major regulator TPX2 (Targeting Protein for Xklp2) are key mitotic players frequently co-overexpressed in human cancers, and the link between deregulation of the AurkA/TPX2 complex and tumourigenesis is actively investigated. Chromosomal instability, one of the hallmarks of cancer related to the development of intra-tumour heterogeneity, metastasis and chemo-resistance, has been frequently associated with TPX2-overexpressing tumours. In this study we aimed to investigate the actual contribution to chromosomal instability of deregulating the AurkA/TPX2 complex, by overexpressing it in nontransformed hTERT RPE-1 cells. Our results show that overexpression of both AurkA and TPX2 results in increased AurkA activation and severe mitotic defects, compared to AurkA overexpression alone. We also show that AurkA/TPX2 co-overexpression yields increased aneuploidy in daughter cells and the generation of micronucleated cells. Interestingly, the p53/p21 axis response is impaired in AurkA/TPX2 overexpressing cells subjected to different stimuli; consistently, cells acquire increased ability to proliferate after independent induction of mitotic errors, i.e. following nocodazole treatment. Based on our observation that increased levels of the AurkA/TPX2 complex affect chromosome segregation fidelity and interfere with the activation of a pivotal surveillance mechanism in response to altered cell division, we propose that co-overexpression of AurkA and TPX2 per se represents a condition promoting the generation of a genetically unstable context in nontransformed human cells.


Assuntos
Aurora Quinase A , Proteínas de Ciclo Celular , Humanos , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteína Supressora de Tumor p53/genética , Segregação de Cromossomos/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Instabilidade Genômica , Instabilidade Cromossômica/genética , Cromossomos/metabolismo
12.
Trends Genet ; 40(4): 326-336, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38177041

RESUMO

Meiosis is essential for gamete production in all sexually reproducing organisms. It entails two successive cell divisions without DNA replication, producing haploid cells from diploid ones. This process involves complex morphological and molecular differentiation that varies across species and between sexes. Specialized genomic events like meiotic recombination and chromosome segregation are tightly regulated, including preparation for post-meiotic development. Research in model organisms, notably yeast, has shed light on the genetic and molecular aspects of meiosis and its regulation. Although mammalian meiosis research faces challenges, particularly in replicating gametogenesis in vitro, advances in genetic and genomic technologies are providing mechanistic insights. Here we review the genetics and molecular biology of meiotic gene expression control, focusing on mammals.


Assuntos
Meiose , Saccharomyces cerevisiae , Animais , Meiose/genética , Saccharomyces cerevisiae/genética , Gametogênese/genética , Segregação de Cromossomos/genética , Replicação do DNA , Mamíferos
13.
J Cell Physiol ; 239(1): 3-19, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38032002

RESUMO

Meiosis is a specialized cell division that occurs in sexually reproducing organisms, generating haploid gametes containing half the chromosome number through two rounds of cell division. Homologous chromosomes pair and prepare for their proper segregation in subsequent divisions. How homologous chromosomes recognize each other and achieve pairing is an important question. Early studies showed that in most organisms, homologous pairing relies on homologous recombination. However, pairing mechanisms differ across species. Evidence indicates that chromosomes are dynamic and move during early meiotic stages, facilitating pairing. Recent studies in various model organisms suggest conserved mechanisms and key regulators of homologous chromosome pairing. This review summarizes these findings and compare similarities and differences in homologous chromosome pairing mechanisms across species.


Assuntos
Pareamento Cromossômico , Segregação de Cromossomos , Meiose , Pareamento Cromossômico/genética , Segregação de Cromossomos/genética , Cromossomos , Recombinação Homóloga , Meiose/genética
14.
Genetics ; 225(4)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37931172

RESUMO

The fruit fly Drosophila melanogaster serves as a powerful model organism for advancing our understanding of biological processes, not just by studying its similarities with other organisms including ourselves but also by investigating its differences to unravel the underlying strategies that evolved to achieve a common goal. This is particularly true for centromeres, specialized genomic regions present on all eukaryotic chromosomes that function as the platform for the assembly of kinetochores. These multiprotein structures play an essential role during cell division by connecting chromosomes to spindle microtubules in mitosis and meiosis to mediate accurate chromosome segregation. Here, we will take a historical perspective on the study of fly centromeres, aiming to highlight not only the important similarities but also the differences identified that contributed to advancing centromere biology. We will discuss the current knowledge on the sequence and chromatin organization of fly centromeres together with advances for identification of centromeric proteins. Then, we will describe both the factors and processes involved in centromere organization and how they work together to provide an epigenetic identity to the centromeric locus. Lastly, we will take an evolutionary point of view of centromeres and briefly discuss current views on centromere drive.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Drosophila/genética , Drosophila melanogaster/genética , Centrômero/genética , Cinetocoros , Microtúbulos/metabolismo , Segregação de Cromossomos/genética , Cromatina/metabolismo
15.
PLoS Genet ; 19(11): e1011066, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38019881

RESUMO

The centromere is an epigenetic mark that is a loading site for the kinetochore during meiosis and mitosis. This mark is characterized by the H3 variant CENP-A, known as CID in Drosophila. In Drosophila, CENP-C is critical for maintaining CID at the centromeres and directly recruits outer kinetochore proteins after nuclear envelope break down. These two functions, however, happen at different times in the cell cycle. Furthermore, in Drosophila and many other metazoan oocytes, centromere maintenance and kinetochore assembly are separated by an extended prophase. We have investigated the dynamics of function of CENP-C during the extended meiotic prophase of Drosophila oocytes and found that maintaining high levels of CENP-C for metaphase I requires expression during prophase. In contrast, CID is relatively stable and does not need to be expressed during prophase to remain at high levels in metaphase I of meiosis. Expression of CID during prophase can even be deleterious, causing ectopic localization to non-centromeric chromatin, abnormal meiosis and sterility. CENP-C prophase loading is required for multiple meiotic functions. In early meiotic prophase, CENP-C loading is required for sister centromere cohesion and centromere clustering. In late meiotic prophase, CENP-C loading is required to recruit kinetochore proteins. CENP-C is one of the few proteins identified in which expression during prophase is required for meiotic chromosome segregation. An implication of these results is that the failure to maintain recruitment of CENP-C during the extended prophase in oocytes would result in chromosome segregation errors in oocytes.


Assuntos
Proteínas de Drosophila , Meiose , Animais , Meiose/genética , Segregação de Cromossomos/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Prófase/genética , Centrômero/genética , Centrômero/metabolismo , Drosophila/genética , Drosophila/metabolismo , Mitose , Cinetocoros/metabolismo , Proteína Centromérica A/genética , Proteína Centromérica A/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo
16.
Annu Rev Genet ; 57: 1-63, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-37788458

RESUMO

The raison d'être of meiosis is shuffling of genetic information via Mendelian segregation and, within individual chromosomes, by DNA crossing-over. These outcomes are enabled by a complex cellular program in which interactions between homologous chromosomes play a central role. We first provide a background regarding the basic principles of this program. We then summarize the current understanding of the DNA events of recombination and of three processes that involve whole chromosomes: homolog pairing, crossover interference, and chiasma maturation. All of these processes are implemented by direct physical interaction of recombination complexes with underlying chromosome structures. Finally, we present convergent lines of evidence that the meiotic program may have evolved by coupling of this interaction to late-stage mitotic chromosome morphogenesis.


Assuntos
Pareamento Cromossômico , Meiose , Pareamento Cromossômico/genética , Meiose/genética , Cromossomos/genética , DNA , Segregação de Cromossomos/genética , Troca Genética/genética
17.
PLoS Genet ; 19(9): e1010951, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37733798

RESUMO

The accurate distribution of genetic material is crucial for all organisms. In most bacteria, chromosome segregation is achieved by the ParABS system, in which the ParB-bound parS sequence is actively partitioned by ParA. While this system is highly conserved, its adaptation in organisms with unique lifestyles and its regulation between developmental stages remain largely unexplored. Bdellovibrio bacteriovorus is a predatory bacterium proliferating through polyploid replication and non-binary division inside other bacteria. Our study reveals the subcellular dynamics and multi-layered regulation of the ParABS system, coupled to the cell cycle of B. bacteriovorus. We found that ParA:ParB ratios fluctuate between predation stages, their balance being critical for cell cycle progression. Moreover, the parS chromosomal context in non-replicative cells, combined with ParB depletion at cell division, critically contribute to the unique cell cycle-dependent organization of the centromere in this bacterium, highlighting new levels of complexity in chromosome segregation and cell cycle control.


Assuntos
Proteínas de Bactérias , Segregação de Cromossomos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Divisão Celular/genética , Segregação de Cromossomos/genética , Centrômero/genética , Centrômero/metabolismo , Bactérias/genética , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/metabolismo
18.
Curr Opin Genet Dev ; 82: 102101, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37633231

RESUMO

Female meiosis is fundamentally asymmetric, creating an arena for genetic elements to compete for inclusion in the egg to maximize their transmission. Centromeres, as mediators of chromosomal segregation, are prime candidates to evolve via 'female meiotic drive'. According to the centromere-drive model, the asymmetry of female meiosis ignites a coevolutionary arms race between selfish centromeres and kinetochore proteins, the by-product of which is accelerated sequence divergence. Here, I describe and compare plant models that have been instrumental in uncovering the mechanistic basis of female meiotic drive (maize) and the dynamics of active selfish centromeres in nature (monkeyflowers). Then, I speculate on the mechanistic basis of drive in monkeyflowers, discuss how centromere strength influences chromosomal segregation in plants, and describe new insights into the evolution of plant centromeres.


Assuntos
Centrômero , Segregação de Cromossomos , Centrômero/genética , Segregação de Cromossomos/genética , Meiose/genética
19.
Mol Cell ; 83(16): 2941-2958.e7, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37595556

RESUMO

Crossovers (COs), the exchange of homolog arms, are required for accurate chromosome segregation during meiosis. Studies in yeast have described the single-end invasion (SEI) intermediate: a stabilized 3' end annealed with the homolog as the first detectible CO precursor. SEIs are thought to differentiate into double Holliday junctions (dHJs) that are resolved by MutLgamma (MLH1/MLH3) into COs. Currently, we lack knowledge of early steps of mammalian CO recombination or how intermediates are differentiated in any organism. Using comprehensive analysis of recombination in thirteen different genetic conditions with varying levels of compromised CO resolution, we infer CO precursors include asymmetric SEI-like intermediates and dHJs in mouse. In contrast to yeast, MLH3 is structurally required to differentiate CO precursors into dHJs. We verify conservation of aspects of meiotic recombination and show unique features in mouse, providing mechanistic insight into CO formation.


Assuntos
Meiose , Saccharomyces cerevisiae , Animais , Camundongos , Saccharomyces cerevisiae/genética , Meiose/genética , Segregação de Cromossomos/genética , DNA Cruciforme/genética , Mamíferos
20.
Development ; 150(14)2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37485540

RESUMO

Accurate chromosome segregation, monitored by the spindle assembly checkpoint (SAC), is crucial for the production of euploid cells. Previous in vitro studies by us and others showed that Mad2, a core member of the SAC, performs a checkpoint function in oocyte meiosis. Here, through an oocyte-specific knockout approach in mouse, we reconfirmed that Mad2-deficient oocytes exhibit an accelerated metaphase-to-anaphase transition caused by premature degradation of securin and cyclin B1 and subsequent activation of separase in meiosis I. However, it was surprising that the knockout mice were completely fertile and the resulting oocytes were euploid. In the absence of Mad2, other SAC proteins, including BubR1, Bub3 and Mad1, were normally recruited to the kinetochores, which likely explains the balanced chromosome separation. Further studies showed that the chromosome separation in Mad2-null oocytes was particularly sensitive to environmental changes and, when matured in vitro, showed chromosome misalignment, lagging chromosomes, and aneuploidy with premature separation of sister chromatids, which was exacerbated at a lower temperature. We reveal for the first time that Mad2 is dispensable for proper chromosome segregation but acts to mitigate environmental stress in meiotic oocytes.


Assuntos
Proteínas de Ciclo Celular , Fuso Acromático , Animais , Camundongos , Proteínas de Ciclo Celular/metabolismo , Fuso Acromático/metabolismo , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Segregação de Cromossomos/genética , Oócitos/metabolismo , Cinetocoros/metabolismo , Meiose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...