Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.539
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39000544

RESUMO

Selenium (Se)-rich Cyclocarya paliurus is popular for its bioactive components, and exogenous Se fortification is the most effective means of enrichment. However, the effects of exogenous Se fortification on the nutritional quality of C. paliurus are not well known. To investigate the nutrient contents and antioxidant properties of C. paliurus following Se treatment, we used a foliar spray to apply Se in two forms-chemical nano-Se (Che-SeNPs) and sodium selenite (Na2SeO3). Sampling began 10 days after spraying and was conducted every 5 days until day 30. The Se, secondary metabolite, malondialdehyde contents, antioxidant enzyme activity, Se speciation, and Se-metabolism-related gene expression patterns were analyzed in the collected samples. Exogenous Se enhancement effectively increased the Se content of leaves, reaching a maximum on days 10 and 15 of sampling, while the contents of flavonoids, triterpenes, and polyphenols increased significantly during the same period. In addition, the application of Se significantly enhanced total antioxidant activity, especially the activity of the antioxidant enzyme peroxidase. Furthermore, a positive correlation between the alleviation of lipid peroxidation and Se content was observed, while methylselenocysteine formation was an effective means of alleviating Se stress. Finally, Na2SeO3 exhibited better absorption and conversion efficiency than Che-SeNPs in C. paliurus.


Assuntos
Antioxidantes , Folhas de Planta , Selênio , Selenito de Sódio , Antioxidantes/metabolismo , Selênio/metabolismo , Selênio/análise , Folhas de Planta/química , Folhas de Planta/metabolismo , Selenito de Sódio/farmacologia , Selenito de Sódio/metabolismo , Juglandaceae/química , Flavonoides/metabolismo , Flavonoides/análise , Peroxidação de Lipídeos/efeitos dos fármacos , Malondialdeído/metabolismo , Polifenóis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Triterpenos/metabolismo
2.
Sci Rep ; 14(1): 13698, 2024 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871780

RESUMO

Seaweed consumption has gained popularity due to its nutritional value and potential health benefits. However, concerns regarding the bioaccumulation of several trace elements highlight the need for comprehensive studies on exposure associated with seaweed consumption. To address this gap in knowledge, we carried out a feeding intervention study of three common edible seaweeds (Nori, Kombu, and Wakame) in 11 volunteers, aiming to elucidate the extent of both beneficial and harmful trace element exposure through seaweed consumption in humans. Concentrations of total arsenic, cobalt, copper, cadmium, iodine, molybdenum, selenium, and zinc were measured in urine samples before and following seaweed consumption. Elements concentrations were also measured in the seaweeds provided for the study. Descriptive analysis for each element were conducted and we used quantile g-computation approach to assess the association between the 8-element mixture and seaweed consumption. Differences in urine element concentrations and seaweed consumption were analyzed using generalized estimating equations (GEE). Urinary concentrations of iodine and total arsenic increased after seaweed consumption. When we analyze the 8-element mixture, the largest weight was observed for iodine after Kombu consumption while for total arsenic was observed after Wakame consumption. Similar results were observed when we compared the mean differences between the elements before and after seaweed consumption through the GEE. Seaweed consumption relates with increased urinary iodine and total arsenic concentrations, particularly after Kombu and Wakame consumption.


Assuntos
Iodo , Alga Marinha , Oligoelementos , Alga Marinha/química , Alga Marinha/metabolismo , Humanos , Iodo/urina , Iodo/análise , Oligoelementos/urina , Oligoelementos/análise , Feminino , Masculino , Adulto , Arsênio/urina , Arsênio/análise , Pessoa de Meia-Idade , Selênio/urina , Selênio/análise
3.
Environ Geochem Health ; 46(7): 215, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849642

RESUMO

Although selenium (Se) reserves are crucial for the development and exploitation of Se-rich resources in karst soil areas, research on these reserves is still limited. A comprehensive study was conducted in a typical karst region known for its Se richness. A total of 12,547 surface soil samples, 134 deep soil samples, and 60 soil profiles from various locations were systematically collected. The findings showed that the Se content in the surface soil ranged from 0.073 to 9.04 mg/kg, with a baseline level of 0.84 mg/kg. This underscores the high background level and moderate variability in the region. Surface soil Se exhibited a notable positive correlation with deep soil Se, and an inverse correlation with pH (p < 0.01). One-way analysis of variance indicated that land formations and soil structure were the primary determinants affecting the concentration of Se in the topsoil (p = 0.000), with parent rock type and land-use type following closely (p = 0.003). In addition, the study included an investigation of soil Se variations with depth using 60 soil profiles. Through this analysis, it was revealed that Se content exhibited an exponential change with depth. Multiple integrations were employed to derive formulas for calculating Se reserves in the 0-200 cm depth range. Following these calculations, the estimations of Se stockpile across diverse types of source materials, varieties of soils, and land management methods were determined, highlighting the findings using a passive construction. This paper lays the groundwork for advancing the extraction and application of Se.


Assuntos
Selênio , Solo , Selênio/análise , China , Solo/química , Poluentes do Solo/análise , Monitoramento Ambiental , Concentração de Íons de Hidrogênio
4.
Environ Geochem Health ; 46(7): 249, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877343

RESUMO

High cadmium (Cd) concentrations widely occured in selenium (Se)-rich soils, which has been an important obstacle in the usage of Se-rich soils. There is still no special information detailing the enrichment process and mechanism of Cd in Se-rich soils. 4474 soils and 21 rocks in Lanshan District were sampled to detect its enrichment process. The surface soils have Cd concentrations of 0.01-9.41 mg·kg-1 (an average of 0.16 mg·kg-1). The soil Cd concentrations were significantly correlated with soil Se concentrations. The relatively higher-Cd surface soils are distributed in Lower-middle Ordovician carbonate areas with Se-rich soils and Quaternary areas with typical anthropic activities. Surface soils in Ordovician carbonate area have the highest Cd concentrations. Soil Cd concentrations are significantly correlated with sulfophil elements (Zinc (Zn), Copper (Cu), Molybdenum (Mo), Lead (Pb) and Arsenic (As) etc.), Ca (Calcium) concentrations and soil organic carbon (SOC). The soil and rock samples from different geological units also confirmed soil Cd concentrations developing from Ordovician carbonates were higher than those from other rocks. The results indicate the soil Cd concentrations were the complex consequences of bedrock, soil-forming processes and anthropogenic activities. Higher Ca concentrations and more reduction environments result in high-Cd bedrock. CaCO3 leaching and alkaline pH, which are the special soil-forming process of carbonates, enrich Cd in soils. Agricultural and industrial activities also affect soil Cd concentrations. An enrichment model of Cd in Se-rich soils is forwarded.


Assuntos
Cádmio , Monitoramento Ambiental , Selênio , Poluentes do Solo , Solo , China , Poluentes do Solo/análise , Cádmio/análise , Solo/química , Selênio/análise
5.
Talanta ; 277: 126417, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38901191

RESUMO

Agronomic biofortification using selenium nanoparticles (SeNPs) shows potential for addressing selenium deficiency but further research on SeNPs-plants interaction is required before it can be effectively used to improve nutritional quality. In this work, single-particle inductively coupled plasma-mass spectrometry (SP-ICP-MS) was used for tracing isotopically labeled SeNPs (82SeNPs) in Oryza sativa L. tissues. For this purpose, SeNPs with natural isotopic abundance and 82SeNPs were synthesized by a chemical method. The NPs characterization by transmission electron microscopy (TEM) confirmed that enriched NPs maintained the basic properties of unlabeled NPs, showing spherical shape, monodispersity, and sizes in the nano-range (82.8 ± 6.6 nm and 73.2 ± 4.4 nm for SeNPs and 82SeNPs, respectively). The use of 82SeNPs resulted in an 11-fold enhancement in the detection power for ICP-MS analysis, accompanied by an improvement in the signal-to-background ratio and a reduction of the size limits of detection from 89.9 to 39.9 nm in SP-ICP-MS analysis. This enabled 82SeNPs to be tracked in O. sativa L. plants cultivated under foliar application of 82SeNPs. Tracing studies combining SP-ICP-MS and TEM-energy-dispersive X-ray spectroscopy data confirmed the uptake of intact 82SeNPs by rice leaves, with most NPs remaining in the leaves and very few particles translocated to shoots and roots. Translocation of Se from leaves to roots and shoots was found to be lower when applied as NPs compared to selenite application. From the size distributions, as obtained by SP-ICP-MS, it can be concluded that a fraction of the 82SeNPs remained within the same size range as that of the applied NP suspension, while other fraction underwent an agglomeration process in the leaves, as confirmed by TEM images. This illustrates the potential of SP-ICP-MS analysis of isotopically enriched 82SeNPs for tracing NPs in the presence of background elements within complex plant matrices, providing important information about the uptake, accumulation, and biotransformation of SeNPs in rice plants.


Assuntos
Espectrometria de Massas , Nanopartículas , Oryza , Selênio , Selênio/química , Selênio/análise , Oryza/química , Oryza/metabolismo , Espectrometria de Massas/métodos , Nanopartículas/química , Marcação por Isótopo , Folhas de Planta/química , Folhas de Planta/metabolismo , Nanopartículas Metálicas/química , Tamanho da Partícula
6.
Ecotoxicol Environ Saf ; 281: 116643, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38925033

RESUMO

Selenium (Se) pollution is mainly caused by anthropogenic activities, and the resulting biosecurity concerns have garnered significant attention in recent years. Using one-compartmental toxicokinetic (TK) modelling, this study explored the kinetic absorption, sub-tissue distribution, and elimination processes of the main Se species (selenate, Se(VI)) in the cultivated aerobic soil of the earthworm Eisenia fetida. The bio-accessibility of earthworm-derived Se was assessed using an in vitro simulated gastrointestinal digestion test to evaluate its potential trophic risk. The results demonstrated that Se accumulated in the pre-clitellum (PC) and total tissues (TT) of earthworms in a time- and dose-dependent manner. The highest Se levels in the PC, post-clitellum (PoC), and TT were 70.54, 57.93, and 64.26 mg/kg during the uptake phase, respectively. The kinetic Se contents in the earthworms PC and TT were consistent with the TK model but not with PoC. The earthworm TT exhibited a faster uptake (Kus = 0.83-1.02 mg/kg/day) and elimination rate of Se (Kee = 0.044-0.049 mg/kg/day), as well as a shorter half-life time (LT1/2 = 15.88-14.22 days) than PC at low soil Se levels (≤5 mg/kg). Conversely, the opposite trend was observed with higher Se concentrations (10 and 20 mg/kg). These results are likely attributable to the tissue specificity and concentration of the toxicant. Earthworms PC and TT exhibited a higher kinetic Se accumulation factor (BAFk) than steady-state BAF (BAFss), with values ranging from 8 to 24 and 3-13, respectively. Furthermore, the bio-accessibility of earthworm-derived Se to poultry ranged from 66.25 % to 84.35 %. As earthworms are at the bottom of the terrestrial food chain, the high bio-accessibility of earthworm-derived Se poses a potential risk to predators. This study offers data support and a theoretical foundation for understanding the biological footprint of soil Se and its toxicological impacts and ecological hazards.


Assuntos
Oligoquetos , Selênio , Poluentes do Solo , Toxicocinética , Oligoquetos/efeitos dos fármacos , Oligoquetos/metabolismo , Animais , Poluentes do Solo/toxicidade , Poluentes do Solo/farmacocinética , Selênio/toxicidade , Selênio/farmacocinética , Selênio/análise , Ácido Selênico/toxicidade , Ácido Selênico/farmacocinética , Distribuição Tecidual , Solo/química
7.
Environ Monit Assess ; 196(7): 628, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888677

RESUMO

Pit lakes are currently being investigated as a way to store and reclaim waste materials in the Alberta Oil Sands (AOS) region, Canada. Lake Miwasin (LM) is a pilot-scale pit lake consisting of treated fine tailings overlayed with oil sands process-affected water (OSPW) blended with fresh surface water. In October 2021, the surface water contained a mean concentration of 1.33 ± 0.04 µg/L dissolved selenium (Se), slightly above the Canadian Council of Ministers of Environment water quality guideline for long-term protection of aquatic life (1 µg Se/L). This study assessed the bioaccumulation of Se by the cladoceran Daphnia pulex under laboratory conditions through both aqueous and dietary exposure routes for comparison to field-collected specimens. In 12-day semi-static tests, lab-cultured D.pulex were exposed to water, and algae grown in media spiked with selenate. Results showed that Se bioaccumulation by lab-cultured D. pulex increased in all exposure treatments from days 5 to 12, with maximum Se concentrations of 3.08-3.47 µg/g dry weight (dw) observed within the exposure range tested. Interestingly, lower Se bioaccumulation concentrations (1.26-1.58 µg/g dw) were observed in the highest dissolved Se and dietary Se treatments, suggesting potential internal regulatory mechanisms. In addition, native D. pulex (LM) collected from Lake Miwasin and cultured in-house were exposed in 8-day semi-static tests to Lake Miwasin surface water and algae cultured in Lake Miwasin surface water. Selenium bioaccumulation in native D. pulex (LM) ranged from 2.00 to 2.04 µg/g dw at day 8 and was not significantly different (p > 0.05) compared to Se concentrations in D. pulex collected from Lake Miwasin (2.15 ± 0.28 µg/g) in summer 2022.


Assuntos
Bioacumulação , Daphnia , Exposição Dietética , Monitoramento Ambiental , Lagos , Selênio , Poluentes Químicos da Água , Animais , Daphnia/metabolismo , Selênio/metabolismo , Selênio/análise , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Lagos/química , Alberta , Daphnia pulex
8.
Anal Chem ; 96(26): 10696-10704, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38904260

RESUMO

Precision mapping of selenium at structural and position levels poses significant challenges in selenium-containing polysaccharide identification. Due to the absence of reference spectra, database-centric approaches are still limited in the discovery of selenium binding sites and distinction among different isomeric structures. A multilayer annotation strategy, AnnoSePS, is proposed for achieving the identification of seleno-substituent and the unbiased profiling of polysaccharides. Applying Snoop-triggered multiple reaction monitoring (Snoop-MRM) identified multidimensional monosaccharides in selenium-containing polysaccharides. Galactose, galacturonic acid, and glucose were the predominant monosaccharides with a molar ratio of 25.19, 19.45, and 11.72, respectively. Selenium present in seleno-rhamnose was found to substitute the hydroxyl group located at C-1 positions through the formation of a Se-H bond. Ions C6H9O3Se-, C6H7O3Se-, C5H5O3Se-, C4H5O2Se-, C3H5O2Se-, C2H3O2Se-, and CHOSe- were defined as the characteristic fragments of seleno-rhamnose. The agglomerative hierarchical clustering algorithm is applied to group spectra from each run based on the characteristic information. Preferential fragmentation patterns in mass spectrometry are revealed by training a probabilistic model. A list of candidate oligosaccharides is generated by step-by-step browsing through the transition pairs for all reference spectra and applying the transitions (addition, insertion, removal, and substitution) to reference structures. Combining time course analyses revealed the linkage composition of selenium-containing oligosaccharides. Glycosidic linkages were annotated based on a synthesis-driven approach. T-Galactose (16.67 ± 5.23%) and T-Galacturonic acid (11.54 ± 4.66%) were the predominant linkage residues. As the database-independent mapping strategy, AnnoSePS makes it possible to comprehensively interrogate spectral data and dissect the fine structure of selenium-containing polysaccharides.


Assuntos
Polissacarídeos , Selênio , Polissacarídeos/química , Polissacarídeos/análise , Selênio/química , Selênio/análise , Monossacarídeos/química , Monossacarídeos/análise , Galactose/química
9.
J Hazard Mater ; 473: 134699, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38795488

RESUMO

Identifying metabolism and detoxification mechanisms of Hg in biota has important implications for biomonitoring, ecotoxicology, and food safety. Compared to marine mammals and waterbirds, detoxification of MeHg in fish is understudied. Here, we investigated Hg detoxification in Atlantic bluefin tuna Thunnus thynnus using organ-specific Hg and Se speciation data, stable Hg isotope signatures, and Hg and Se particle measurements in multiple tissues. Our results provide evidence for in vivo demethylation and biomineralization of HgSe particles, particularly in spleen and kidney. We observed a maximum range of 1.83‰ for δ202Hg between spleen and lean muscle, whereas Δ199Hg values were similar across all tissues. Mean percent methylmercury ranged from 8% in spleen to 90% in lean muscle. The particulate masses of Hg and Se were higher in spleen and kidney (Hg: 61% and 59%, Se: 12% and 6%, respectively) compared to muscle (Hg: 2%, Se: 0.05%). Our data supports the hypothesis of an organ-specific, two-step detoxification of methylmercury in wild marine fish, consisting of demethylation and biomineralization, like reported for waterbirds. While mass dependent fractionation signatures were highly organ specific, stable mass independent fractionation signatures across all tissues make them potential candidates for source apportionment studies of Hg using ABFT.


Assuntos
Isótopos de Mercúrio , Compostos de Metilmercúrio , Atum , Poluentes Químicos da Água , Animais , Compostos de Metilmercúrio/metabolismo , Compostos de Metilmercúrio/toxicidade , Atum/metabolismo , Isótopos de Mercúrio/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Rim/metabolismo , Baço/metabolismo , Inativação Metabólica , Mercúrio/metabolismo , Mercúrio/análise , Monitoramento Ambiental/métodos , Músculos/metabolismo , Músculos/química , Selênio/metabolismo , Selênio/análise
10.
Trop Anim Health Prod ; 56(4): 149, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691179

RESUMO

Egg preference as a source of protein also provides beneficial fatty acids, vital for human consumption. However, rich in lipid products are prone to oxidative damage. The study aims to determine the effect of supplementing biogenic selenium (Se) from Stenotrophomonas maltophilia, ADS18 (ADS18) in laying hens' diet on yolk lipid oxidation status (MDA), beta-carotene (ß-carotene) content, cholesterol, fatty acids, Se, and vitamin E (VE) level. A total of one hundred and twenty (120) laying hens of Lohmann Brown strains aged 50 weeks, weighing 1500 to 2000 g were reared individually in A-shape two-tier stainless-steel cages sized 30 cm x 50 cm x 40 cm (width, depth height). The hens were randomly allotted into four treatments with six replications in a complete randomised design for the period of 12 weeks. The basal diet contains 100 mg/kg VE. Treatment diets consist of basal diet as control, SS containing 0.3 mg/kg sodium selenite, Se-yeast containing 0.3 mg/kg selenised yeast, and VADS18 containing 0.3 mg/kg of ADS18. Forty-eight eggs were collected and freeze-dried biweekly for analysis. The results of the present study showed that hens supplemented ADS18 had significantly (P < 0.05) lower MDA and cholesterol levels while their egg yolks had higher levels of Se and mono-unsaturated fatty acids (MUFA). The control group had significantly (P < 0.05) higher saturated fatty acid (SFA) contents than the VE and dietary Se-supplemented groups, while the ADS18 group had the lowest SFA contents. Conversely, in comparison to the inorganic and control groups, the VE content of the egg yolk was significantly (P < 0.05) higher in organic Se-supplemented (Se-yeast and VADS18) groups. Hens with SS supplementation had significantly (P < 0.05) higher egg yolk ß-carotene content. When compared to other treatment groups, the control group had higher (P < 0.05) polyunsaturated fatty acids (PUFA) content. The ADS18 is therefore deemed comparable to other Se sources. To prevent Se toxicity, however, a better understanding of the levels of ADS18 incorporation in poultry diets is required.


Assuntos
Ração Animal , Galinhas , Dieta , Suplementos Nutricionais , Gema de Ovo , Selênio , Vitamina E , Animais , Feminino , Suplementos Nutricionais/análise , Ração Animal/análise , Selênio/administração & dosagem , Selênio/análise , Gema de Ovo/química , Vitamina E/administração & dosagem , Vitamina E/análise , Dieta/veterinária , Distribuição Aleatória , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Lipídeos/análise , beta Caroteno/análise , beta Caroteno/administração & dosagem , beta Caroteno/metabolismo
11.
Sci Total Environ ; 933: 172869, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38697548

RESUMO

Removing selenium (Se) from mine effluent is a common challenge. A long-term, in situ experiment was conducted to bioremediate large volumes (up to 7500 mc d-1) of Se(VI)-contaminated water (mean 87 µg L-1) by injecting the water into a saturated waste rock fill (SRF) at a coal mining operation in Elk Valley, British Columbia, Canada. To stimulate/maintain biofilm growth in the SRF, labile organic carbon (methanol) and nutrients were added to the water prior to its injection. A conservative tracer (Br-) was also added to track the migration of injected water across the SRF, identify wells with minimal dilution and used to quantify the extent of bioreduction. The evolution of the Se species through the SRF was monitored in time and space for 201 d. Selenium concentrations of <3.8 µg L-1 were attained in monitoring wells located 38 m from the injection wells after 114 to 141 d of operation. Concentrations of Se species in water samples from complementary long-term (351-498 d) column experiments using influent Se(VI) concentrations of 1.0 mg L-1 were consistent with the results of the in situ experiment. Solid samples collected at the completion of the column experiments confirmed the presence of indigenous Se-reducing bacteria and that the sequestered Se was present as insoluble Se(0), likely in Se-S ring compounds. Based on the success of this ongoing bioremediation experiment, this technology is being applied at other mine sites.


Assuntos
Biodegradação Ambiental , Ácido Selênico , Poluentes Químicos da Água , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Ácido Selênico/metabolismo , Colúmbia Britânica , Minas de Carvão , Selênio/metabolismo , Selênio/análise , Mineração
12.
Environ Int ; 188: 108758, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38781702

RESUMO

Mollisols rich in natural organic matter are a significant sink of carbon (C) and selenium (Se). Climate warming and agricultural expansion to the cold Mollisol regions may enhance soil respiration and biogeochemical cycles, posing a growing risk of soil C and Se loss. Through field-mimicking incubation experiments with uncultivated and cultivated soils from the Mollisol regions of northeastern China, this research shows that soil respiration remained significant even during cold seasons and caused co-emission of greenhouse gases (CO2 and CH4) and methylated Se. Such stimulus effects were generally stronger in the cultivated soils, with maximum emission rates of 7.45 g/m2/d C and 1.42 µg/m2/d Se. For all soil types, the greatest co-emission of CO2 and dimethyl selenide occurred at 25 % soil moisture, whereas measurable CH4 emission was observed at 40 % soil moisture with higher percentages of dimethyl diselenide volatilization. Molecular characterization with three-dimensional fluorescence and ultra-high resolution mass spectrometry suggests that CO2 emission is sensitive to the availability of microbial protein-like substances and free energy from organic carbon biodegradation under variable moisture conditions. Predominant Se binding to biodegradable organic matter resulted in high dependence of Se volatilization on rates of greenhouse gas emissions. These findings together highlight the importance of dynamic organic carbon quality for soil respiration and consequent Mollisol Se loss risk, with implications for science-based management of C and Se resources in agricultural lands to combat with Se deficiency.


Assuntos
Dióxido de Carbono , Gases de Efeito Estufa , Metano , Selênio , Solo , Solo/química , Selênio/análise , Selênio/metabolismo , Gases de Efeito Estufa/análise , Metano/metabolismo , China , Dióxido de Carbono/análise , Microbiologia do Solo , Metilação
13.
Environ Res ; 256: 119160, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38754613

RESUMO

Addressing cadmium (Cd) contamination in agricultural lands is crucial, given its health implications and accumulation in crops. This study used pot experiments to evaluate the impact of foliar selenium spray (Se) (0.40 mM), corn straw biochar (1%), and pig manure (1%) on the growth of rice plants, the accumulation of Cd in rice grain, and to examine their influence on health risk indices associated with Cd exposure. The treatments were designated as follows: a control group without any amendment (CK), biochar (T1), pig manure (T2), Se (T3), Se and biochar (T4), Se and pig manure (T5), and Se along with biochar and pig manure (T6). Our results indicated that the treatments affected soil pH and redox potential and improved growth and the nitrogen and phosphorus content in rice plants. The soil-plant analysis development (SPAD) meter readings of leaves during the tillering stage indicated a 5.27%-15.86% increase in treatments T2 to T6 compared to CK. The flag leaves of T2 exhibited increases of 12.06%-38.94% for electrolyte leakage and an 82.61%-91.60% decline in SOD compared to treatments T3 to T6. Treatments T1 to T6 increased protein content; however, amylose content was significantly reduced in T6. Treatment T6 recorded the lowest Cd concentration in rice grains (0.018 mg/kg), while T2 recorded the highest (0.051 mg/kg). The CK treatment group showed a grain Cd content reduction of 29.30% compared to T2. The assessment of acceptable daily intake, hazard quotient, and carcinogenic risk revealed an ascending order as follows: T6 < T3 < T5 < T4 < T1 < CK < T2. In conclusion, the application of treatment T6 demonstrates the potential to lower oxidative stress, enhance production, reduce cancer risk, and ensure the safe cultivation of rice in environments affected by Cd contamination.


Assuntos
Cádmio , Carvão Vegetal , Esterco , Oryza , Selênio , Poluentes do Solo , Oryza/metabolismo , Oryza/química , Oryza/crescimento & desenvolvimento , Cádmio/análise , Cádmio/metabolismo , Selênio/análise , Selênio/metabolismo , Esterco/análise , Animais , Carvão Vegetal/química , Poluentes do Solo/análise , Suínos , Folhas de Planta/química , Folhas de Planta/metabolismo , Medição de Risco , Humanos
14.
Chemosphere ; 361: 142472, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38810800

RESUMO

Enshi, China, is renowned as "Selenium(Se) Capital" where widely distributed soils derived from Permian parent rocks are notably rich in Se, as well as metals, particularly cadmium(Cd). However, the soil enrichment and crop uptake of Se and metals in these high-Se and high-Cd areas are not well understood. To propose the optimal crop planting plan to ensure the safety of agricultural products, we investigated the soils and corresponding typical crops (rice, tea, and maize). The results showed significant soil enrichment of elements, with average contents (mg/kg) as follows: Cr (185), Zn (126), Cu (58.8), Pb (31.1), As (15.7), Se (6.85), Cd (5.41), and Hg (0.211). All soil Se contents were above 0.4 mg/kg, indicating Se-rich soils. Se primarily existed in an organic-bound form, accounting for an average proportion of 61.3%, while Cd was mainly exchangeable, with an average of 62.5%. Cd exhibited higher activity according to the Relative Index of Activity (RIA). Nemerow single-factor index analysis confirmed significant soil contamination, with Cd showing the highest level, followed by Cr and Cu, while Pb had the lowest level. Tea exhibited a high Se rich ratio (82.0%) without exceeding the Cd standard. In contrast, corn and rice had relatively lower Se-rich ratios (42.0% and 51.5% respectively) and high rates of Cd exceeding the standard, at 49.0% and 61.0% respectively. Canonical analysis revealed that rice was more influenced by soil factors related to Se and Cd compared to maize and tea crops. Therefore, tea cultivation in the Enshi Permian soil area is recommended for safe crop production. This study provides insights into the enrichment, fractionation, and bioavailability of soil Se, Cd, and other metals in the high-Se and high-Cd areas of permian stratas in Enshi, offering a scientific basis for selecting local food crops and producing safe Se-rich agricultural products in the region.


Assuntos
Produtos Agrícolas , Rizosfera , Selênio , Poluentes do Solo , Solo , Zea mays , Selênio/análise , Selênio/metabolismo , Poluentes do Solo/análise , Solo/química , China , Produtos Agrícolas/metabolismo , Metais/análise , Oryza , Cádmio/análise , Chá/química , Monitoramento Ambiental
15.
Metallomics ; 16(5)2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38664065

RESUMO

Mercury is a well-recognized environmental contaminant and neurotoxin, having been associated with a number of deleterious neurological conditions including neurodegenerative diseases, such as Alzheimer's disease. To investigate how mercury and other metals behave in the brain, we used synchrotron micro-X-ray fluorescence to map the distribution pattern and quantify concentrations of metals in human brain. Brain tissue was provided by the Rush Alzheimer's Disease Center and samples originated from individuals diagnosed with Alzheimer's disease and without cognitive impairment. Data were collected at the 2-ID-E beamline at the Advanced Photon Source at Argonne National Laboratory with an incident beam energy of 13 keV. Course scans were performed at low resolution to determine gross tissue features, after which smaller regions were selected to image at higher resolution. The findings revealed (1) the existence of mercury particles in the brain samples of two subjects; (2) co-localization and linear correlation of mercury and selenium in all particles; (3) co-localization of these particles with zinc structures; and (4) association with sulfur in some of these particles. These results suggest that selenium and sulfur may play protective roles against mercury in the brain, potentially binding with the metal to reduce the induced toxicity, although at different affinities. Our findings call for further studies to investigate the relationship between mercury, selenium, and sulfur, as well as the potential implications in Alzheimer's disease and related dementias.


Assuntos
Doença de Alzheimer , Encéfalo , Mercúrio , Selênio , Espectrometria por Raios X , Síncrotrons , Humanos , Mercúrio/análise , Mercúrio/metabolismo , Selênio/análise , Selênio/metabolismo , Encéfalo/metabolismo , Espectrometria por Raios X/métodos , Doença de Alzheimer/metabolismo , Idoso , Masculino , Feminino , Zinco/análise , Zinco/metabolismo
16.
Anal Sci ; 40(7): 1349-1356, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38683477

RESUMO

Based on the automatic light wave ashing instrument, palladium nitrate was used as an ashing aid for the first time to collect selenium in the process of food ashing pre-treatment, and a method for the determination of selenium in food by ashing method was established with inductively coupled plasma mass spectrometry. At the same time, the effects of magnesium nitrate, rhodium nitrate, and nickel nitrate as ashing aids on selenium collection were investigated using certified plant standard materials. The capture of selenium by magnesium nitrate, rhodium nitrate, and nickel nitrate as ashing aids did not exceed 50%. Using palladium nitrate as an ashing aid, six food standard materials were measured, with selenium recovery rates ranging from 97 to 106%. A complete analysis cycle can be completed within an hour. The method detection limit of selenium was 0.021 µg g-1, and the relative standard deviation of five measurements was less than 7%. The experimental results show that palladium nitrate is an excellent ashing aid for capturing selenium, and it is far superior to the other three aids. In addition, the mechanism of palladium nitrate as an ashing aid for capturing selenium was discussed.


Assuntos
Análise de Alimentos , Espectrometria de Massas , Paládio , Selênio , Selênio/análise , Selênio/química , Paládio/química , Paládio/análise , Análise de Alimentos/métodos , Nitratos/análise , Nitratos/química , Automação , Raios Infravermelhos
17.
Biometals ; 37(3): 721-737, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642266

RESUMO

BACKGROUND: In kidney damage, molecular changes can be used as early damage kidney biomarkers, such as Kidney Injury Molecule-1 and Neutrophil gelatinase-associated lipocalin. These biomarkers are associated with toxic metal exposure or disturbed homeostasis of trace elements, which might lead to serious health hazards. This study aimed to evaluate the relationship between exposure to trace elements and early damage kidney biomarkers in a pediatric population. METHODS: In Tlaxcala, a cross-sectional study was conducted on 914 healthy individuals. The participants underwent a medical review and a socio-environmental questionnaire. Five early damage kidney biomarkers were determined in the urine with Luminex, and molybdenum, copper, selenium, nickel, and iodine were measured with ICP-Mass. RESULTS: The eGFR showed a median of 103.75 mL/min/1.73 m2. The median levels for molybdenum, copper, selenium, nickel, and iodine were 24.73 ng/mL, 73.35 ng/mL, 4.78 ng/mL, 83.68 ng/mL, and 361.83 ng/mL, respectively. Except for molybdenum and nickel, the other trace elements had significant associations with the eGFR and the early kidney damage biomarkers. Additionally, we report the association of different exposure scenarios with renal parameters. DISCUSSION: and Conclusions. Among the explored metals, exposure to Cu and iodine impairs renal function. In contrast, Se may manifest as a beneficial metal. Interactions of Mo-Se and Mo-Iodine seem to alter the expression of NGAL; Mo-Cu for CLU; Mo-Cu, Mo-Se, and Mo-iodine for Cys-C and a-1MG; and Mo-Cu and Mo-iodine for KIM-1; were noticed. Our study could suggest that trace element interactions were associated with early kidney damage biomarkers.


Assuntos
Biomarcadores , Exposição Ambiental , Oligoelementos , Humanos , Biomarcadores/urina , Biomarcadores/metabolismo , Criança , Masculino , Feminino , Oligoelementos/análise , Oligoelementos/urina , Exposição Ambiental/efeitos adversos , Estudos Transversais , Adolescente , Lipocalina-2/urina , Taxa de Filtração Glomerular , Cobre/urina , Cobre/análise , Selênio/urina , Selênio/análise , Nefropatias/induzido quimicamente , Nefropatias/urina , Nefropatias/metabolismo , Rim/metabolismo , Pré-Escolar , Níquel/urina
18.
Commun Biol ; 7(1): 432, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594418

RESUMO

Trace elements are important for human health but may exert toxic or adverse effects. Mechanisms of uptake, distribution, metabolism, and excretion are partly under genetic control but have not yet been extensively mapped. Here we report a comprehensive multi-element genome-wide association study of 57 essential and non-essential trace elements. We perform genome-wide association meta-analyses of 14 trace elements in up to 6564 Scandinavian whole blood samples, and genome-wide association studies of 43 trace elements in up to 2819 samples measured only in the Trøndelag Health Study (HUNT). We identify 11 novel genetic loci associated with blood concentrations of arsenic, cadmium, manganese, selenium, and zinc in genome-wide association meta-analyses. In HUNT, several genome-wide significant loci are also indicated for other trace elements. Using two-sample Mendelian randomization, we find several indications of weak to moderate effects on health outcomes, the most precise being a weak harmful effect of increased zinc on prostate cancer. However, independent validation is needed. Our current understanding of trace element-associated genetic variants may help establish consequences of trace elements on human health.


Assuntos
Selênio , Oligoelementos , Masculino , Humanos , Oligoelementos/metabolismo , Estudo de Associação Genômica Ampla , Zinco , Selênio/análise , Manganês
19.
BMC Pediatr ; 24(1): 251, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605385

RESUMO

BACKGROUND: Dilated cardiomyopathy (DCMP) is characterized by the enlargement and weakening of the heart and is a major cause of heart failure in children. Infection and nutritional deficiencies are culprits for DCMP. Zinc is an important nutrient for human health due to its anti-oxidant effect that protects cell against oxidative damage. This case-control study aimed to investigate the relationship between dietary intake of zinc and selenium and the risk of DCMP in pediatric patients. METHODS: A total of 36 DCMP patients and 72 matched controls were recruited, and their dietary intakes were assessed via a validated food frequency questionnaire. We used chi-square and sample T-test for qualitative and quantitative variables, respectively. Logistic regression analysis was applied to assess the relationship between selenium and zinc intake with the risk of DCMP. RESULTS: After fully adjusting for confounding factors, analyses showed that selenium (OR = 0.19, CI = 0.057-0.069, P trend < 0.011) and zinc (OR = 0.12, CI = 0.035-0.046, P trend < 0.002) intake were strongly associated with 81% and 88% lower risk of pediatric DCMP, respectively. CONCLUSIONS: This study highlights the protective role of adequate dietary intake of selenium and zinc in decreasing the risk of DCMP in children. Malnutrition may exacerbate the condition and addressing these micronutrient deficiencies may improve the cardiac function. Further studies are recommended to detect the underlying mechanisms and dietary recommendations for DCMP prevention.


Assuntos
Cardiomiopatia Dilatada , Desnutrição , Selênio , Humanos , Criança , Selênio/análise , Estudos de Casos e Controles , Cardiomiopatia Dilatada/etiologia , Desoxicitidina Monofosfato , Zinco , Desnutrição/complicações
20.
J Environ Manage ; 358: 120838, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608576

RESUMO

The soil selenium (Se) content and bioavailability are important for human health. In this regard, knowing the factors driving the concentration of total Se and bioavailable Se in soils is essential to map Se, enhance foodstuffs' Se content, and improve the Se nutritional status of humans. In this study, total Se and Se bioavailability (i.e., phosphate extracted Se) in surface soils (0-20 cm) developed on different strata were analyzed in a Se-enriched region of Southwest China. Furthermore, the interaction between the stratum and soil properties was assessed and how did the stratum effect on the concentration and spatial distribution of Se bioavailability in soils was investigated. Results showed that the median concentration of total Se in soils was 0.308 mg/kg, which is higher than China's soil background. The mean proportion of phosphate extracted Se in total Se was 12.2 %. The values of total Se, phosphate extracted Se, and soil organic matter (SOM) in soils increased with the increasing stratum age. In contrast, the coefficient of weathering and eluviation (BA) values decreased. The analysis of statistics and Geodetector revealed that the SOM, stratum, and BA were the dominant controlling factors for the contents and distributions of soil total Se and phosphate extracted Se. This study provided strong evidence that the soil properties that affected the total Se and Se bioavailability were modulated by the local geological background, and had important practical implications for addressing Se malnutrition and developing the Se-rich resource in the study region and similar geological settings in different parts of the globe.


Assuntos
Selênio , Solo , Selênio/análise , Solo/química , China , Disponibilidade Biológica , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...