Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 322
Filtrar
1.
Neuromolecular Med ; 26(1): 37, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266914

RESUMO

As the primary connection between the eye and brain, the optic nerve plays a pivotal role in visual information transmission. Injuries to the optic nerve can occur for various reasons, including trauma, glaucoma, and neurodegenerative diseases. Retinal ganglion cells (RGCs), a type of neurons that extend axons through the optic nerve, can rapidly respond to injury and initiate cell death. Additionally, following optic nerve injury microglia, which serve as markers of neuroinflammation, transition from a resting state to an activated state. The phosphorylation of collapsin response mediator protein2 (CRMP2) in the semaphorin 3A (Sema3A) signalling pathway affects several processes, including axon guidance and neuron regeneration. In this study, we used an optic nerve crush (ONC) mouse model to investigate the effects of suppressing CRMP2 phosphorylation on microglia activation. We found that CRMP2 phosphorylation inhibitor suppressed RGCs loss and promoted neuronal regeneration following ONC. In addition, CRMP2 S522A mutant (CRMP2 KI) mice exhibited decreased microglial activation in both the retina and optic nerve following ONC. These results suggest that inhibiting the phosphorylation of CRMP2 can alleviate the loss of RGCs and microglial activation after optic nerve injury, providing insight into the development of treatments for optical neuropathies and neurodegenerative diseases.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular , Microglia , Regeneração Nervosa , Proteínas do Tecido Nervoso , Traumatismos do Nervo Óptico , Nervo Óptico , Retina , Células Ganglionares da Retina , Semaforina-3A , Animais , Traumatismos do Nervo Óptico/fisiopatologia , Traumatismos do Nervo Óptico/metabolismo , Traumatismos do Nervo Óptico/tratamento farmacológico , Microglia/metabolismo , Microglia/efeitos dos fármacos , Fosforilação , Camundongos , Regeneração Nervosa/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas do Tecido Nervoso/genética , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Nervo Óptico/metabolismo , Semaforina-3A/genética , Semaforina-3A/metabolismo , Retina/efeitos dos fármacos , Retina/metabolismo , Compressão Nervosa , Camundongos Endogâmicos C57BL , Masculino , Modelos Animais de Doenças , Camundongos Transgênicos
2.
Nat Cardiovasc Res ; 3(6): 734-753, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39196233

RESUMO

Prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease, increases worldwide and associates with type 2 diabetes and other cardiometabolic diseases. Here we demonstrate that Sema3a is elevated in liver sinusoidal endothelial cells of animal models for obesity, type 2 diabetes and MASLD. In primary human liver sinusoidal endothelial cells, saturated fatty acids induce expression of SEMA3A, and loss of a single allele is sufficient to reduce hepatic fat content in diet-induced obese mice. We show that semaphorin-3A regulates the number of fenestrae through a signaling cascade that involves neuropilin-1 and phosphorylation of cofilin-1 by LIM domain kinase 1. Finally, inducible vascular deletion of Sema3a in adult diet-induced obese mice reduces hepatic fat content and elevates very low-density lipoprotein secretion. Thus, we identified a molecular pathway linking hyperlipidemia to microvascular defenestration and early development of MASLD.


Assuntos
Células Endoteliais , Fígado , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , Semaforina-3A , Transdução de Sinais , Animais , Humanos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Fígado/metabolismo , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/genética , Semaforina-3A/metabolismo , Semaforina-3A/genética , Neuropilina-1/metabolismo , Neuropilina-1/genética , Obesidade/metabolismo , Obesidade/patologia , Obesidade/genética , Cofilina 1/metabolismo , Cofilina 1/genética , Modelos Animais de Doenças , Masculino , Fosforilação , Células Cultivadas , Camundongos , Camundongos Knockout , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/genética , Dieta Hiperlipídica/efeitos adversos
3.
Int Immunopharmacol ; 138: 112559, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38955028

RESUMO

BACKGROUND: Semaphorin 3A (Sema3A) is a member of neural guidance factor family well-known for inducing the collapse of nerve cell growth cone and regulating nerve redistribution. It also has been characterized as an immunoregulatory and tumor promoting factor. Our previous study showed that Sema3A was involved in the regulation of sympathetic innervation and neuropathic pain of endometriosis. Nevertheless, the role of Sema3A in the development of endometriosis and its potential upstreaming factor are still not clear. METHODS: Histology experiments were carried to detect the expression of Sema3A, hypoxia -inducible factor 1α (HIF-1α) and the distribution of macrophages. Cell experiments were used to explore the effect of Sema3A on the proliferation and migration of endometrial stromal cells (ESCs) and to confirm the regulatory action of HIF-1α on Sema3A. In vivo experiments were carried out to explore the role of Sema3A on the development of endometriosis. RESULTS: Sema3A was highly expressed in endometriotic lesions and could enhanced the proliferation and migration abilities of ESCs. Aberrant macrophage distribution was found in endometriotic lesions. Sema3A also promoted the differentiation of monocytes into anti-inflammatory macrophages, so indirectly mediating the proliferation and migration of ESCs. Hypoxic microenvironment induced Sema3A mRNA and protein expression in ESCs via HIF-1α. Administration of Sema3A promoted the development of endometriosis in a mouse model. CONCLUSIONS: Sema3A, which is regulated by HIF-1α, is a promoting factor for the development of endometriosis. Targeting Sema3A may be a potential treatment strategy to control endometriotic lesions.


Assuntos
Proliferação de Células , Endometriose , Subunidade alfa do Fator 1 Induzível por Hipóxia , Macrófagos , Semaforina-3A , Endometriose/patologia , Endometriose/imunologia , Endometriose/metabolismo , Semaforina-3A/metabolismo , Semaforina-3A/genética , Feminino , Animais , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Camundongos , Movimento Celular , Endométrio/patologia , Endométrio/metabolismo , Células Estromais/metabolismo , Células Cultivadas , Hipóxia/metabolismo , Adulto , Modelos Animais de Doenças , Diferenciação Celular
4.
Biochem Pharmacol ; 226: 116358, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38857830

RESUMO

With societal development and an ageing population, psychiatric disorders have become a common cause of severe and long-term disability and socioeconomic burdens worldwide. Semaphorin 3A (Sema-3A) is a secreted glycoprotein belonging to the semaphorin family. Sema-3A is well known as an axon guidance factor in the neuronal system and a potent immunoregulator at all stages of the immune response. It is reported to have various biological functions and is involved in many human diseases, including autoimmune diseases, angiocardiopathy, osteoporosis, and tumorigenesis. The signals of sema-3A involved in the pathogenesis of these conditions, are transduced through its cognate receptors and diverse downstream signalling pathways. An increasing number of studies show that sema-3A plays important roles in synaptic and dendritic development, which are closely associated with the pathophysiological mechanisms of psychiatric disorders, including schizophrenia, depression, and autism, suggesting the involvement of sema-3A in the pathogenesis of mental diseases. This indicates that mutations in sema-3A and alterations in its receptors and signalling may compromise neurodevelopment and predispose patients to these disorders. However, the role of sema-3A in psychiatric disorders, particularly in regulating neurodevelopment, remains elusive. In this review, we summarise the recent progress in understanding sema-3A in the pathogenesis of mental diseases and highlight sema-3A as a potential target for the prevention and treatment of these diseases.


Assuntos
Esquizofrenia , Semaforina-3A , Animais , Humanos , Ansiedade/metabolismo , Depressão/metabolismo , Transtornos Mentais/metabolismo , Transtornos Mentais/genética , Esquizofrenia/metabolismo , Esquizofrenia/genética , Semaforina-3A/metabolismo , Semaforina-3A/genética , Semaforina-3A/fisiologia , Transdução de Sinais/fisiologia
5.
Gut ; 73(8): 1321-1335, 2024 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-38670629

RESUMO

OBJECTIVE: The dysregulation of the axon guidance pathway is common in pancreatic ductal adenocarcinoma (PDAC), yet our understanding of its biological relevance is limited. Here, we investigated the functional role of the axon guidance cue SEMA3A in supporting PDAC progression. DESIGN: We integrated bulk and single-cell transcriptomic datasets of human PDAC with in situ hybridisation analyses of patients' tissues to evaluate SEMA3A expression in molecular subtypes of PDAC. Gain and loss of function experiments in PDAC cell lines and organoids were performed to dissect how SEMA3A contributes to define a biologically aggressive phenotype. RESULTS: In PDAC tissues, SEMA3A is expressed by stromal elements and selectively enriched in basal-like/squamous epithelial cells. Accordingly, expression of SEMA3A in PDAC cells is induced by both cell-intrinsic and cell-extrinsic determinants of the basal-like phenotype. In vitro, SEMA3A promotes cell migration as well as anoikis resistance. At the molecular level, these phenotypes are associated with increased focal adhesion kinase signalling through canonical SEMA3A-NRP1 axis. SEMA3A provides mouse PDAC cells with greater metastatic competence and favours intratumoural infiltration of tumour-associated macrophages and reduced density of T cells. Mechanistically, SEMA3A functions as chemoattractant for macrophages and skews their polarisation towards an M2-like phenotype. In SEMA3Ahigh tumours, depletion of macrophages results in greater intratumour infiltration by CD8+T cells and better control of the disease from antitumour treatment. CONCLUSIONS: Here, we show that SEMA3A is a stress-sensitive locus that promotes the malignant phenotype of basal-like PDAC through both cell-intrinsic and cell-extrinsic mechanisms.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Fenótipo , Semaforina-3A , Animais , Humanos , Camundongos , Orientação de Axônios/genética , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Neuropilina-1/metabolismo , Neuropilina-1/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Semaforina-3A/metabolismo , Semaforina-3A/genética , Transdução de Sinais
6.
Nat Commun ; 15(1): 3173, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609390

RESUMO

Semaphorin-3A (SEMA3A) functions as a chemorepulsive signal during development and can affect T cells by altering their filamentous actin (F-actin) cytoskeleton. The exact extent of these effects on tumour-specific T cells are not completely understood. Here we demonstrate that Neuropilin-1 (NRP1) and Plexin-A1 and Plexin-A4 are upregulated on stimulated CD8+ T cells, allowing tumour-derived SEMA3A to inhibit T cell migration and assembly of the immunological synapse. Deletion of NRP1 in both CD4+ and CD8+ T cells enhance CD8+ T-cell infiltration into tumours and restricted tumour growth in animal models. Conversely, over-expression of SEMA3A inhibit CD8+ T-cell infiltration. We further show that SEMA3A affects CD8+ T cell F-actin, leading to inhibition of immune synapse formation and motility. Examining a clear cell renal cell carcinoma patient cohort, we find that SEMA3A expression is associated with reduced survival, and that T-cells appear trapped in SEMA3A rich regions. Our study establishes SEMA3A as an inhibitor of effector CD8+ T cell tumour infiltration, suggesting that blocking NRP1 could improve T cell function in tumours.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Humanos , Actinas , Linfócitos T CD8-Positivos , Citoesqueleto , Semaforina-3A/genética
7.
Cell Biochem Funct ; 42(3): e4012, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38584583

RESUMO

Osteoarthritis (OA) is characterised by the deterioration of cartilage in the joints and pain. We hypothesise that semaphorin-3A (sema-3A), a chemorepellent for sensory nerves, plays a role in joint degradation and pain. We used the mechanical joint loading (MJL) model of OA to investigate sema-3A expression in the joint and examine its association with the development of OA and pain. We also analyse its effect on chondrocyte differentiation using the ATDC5 cell line. We demonstrate that sema-3A is present in most tissues in the healthy joint and its expression increases in highly innervated tissues, such as cruciate ligaments, synovial lining and subchondral bone, in loaded compared to nonloaded control joints. In contrast, sema-3A expression in cartilage was decreased in the severe OA induced by the application of high loads. There was a significant increase in circulating sema-3A, 6 weeks after MJL compared to the nonloaded mice. mRNA for sema-3A and its receptor Plexin A1 were upregulated in the dorsal root ganglia of mice submitted to MJL. These increases were supressed by zoledronate, an inhibitor of bone pain. Sema-3A was expressed at all stages of Chondrocyte maturation and, when added exogenously, stimulated expression of markers of chondrocyte differentiation. This indicates that sema-3A could affect joint tissues distinctively during the development of OA. In highly innervated joint tissues, sema-3A could control innervation and/or induce pain-associated neuronal changes. In cartilage, sema-3A could favour its degeneration by modifying chondrocyte differentiation.


Assuntos
Osso e Ossos , Semaforina-3A , Animais , Camundongos , Osso e Ossos/metabolismo , Diferenciação Celular , Linhagem Celular , Dor , Semaforina-3A/genética , Semaforina-3A/metabolismo
8.
J Cell Mol Med ; 28(8): e18201, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38568078

RESUMO

Sensory nerves play a crucial role in maintaining bone homeostasis by releasing Semaphorin 3A (Sema3A). However, the specific mechanism of Sema3A in regulation of bone marrow mesenchymal stem cells (BMMSCs) during bone remodelling remains unclear. The tibial denervation model was used and the denervated tibia exhibited significantly lower mass as compared to sham operated bones. In vitro, BMMSCs cocultured with dorsal root ganglion cells (DRGs) or stimulated by Sema3A could promote osteogenic differentiation through the Wnt/ß-catenin/Nrp1 positive feedback loop, and the enhancement of osteogenic activity could be inhibited by SM345431 (Sema3A-specific inhibitor). In addition, Sema3A-stimulated BMMSCs or intravenous injection of Sema3A could promote new bone formation in vivo. To sum up, the coregulation of bone remodelling is due to the ageing of BMMSCs and increased osteoclast activity. Furthermore, the sensory neurotransmitter Sema3A promotes osteogenic differentiation of BMMSCs via Wnt/ß-catenin/Nrp1 positive feedback loop, thus promoting osteogenesis in vivo and in vitro.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Osteogênese/genética , Semaforina-3A/genética , Retroalimentação , beta Catenina , Gânglios Espinais , Neuropilina-1/genética
9.
J Cell Physiol ; 239(5): e31248, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38501506

RESUMO

The loss of semaphorin 3A (Sema3A), which is related to endothelial-to-mesenchymal transition (EndMT) in atrial fibrosis, is implicated in the pathogenesis of atrial fibrillation (AF). To explore the mechanisms by which EndMT affects atrial fibrosis and assess the potential of a Sema3A activator (naringin) to prevent atrial fibrosis by targeting transforming growth factor-beta (TGF-ß)-induced EndMT, we used human atria, isolated human atrial endocardial endothelial cells (AEECs), and used transgenic mice expressing TGF-ß specifically in cardiac tissues (TGF-ß transgenic mice). We evaluated an EndMT marker (Twist), a proliferation marker (proliferating cell nuclear antigen; PCNA), and an endothelial cell (EC) marker (CD31) through triple immunohistochemistry and confirmed that both EndMT and EC proliferation contribute to atrial endocardial fibrosis during AF in TGF-ß transgenic mice and AF patient tissue sections. Additionally, we investigated the impact of naringin on EndMT and EC proliferation in AEECs and atrial fibroblasts. Naringin exhibited an antiproliferative effect, to which AEECs were more responsive. Subsequently, we downregulated Sema3A in AEECs using small interfering RNA to clarify a correlation between the reduction in Sema3A and the elevation of EndMT markers. Naringin treatment induced the expression of Sema3A and a concurrent decrease in EndMT markers. Furthermore, naringin administration ameliorated AF and endocardial fibrosis in TGF-ß transgenic mice by stimulating Sema3A expression, inhibiting EndMT markers, reducing atrial fibrosis, and lowering AF vulnerability. This suggests therapeutic potential for naringin in AF treatment.


Assuntos
Fibrilação Atrial , Proliferação de Células , Células Endoteliais , Transição Epitelial-Mesenquimal , Flavanonas , Átrios do Coração , Semaforina-3A , Fator de Crescimento Transformador beta , Animais , Humanos , Masculino , Camundongos , Fibrilação Atrial/metabolismo , Fibrilação Atrial/patologia , Fibrilação Atrial/genética , Fibrilação Atrial/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Flavanonas/farmacologia , Átrios do Coração/metabolismo , Átrios do Coração/efeitos dos fármacos , Átrios do Coração/patologia , Camundongos Transgênicos , Semaforina-3A/metabolismo , Semaforina-3A/genética , Fator de Crescimento Transformador beta/metabolismo
10.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 244-249, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38430015

RESUMO

Osteoarthritis (OA) is a major disease that causes disability in middle-aged and elderly people. A comprehensive understanding of its pathogenesis is of great significance in finding new clinical diagnosis and treatment schemes. The role of Semaphorin 3A (Sema3A) in OS has attracted attention recently, and the purpose of this study is to analyze the mechanisms underlying its impact on OS. First, a rat model of OS was established. Hematoxylin-eosin (HE) and TUNEL staining showed that the modeled rats presented typical pathological manifestations of OS, confirming the success of the modeling. Sema3A was significantly underexpressed in OS rats. Subsequently, Sema3A abnormal expression vectors were constructed to intervene in chondrocytes isolated from OS rats. It was found that the proliferation of chondrocytes was decreased, the apoptosis was increased, and the mitochondrial damage and autophagy were intensified after silencing Sema3A expression, while the above pathological processes were reversed when Sema3A expression was increased. In conclusion, Sema3A has an important influence on the pathological progression of OS, and molecular therapies targeting to increase Sema3A expression may become a new treatment for OS in the future.


Assuntos
Osteoartrite , Semaforina-3A , Animais , Ratos , Apoptose/genética , Condrócitos/metabolismo , Osteoartrite/genética , Osteoartrite/metabolismo , Semaforina-3A/genética , Semaforina-3A/metabolismo
11.
J Hypertens ; 42(5): 816-827, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38165021

RESUMO

Thoracic aortic aneurysm and dissection (TAAD) is a life-threatening disease and currently there is no pharmacological therapy. Sympathetic nerve overactivity plays an important role in the development of TAAD. Sympathetic innervation is mainly controlled by nerve growth factor (NGF, a key neural chemoattractant) and semaphoring 3A (Sema3A, a key neural chemorepellent), while the roles of these two factors in aortic sympathetic innervation and especially TAAD are unknown. We hypothesized that genetically manipulating the NGF/Sema3A ratio by the Ngf -driven Sema3a expression approach may reduce aortic sympathetic nerve innervation and mitigate TAAD progression. A mouse strain of Ngf gene-driven Sema3a expression (namely NgfSema3a/Sema3a mouse) was established by inserting the 2A-Sema3A expression frame to the Ngf terminating codon using CRISPR/Cas9 technology. TAAD was induced by ß-aminopropionitrile monofumarate (BAPN) both in NgfSema3a/Sema3a mice and wild type (WT) littermates. Contrary to our expectation, the BAPN-induced TAAD was severer in NgfSema3a/Sema3a mice than in wild-type (WT) mice. In addition, NgfSema3a/Sema3a mice showed higher aortic sympathetic innervation, inflammation and extracellular matrix degradation than the WT mice after BAPN treatment. The aortic vascular smooth muscle cells isolated from NgfSema3a/Sema3a mice and pretreated with BAPN in vivo for two weeks showed stronger capabilities of proliferation and migration than that from the WT mice. We conclude that the strategy of Ngf -driven Sema3a expression cannot suppress but worsens the BAPN-induced TAAD. By investigating the aortic phenotype of NgfSema3a/Sema3a mouse strain, we unexpectedly find a path to exacerbate BAPN-induced TAAD which might be useful in future TAAD studies.


Assuntos
Aneurisma da Aorta Torácica , Dissecção Aórtica , Azidas , Desoxiglucose , Animais , Camundongos , Aminopropionitrilo/efeitos adversos , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/induzido quimicamente , Aneurisma da Aorta Torácica/metabolismo , Desoxiglucose/análogos & derivados , Modelos Animais de Doenças , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/efeitos adversos , Semaforina-3A/genética
12.
Sci Signal ; 17(819): eadh7673, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227686

RESUMO

The precise development of neuronal morphologies is crucial to the establishment of synaptic circuits and, ultimately, proper brain function. Signaling by the axon guidance cue semaphorin 3A (Sema3A) and its receptor complex of neuropilin-1 and plexin-A4 has multifunctional outcomes in neuronal morphogenesis. Downstream activation of the RhoGEF FARP2 through interaction with the lysine-arginine-lysine motif of plexin-A4 and consequent activation of the small GTPase Rac1 promotes dendrite arborization, but this pathway is dispensable for axon repulsion. Here, we investigated the interplay of small GTPase signaling mechanisms underlying Sema3A-mediated dendritic elaboration in mouse layer V cortical neurons in vitro and in vivo. Sema3A promoted the binding of the small GTPase Rnd1 to the amino acid motif lysine-valine-serine (LVS) in the cytoplasmic domain of plexin-A4. Rnd1 inhibited the activity of the small GTPase RhoA and the kinase ROCK, thus supporting the activity of the GTPase Rac1, which permitted the growth and branching of dendrites. Overexpression of a dominant-negative RhoA, a constitutively active Rac1, or the pharmacological inhibition of ROCK activity rescued defects in dendritic elaboration in neurons expressing a plexin-A4 mutant lacking the LVS motif. Our findings provide insights into the previously unappreciated balancing act between Rho and Rac signaling downstream of specific motifs in plexin-A4 to mediate Sema3A-dependent dendritic elaboration in mammalian cortical neuron development.


Assuntos
Moléculas de Adesão Celular , Proteínas Monoméricas de Ligação ao GTP , Proteínas do Tecido Nervoso , Semaforinas , Camundongos , Animais , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Semaforina-3A/genética , Semaforina-3A/metabolismo , Lisina/metabolismo , Neurônios/metabolismo , Dendritos/metabolismo , Semaforinas/metabolismo , Mamíferos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
13.
Arch Gerontol Geriatr ; 117: 105260, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37979338

RESUMO

OBJECTIVES: Exercise training plays a significant role in preventing the destruction of central nerve neurons and muscle atrophy. The purpose of the present study was to investigate the effect of a period of swimming training on the expression of Neural cell adhesion molecule (NCAM), Semaphorin 3A (SEMA3A), and Profilin-1 (PFN1) proteins in the gastrocnemius muscle of Alzheimer-like phenotype rats. METHODS & MATERIALS: 32 Wistar males were (6 weeks of age) divided into four groups: Healthy Control (HC), Alzheimer-like phenotype's Control (AC), Healthy Training (HT), and Alzheimer-like phenotype's Training (AT). Alzheimer-like phenotypes were induced by beta-amyloid injection in the hippocampus. The training program consisted of 20 swimming sessions. Gastrocnemius muscle was removed after the intervention, and NCAM, SEMA3A, and PFN1 proteins were measured by the immunohistoflorescent method. RESULTS: The results showed that SEMA3A was increased (p = 0.001), and NCAM (p = 0.001), and PFN1 (p = 0.001) were decreased in AC compared to the HC group. Also, the results showed that NCAM (p = 0.001) and Pfn1 (p = 0.002) increased in the HT group compared to HC, and the NCAM (p = 0.001) and Pfn1 (p = 0.002) in AT group compared to AC (p = 0.001) increased significantly, while SEMA3A was reduced in the HT group compared to HC (p = 0.001) and AT group compared to AC (p = 0.001) CONCLUSION: Swimming effectively improves axon regeneration and neuronal formation in motor neurons and, therefore, can be an effective intervention to prevent and control the complications of Alzheimer-like phenotype.


Assuntos
Doença de Alzheimer , Natação , Masculino , Humanos , Ratos , Animais , Ratos Wistar , Natação/fisiologia , Semaforina-3A/genética , Semaforina-3A/metabolismo , Semaforina-3A/farmacologia , Axônios/metabolismo , Regeneração Nervosa , Músculo Esquelético/metabolismo , Moléculas de Adesão de Célula Nervosa/genética , Moléculas de Adesão de Célula Nervosa/metabolismo , Moléculas de Adesão de Célula Nervosa/farmacologia , Profilinas/farmacologia
14.
Indian J Med Res ; 158(4): 432-438, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38006346

RESUMO

BACKGROUND OBJECTIVES: Semaphorins were initially characterized as axon guidance factors but were subsequently implicated in the regulation of immune responses, angiogenesis, organ formation and a variety of other physiological and developmental functions. Various semaphorins enhance or inhibit tumour progression through different mechanisms. The objective of this study was to assess the expression of various semaphorins and vascular endothelial growth factor (VEGF) gene transcripts as well as the serum level of Sema3A in individuals with laryngeal squamous cell carcinoma (LSCC). METHODS: Tissue expression of Sema3A, Sema3C, Sema4D, Sema6D and VEGF was determined in both tumour tissues and tissues around the tumour from 30 individuals with pathologically confirmed LSCC using quantitative real-time PCR. Furthermore, the serum level of Sema3A in these individuals was assessed using enzyme-linked immunosorbent assay. RESULTS: Sema3C gene transcript showed a significant increase (P=0.001), while Sema4D was observed with a significant decrease in tumour samples compared to non-tumoural tissues (P≤0.01). The expression of the Sema3C gene was found to be associated with the stage of LSCC tumour as it was statistically significant for tumours with stage IV (P<0.01). The serum level of Sema3A was not found to be significant between cases and controls. INTERPRETATION CONCLUSIONS: Increased expression of Sema3C but decreased expression of Sema4D in tumour tissue of LSCC may introduce these two growth factors as crucial mediators orchestrating tumour growth in individuals with LSCC. This result could open a new vision for the treatment of this malignancy.


Assuntos
Neoplasias de Cabeça e Pescoço , Semaforinas , Humanos , Semaforina-3A/genética , Semaforina-3A/metabolismo , Fator A de Crescimento do Endotélio Vascular , Carcinoma de Células Escamosas de Cabeça e Pescoço , Semaforinas/genética , Semaforinas/metabolismo
15.
Science ; 381(6660): 897-906, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37616346

RESUMO

Aging is a major risk factor for impaired cardiovascular health. Because the aging myocardium is characterized by microcirculatory dysfunction, and because nerves align with vessels, we assessed the impact of aging on the cardiac neurovascular interface. We report that aging reduces nerve density in the ventricle and dysregulates vascular-derived neuroregulatory genes. Aging down-regulates microRNA 145 (miR-145) and derepresses the neurorepulsive factor semaphorin-3A. miR-145 deletion, which increased Sema3a expression or endothelial Sema3a overexpression, reduced axon density, mimicking the aged-heart phenotype. Removal of senescent cells, which accumulated with chronological age in parallel to the decline in nerve density, rescued age-induced denervation, reversed Sema3a expression, preserved heart rate patterns, and reduced electrical instability. These data suggest that senescence-mediated regulation of nerve density contributes to age-associated cardiac dysfunction.


Assuntos
Envelhecimento , Senescência Celular , Coração , MicroRNAs , Densidade Microvascular , Miocárdio , Semaforina-3A , Coração/inervação , Microcirculação , MicroRNAs/genética , MicroRNAs/metabolismo , Semaforina-3A/genética , Animais , Camundongos , Envelhecimento/genética , Envelhecimento/patologia , Masculino , Camundongos Endogâmicos C57BL , Senescência Celular/genética , Miocárdio/patologia , Axônios
16.
Cell Biochem Biophys ; 81(3): 543-552, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37421591

RESUMO

Genetically engineered stem cells, not only acting as vector delivering growth factors or cytokines but also exhibiting improved cell properties, are promising cells for periodontal tissue regeneration. Sema3A is a power secretory osteoprotective factor. In this study, we aimed to construct Sema3A modified periodontal ligament stem cells (PDLSCs) and evaluated their osteogenic capability and crosstalk with pre-osteoblasts MC3T3-E1. First, Sema3A modified PDLSCs was constructed using lentivirus infection system carrying Sema3A gene and the transduction efficiency was analyzed. The osteogenic differentiation and proliferation of Sema3A-PDLSCs was evaluated. Then, MC3T3-E1 was directly co-cultured with Sema3A-PDLSCs or cultured in condition medium of Sema3A-PDLSCs and the osteogenic ability of MC3T3-E1 was assessed. The results showed that Sema3A-PDLSCs expressed and secreted upregulated Sema3A protein, which confirmed successful construction of Sema3A modified PDLSCs. After osteogenic induction, Sema3A-PDLSCs expressed upregulated ALP, OCN, RUNX2, and SP7 mRNA, expressed higher ALP activity, and produced more mineralization nodes, compared with Vector-PDLSCs. Whereas, there was no obvious differences in proliferation between Sema3A-PDLSCs and Vector-PDLSCs. MC3T3-E1 expressed upregulated mRNA of ALP, OCN, RUNX2, and SP7 when directly co-cultured with Sema3A-PDLSCs than Vector-PDLSCs. MC3T3-E1 also expressed upregulated osteogenic markers, showed higher ALP activity, and produced more mineralization nodes when cultured using condition medium of Sema3A-PDLSCs instead of Vector-PDLSCs. In conclusion, our results indicated that Sema3A modified PDLSCs showed enhanced osteogenic capability, and also facilitated differentiation of pre-osteoblasts.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Osteogênese , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Osteoblastos/metabolismo , Osteogênese/fisiologia , Ligamento Periodontal , RNA Mensageiro/metabolismo , Semaforina-3A/genética , Semaforina-3A/farmacologia , Semaforina-3A/metabolismo , Células-Tronco/metabolismo , Animais , Camundongos
17.
Adv Sci (Weinh) ; 10(21): e2206801, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37310417

RESUMO

Microvascular endothelial cells (MiVECs) impair angiogenic potential, leading to microvascular rarefaction, which is a characteristic feature of chronic pressure overload-induced cardiac dysfunction. Semaphorin3A (Sema3A) is a secreted protein upregulated in MiVECs following angiotensin II (Ang II) activation and pressure overload stimuli. However, its role and mechanism in microvascular rarefaction remain elusive. The function and mechanism of action of Sema3A in pressure overload-induced microvascular rarefaction, is explored, through an Ang II-induced animal model of pressure overload. RNA sequencing, immunoblotting analysis, enzyme-linked immunosorbent assay, quantitative reverse transcription polymerase chain reaction (qRT-PCR), and immunofluorescence staining results indicate that Sema3A is predominantly expressed and significantly upregulated in MiVECs under pressure overload. Immunoelectron microscopy and nano-flow cytometry analyses indicate small extracellular vesicles (sEVs), with surface-attached Sema3A, to be a novel tool for efficient release and delivery of Sema3A from the MiVECs to extracellular microenvironment. To investigate pressure overload-mediated cardiac microvascular rarefaction and cardiac fibrosis in vivo, endothelial-specific Sema3A knockdown mice are established. Mechanistically, serum response factor (transcription factor) promotes the production of Sema3A; Sema3A-positive sEVs compete with vascular endothelial growth factor A to bind to neuropilin-1. Therefore, MiVECs lose their ability to respond to angiogenesis. In conclusion, Sema3A is a key pathogenic mediator that impairs the angiogenic potential of MiVECs, which leads to cardiac microvascular rarefaction in pressure overload-induced heart disease.


Assuntos
Cardiopatias , Rarefação Microvascular , Animais , Camundongos , Células Endoteliais/metabolismo , Semaforina-3A/genética , Semaforina-3A/metabolismo , Fator A de Crescimento do Endotélio Vascular
18.
J Bone Miner Res ; 38(8): 1175-1191, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37221130

RESUMO

miR-196b-5p plays a role in various malignancies. We have recently reported its function in regulating adipogenesis. However, it remains to be clarified whether and how miR-196b-5p affects bone cells and bone homeostasis. In this study, in vitro functional experiments showed an inhibitory effect of miR-196b-5p on osteoblast differentiation. Mechanistic explorations revealed that miR-196b-5p directly targeted semaphorin 3a (Sema3a) and inhibited Wnt/ß-catenin signaling. SEMA3A attenuated the impaired osteogenesis induced by miR-196b-5p. Osteoblast-specific miR-196b transgenic mice showed significant reduction of bone mass. Trabecular osteoblasts were reduced and bone formation was suppressed, whereas osteoclasts, marrow adipocytes, and serum levels of bone resorption markers were increased in the transgenic mice. The osteoblastic progenitor cells from the transgenic mice had decreased SEMA3A levels and exhibited retarded osteogenic differentiation, whereas those marrow osteoclastic progenitors exhibited enhanced osteoclastogenic differentiation. miR-196b-5p and SEMA3A oppositely regulated the expression of receptor activator of nuclear factor-κB ligand and osteoprotegerin. The calvarial osteoblastic cells expressing the transgene promoted osteoclastogenesis, whereas the osteoblasts overexpressing Sema3a inhibited it. Finally, in vivo transfection of miR-196b-5p inhibitor to the marrow reduced ovariectomy-induced bone loss in mice. Our study has identified that miR-196b-5p plays a key role in osteoblast and osteoclast differentiation and regulates bone homeostasis. Inhibition of miR-196b-5p may be beneficial for amelioration of osteoporosis. © 2023 American Society for Bone and Mineral Research (ASBMR).


Assuntos
MicroRNAs , Osteoclastos , Animais , Feminino , Camundongos , Diferenciação Celular , Homeostase , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogênese , Semaforina-3A/genética , Semaforina-3A/metabolismo , Semaforina-3A/farmacologia
19.
Anticancer Res ; 43(6): 2539-2550, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37247909

RESUMO

BACKGROUND/AIM: Class 3 semaphorins, including semaphorin 3A (SEMA3A), are known endogenous angiogenesis inhibitors associated with endothelial cell migration and proliferation, and have been identified in many cancer cells. SEMA3A suppresses tumor angiogenesis by competing with VEGF, but tumors are known to have active angiogenesis, suggesting that expression of SEMA3A and its receptors is epigenetically restrained. To overcome this condition, we aimed to use histone deacetylase (HDAC) inhibitors to enhance the SEMA3A expression in osteosarcoma (OS) cells, thereby suppressing angiogenesis and inhibiting their proliferation and metastasis. MATERIALS AND METHODS: OS cell lines and human microvascular endothelial (HMVE) cells were treated with HDAC inhibitors such as sodium valproate (VPA) and Trichostatin A (TSA). Changes in the SEMA3A expression and its related receptors at the mRNA and protein levels, as well as the inhibitory effects on tumor angiogenesis, were investigated. RESULTS: VPA and TSA increased the expression of SEMA3A and its receptor NRP1, without inducing PLXNA1 in OS cells. Similarly, SEMA3A and NRP1 expression was increased in HMVE cells, but no growth inhibition was observed. Furthermore, SEMA3A induced by VPA in OS cell culture medium inhibited vascular tube formation of HMVE cells, and overexpression of SEMA3A enhanced OS cell growth inhibition. This growth-inhibitory effect of SEMA3A induced G1/S cell cycle arrest in OS cells. CONCLUSION: HDAC inhibitors have anti-angiogenic and anti-tumor activities that may be, in part, mediated via the SEMA3A/NRP1/PLXNA1 autocrine and paracrine pathways.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Ácido Valproico/farmacologia , Semaforina-3A/genética , Inibidores de Histona Desacetilases/farmacologia , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Osteossarcoma/metabolismo , Neovascularização Patológica/metabolismo , Neoplasias Ósseas/tratamento farmacológico , Neuropilina-1/genética
20.
Clin Hemorheol Microcirc ; 84(3): 247-262, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36872771

RESUMO

BACKGROUND: Circular RNA (circRNA) has been found to play an important role in the progression of many diseases, including ischemic stroke. However, the regulatory mechanism of circSEC11A in ischemic stroke progression need to further investigation. METHODS: Human brain microvascular endothelial cells (HBMECs) were stimulated by oxygen glucose deprivation (OGD). CircSEC11A, SEC11A mRNA and miR (microRNA)-29a-3p were quantified by quantitative real-time PCR (qRT-PCR). SEMA3A, BAX and BCL2 protein level was quantified by western blot. Oxidative stress, cell proliferation, angiogenesis and apoptosis abilities were gauged by oxidative stress assay kit, 5-Ethynyl-2'-Deoxyuridine (EdU) staining, tube formation assay and flow cytometry assays, respectively. Direct relationship between miR-29a-3p and circSEC11A or SEMA3A was validated by dual-luciferase reporter assay, RIP assay and RNA pull-down assay. RESULTS: CircSEC11A was upregulated in OGD-induced HBMECs. OGD promoted the oxidative stress and apoptosis and inhibited cell proliferation and angiogenesis, while circSEC11A knockdown relieved the effects. CircSEC11A functioned as the sponge for miR-29a-3p, and miR-29a-3p inhibitor reversed the effects of si-circSEC11A on OGD-induced HBMECs oxidative injuries. Moreover, SEMA3A served as the target gene of miR-29a-3p. MiR-29a-3p inhibition ameliorated OGD-induced HBMECs oxidative injuries, while SEMA3A overexpression rescued the impacts of miR-29a-3p mimic. CONCLUSION: CircSEC11A promoted the malignant progression in OGD-induced HBMECs through the mediation of miR-29a-3p/SEMA3A axis. This study has provided the new insight into the underlying application of circSEC11A in cell model of ischemic stroke.


Assuntos
AVC Isquêmico , MicroRNAs , Humanos , Oxigênio/metabolismo , Semaforina-3A/genética , Semaforina-3A/metabolismo , Células Endoteliais/metabolismo , Glucose/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Apoptose , Proliferação de Células , Estresse Oxidativo , Peptídeo Hidrolases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...