Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.495
Filtrar
1.
Front Immunol ; 15: 1426064, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38953031

RESUMO

Background: Unbalanced inflammatory response is a critical feature of sepsis, a life-threatening condition with significant global health burdens. Immune dysfunction, particularly that involving different immune cells in peripheral blood, plays a crucial pathophysiological role and shows early warning signs in sepsis. The objective is to explore the relationship between sepsis and immune subpopulations in peripheral blood, and to identify patients with a higher risk of 28-day mortality based on immunological subtypes with machine-learning (ML) model. Methods: Patients were enrolled according to the sepsis-3 criteria in this retrospective observational study, along with age- and sex-matched healthy controls (HCs). Data on clinical characteristics, laboratory tests, and lymphocyte immunophenotyping were collected. XGBoost and k-means clustering as ML approaches, were employed to analyze the immune profiles and stratify septic patients based on their immunological subtypes. Cox regression survival analysis was used to identify potential biomarkers and to assess their association with 28-day mortality. The accuracy of biomarkers for mortality was determined by the area under the receiver operating characteristic (ROC) curve (AUC) analysis. Results: The study enrolled 100 septic patients and 89 HCs, revealing distinct lymphocyte profiles between the two groups. The XGBoost model discriminated sepsis from HCs with an area under the receiver operating characteristic curve of 1.0 and 0.99 in the training and testing set, respectively. Within the model, the top three highest important contributions were the percentage of CD38+CD8+T cells, PD-1+NK cells, HLA-DR+CD8+T cells. Two clusters of peripheral immunophenotyping of septic patients by k-means clustering were conducted. Cluster 1 featured higher proportions of PD1+ NK cells, while cluster 2 featured higher proportions of naïve CD4+T cells. Furthermore, the level of PD-1+NK cells was significantly higher in the non-survivors than the survivors (15.1% vs 8.6%, P<0.01). Moreover, the levels of PD1+ NK cells combined with SOFA score showed good performance in predicting the 28-day mortality in sepsis (AUC=0.91,95%CI 0.82-0.99), which is superior to PD1+ NK cells only(AUC=0.69, sensitivity 0.74, specificity 0.64, cut-off value of 11.25%). In the multivariate Cox regression, high expression of PD1+ NK cells proportion was related to 28-day mortality (aHR=1.34, 95%CI 1.19 to 1.50; P<0.001). Conclusion: The study provides novel insights into the association between PD1+NK cell profiles and prognosis of sepsis. Peripheral immunophenotyping could potentially stratify the septic patients and identify those with a high risk of 28-day mortality.


Assuntos
Células Matadoras Naturais , Receptor de Morte Celular Programada 1 , Sepse , Humanos , Sepse/mortalidade , Sepse/imunologia , Masculino , Feminino , Receptor de Morte Celular Programada 1/metabolismo , Pessoa de Meia-Idade , Idoso , Células Matadoras Naturais/imunologia , Estudos Retrospectivos , Biomarcadores , Prognóstico , Imunofenotipagem , Curva ROC , Aprendizado de Máquina
2.
Front Immunol ; 15: 1397722, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957471

RESUMO

Rationale: Sepsis is a life-threatening organ dysfunction and lack of effective measures in the current. Exosomes from mesenchymal stem cells (MSCs) reported to alleviate inflammation during sepsis, and the preconditioning of MSCs could enhance their paracrine potential. Therefore, this study investigated whether exosomes secreted by lipopolysaccharide (LPS)-pretreated MSCs exert superior antiseptic effects, and explored the underlying molecular mechanisms. Methods: Exosomes were isolated and characterized from the supernatants of MSCs. The therapeutic efficacy of normal exosomes (Exo) and LPS-pretreated exosomes (LPS-Exo) were evaluated in terms of survival rates, inflammatory response, and organ damage in an LPS-induced sepsis model. Macrophages were stimulated with LPS and treated with Exo or LPS-Exo to confirm the results of the in vivo studies, and to explain the potential mechanisms. Results: LPS-Exo were shown to inhibit aberrant pro-inflammatory cytokines, prevent organ damages, and improve survival rates of the septic mice to a greater extent than Exo. In vitro, LPS-Exo significantly promoted the M2 polarization of macrophages exposed to inflammation. miRNA sequencing and qRT-PCR analysis identified the remarkable expression of miR-150-5p in LPS-Exo compared to that in Exo, and exosomal miR-150-5p was transferred into recipient macrophages and mediated macrophage polarization. Further investigation demonstrated that miR-150-5p targets Irs1 in recipient macrophages and subsequently modulates macrophage plasticity by down-regulating the PI3K/Akt/mTOR pathway. Conclusion: The current findings highly suggest that exosomes derived from LPS pre-conditioned MSCs represent a promising cell-free therapeutic method and highlight miR-150-5p as a novel molecular target for regulating immune hyperactivation during sepsis.


Assuntos
Exossomos , Proteínas Substratos do Receptor de Insulina , Lipopolissacarídeos , Macrófagos , Células-Tronco Mesenquimais , MicroRNAs , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Sepse , Transdução de Sinais , Serina-Treonina Quinases TOR , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Sepse/metabolismo , Sepse/imunologia , Serina-Treonina Quinases TOR/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Ativação de Macrófagos/efeitos dos fármacos , Modelos Animais de Doenças
3.
Front Immunol ; 15: 1336839, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947313

RESUMO

Background: In spite of its high mortality rate and poor prognosis, the pathogenesis of sepsis is still incompletely understood. This study established a cuproptosis-based risk model to diagnose and predict the risk of sepsis. In addition, the cuproptosis-related genes were identified for targeted therapy. Methods: Single-cell sequencing analyses were used to characterize the cuproptosis activity score (CuAS) and intercellular communications in sepsis. Differential cuproptosis-related genes (CRGs) were identified in conjunction with single-cell and bulk RNA sequencing. LASSO and Cox regression analyses were employed to develop a risk model. Three external cohorts were conducted to assess the model's accuracy. Differences in immune infiltration, immune cell subtypes, pathway enrichment, and the expression of immunomodulators were further evaluated in distinct groups. Finally, various in-vitro experiments, such as flow cytometry, Western blot, and ELISA, were used to explore the role of LST1 in sepsis. Results: ScRNA-seq analysis demonstrated that CuAS was highly enriched in monocytes and was closely related to the poor prognosis of sepsis patients. Patients with higher CuAS exhibited prominent strength and numbers of cell-cell interactions. A total of five CRGs were identified based on the LASSO and Cox regression analyses, and a CRG-based risk model was established. The lower riskScore cohort exhibited enhanced immune cell infiltration, elevated immune scores, and increased expression of immune modulators, indicating the activation of an antibacterial response. Ultimately, in-vitro experiments demonstrated that LST1, a key gene in the risk model, was enhanced in the macrophage in response to LPS, which was closely related to the decrease of macrophage survival rate, the enhancement of apoptosis and oxidative stress injury, and the imbalance of the M1/M2 phenotype. Conclusions: This study constructed a cuproptosis-related risk model to accurately predict the prognosis of sepsis. We further characterized the cuproptosis-related gene LST1 to provide a theoretical framework for sepsis therapy.


Assuntos
Sepse , Análise de Célula Única , Sepse/imunologia , Sepse/genética , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Prognóstico , Análise de Sequência de RNA , Microambiente Celular/imunologia , Idoso
4.
Allergol Immunopathol (Madr) ; 52(4): 38-45, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38970263

RESUMO

PURPOSE: Sepsis often triggers a systemic inflammatory response leading to multi-organ dysfunction, with complex and not fully understood pathogenesis. This study investigates the therapeutic effects of cimifugin on BV-2 cells under sepsis-induced stress conditions. METHODS: We utilized a BV-2 microglial cell model treated with lipopolysaccharide (LPS) to mimic sepsis. Assessments included cellular vitality, inflammatory cytokine quantification (6 interleukin [6IL]-1ß, interleukin 6 [IL-6], and tumor necrosis factor-α [TNF-α]) via enzyme-linked-immunosorbent serologic assay, and analysis of mRNA expression using real-time polymerase chain reaction. Oxidative stress and mitochondrial function were also evaluated to understand the cellular effects of cimifugin. RESULTS: Cimifugin significantly attenuated LPS-induced inflammatory responses, oxidative stress, and mitochondrial dysfunction. It enhanced cell viability and modulated the secretion and gene expression of inflammatory cytokines IL-1ß, IL-6, and TNF-α. Notably, cimifugin activated the deacetylase sirtuin 1-nuclear factor erythroid 2-related factor 2 pathway, contributing to its protective effects against mitochondrial damage. CONCLUSION: Cimifugin demonstrates the potential of being an effective treatment for sepsis--induced neuroinflammation, warranting further investigation.


Assuntos
Citocinas , Lipopolissacarídeos , Microglia , Estresse Oxidativo , Animais , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/imunologia , Citocinas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sepse/tratamento farmacológico , Sepse/imunologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Linhagem Celular , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/imunologia , Anti-Inflamatórios/farmacologia , Transdução de Sinais/efeitos dos fármacos , Cromonas , Sirtuína 1
5.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000249

RESUMO

In recent years, there has been a growing realization of intricate interactions between the nervous and immune systems, characterized by shared humoral factors and receptors. This interplay forms the basis of the neuroimmune system, the understanding of which will provide insights into the pathogenesis of neurological diseases, in which the involvement of the immune system has been overlooked. Kynurenine and its derivatives derived from tryptophan have long been implicated in the pathogenesis of various neurological diseases. Recent studies have revealed their close association not only with neurological disorders but also with sepsis-related deaths. This review provides an overview of the biochemistry of kynurenine and its derivatives, followed by a discussion of their role via the modulation of the neuroimmune system in various diseases.


Assuntos
Cinurenina , Neuroimunomodulação , Humanos , Cinurenina/metabolismo , Animais , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/imunologia , Triptofano/metabolismo , Triptofano/química , Sistema Imunitário/metabolismo , Sistema Imunitário/imunologia , Sepse/imunologia , Sepse/metabolismo
6.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000323

RESUMO

Neutrophil extracellular traps (NETs) have a dual role in the innate immune response to thermal injuries. NETs provide an early line of defence against infection. However, excessive NETosis can mediate the pathogenesis of immunothrombosis, disseminated intravascular coagulation (DIC) and multiple organ failure (MOF) in sepsis. Recent studies suggest that high interleukin-8 (IL-8) levels in intensive care unit (ICU) patients significantly contribute to excessive NET generation. This study aimed to determine whether IL-8 also mediates NET generation in patients with severe thermal injuries. IL-8 levels were measured in serum samples from thermally injured patients with ≥15% of the total body surface area (TBSA) and healthy controls (HC). Ex vivo NET generation was also investigated by treating isolated neutrophils with serum from thermal injured patients or normal serum with and without IL-8 and anti-IL-8 antibodies. IL-8 levels were significantly increased compared to HC on days 3 and 5 (p < 0.05) following thermal injury. IL-8 levels were also significantly increased at day 5 in septic versus non-septic patients (p < 0.001). IL-8 levels were also increased in patients who developed sepsis compared to HC at days 3, 5 and 7 (p < 0.001), day 10 (p < 0.05) and days 12 and 14 (p < 0.01). Serum containing either low, medium or high levels of IL-8 was shown to induce ex vivo NETosis in an IL-8-dependent manner. Furthermore, the inhibition of DNase activity in serum increased the NET-inducing activity of IL-8 in vitro by preventing NET degradation. IL-8 is a major contributor to NET formation in severe thermal injury and is increased in patients who develop sepsis. We confirmed that DNase is an important regulator of NET degradation but also a potential confounder within assays that measure serum-induced ex vivo NETosis.


Assuntos
Armadilhas Extracelulares , Interleucina-8 , Neutrófilos , Humanos , Armadilhas Extracelulares/metabolismo , Interleucina-8/metabolismo , Interleucina-8/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Neutrófilos/metabolismo , Neutrófilos/imunologia , Queimaduras/imunologia , Queimaduras/metabolismo , Queimaduras/complicações , Queimaduras/patologia , Queimaduras/sangue , Sepse/metabolismo , Sepse/imunologia , Sepse/sangue , Idoso
7.
Crit Care ; 28(1): 240, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010113

RESUMO

BACKGROUND: The immune response of critically ill patients, such as those with sepsis, severe trauma, or major surgery, is heterogeneous and dynamic, but its characterization and impact on outcomes are poorly understood. Until now, the primary challenge in advancing our understanding of the disease has been to concurrently address both multiparametric and temporal aspects. METHODS: We used a clustering method to identify distinct groups of patients, based on various immune marker trajectories during the first week after admission to ICU. In 339 severely injured patients, we initially longitudinally clustered common biomarkers (both soluble and cellular parameters), whose variations are well-established during the immunosuppressive phase of sepsis. We then applied this multi-trajectory clustering using markers composed of whole blood immune-related mRNA. RESULTS: We found that both sets of markers revealed two immunotypes, one of which was associated with worse outcomes, such as increased risk of hospital-acquired infection and mortality, and prolonged hospital stays. This immunotype showed signs of both hyperinflammation and immunosuppression, which persisted over time. CONCLUSION: Our study suggest that the immune system of critically ill patients can be characterized by two distinct longitudinal immunotypes, one of which included patients with a persistently dysregulated and impaired immune response. This work confirms the relevance of such methodology to stratify patients and pave the way for further studies using markers indicative of potential immunomodulatory drug targets.


Assuntos
Biomarcadores , Ferimentos e Lesões , Humanos , Masculino , Feminino , Biomarcadores/sangue , Biomarcadores/análise , Pessoa de Meia-Idade , Adulto , Ferimentos e Lesões/imunologia , Ferimentos e Lesões/sangue , Análise por Conglomerados , Estado Terminal , Unidades de Terapia Intensiva/estatística & dados numéricos , Unidades de Terapia Intensiva/organização & administração , Idoso , Sepse/sangue , Sepse/imunologia , Estudos Longitudinais
8.
Crit Care ; 28(1): 227, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978044

RESUMO

BACKGROUND: Acute kidney injury (AKI) is common in hospitalized patients and results in significant morbidity and mortality. The objective of the study was to explore the systemic immune response of intensive care unit patients presenting with AKI, especially the association between immune profiles and persistent AKI during the first week after admission following various types of injuries (sepsis, trauma, surgery, and burns). METHODS: REALAKI is an ancillary analysis of the REAnimation Low Immune Status Marker (REALISM) cohort study, in which 359 critically ill patients were enrolled in three different intensive care units. Patients with end-stage renal disease were excluded from the REALAKI study. Clinical samples and data were collected three times after admission: at day 1 or 2 (D1-2), day 3 or 4 (D3-4) and day 5, 6 or 7 (D5-7). Immune profiles were compared between patients presenting with or without AKI. Patients with AKI at both D1-2 and D5-7 were defined as persistent AKI. A multivariable logistic regression model was performed to determine the independent association between AKI and patients' immunological parameters. RESULTS: Three hundred and fifty-nine patients were included in this analysis. Among them, 137 (38%) were trauma patients, 103 (29%) post-surgery patients, 95 (26%) sepsis patients, and 24 (7%) were burn patients. One hundred and thirty-nine (39%) patients presented with AKI at D1-2 and 61 (20%) at D5-7. Overall, 94% presented with persistent AKI at D5-7. Patients with AKI presented with increased pro and anti-inflammatory cytokines and altered innate and adaptive immune responses. The modifications observed in the immune profiles tended to be more pronounced with increasing KDIGO stages. In the logistic regression model, a statistically significant association was observed at D1-2 between AKI and CD10lowCD16low immature neutrophils (OR 3.03 [1.7-5.5]-p < 0.001). At D5-7, increased interleukin-10 (IL-10) levels and reduced ex vivo TNF-α production after LPS stimulation were significantly associated with the presence of AKI (OR 1.38 [1.12-1.71]-p = 0.001 and 0.51 [0.27-0.91]-p = 0.03, respectively). Patients who recovered from AKI between D1-2 and D5-7 compared to patients with persistent AKI at D5-7, tended to correct these alterations. CONCLUSION: Following various types of severe injuries, early AKI is associated with the initial inflammatory response. Presence of AKI at the end of the first week after injury is associated with injury-induced immunosuppression.


Assuntos
Injúria Renal Aguda , Estado Terminal , Humanos , Masculino , Injúria Renal Aguda/imunologia , Injúria Renal Aguda/etiologia , Feminino , Pessoa de Meia-Idade , Idoso , Adulto , Estudos de Coortes , Unidades de Terapia Intensiva/estatística & dados numéricos , Unidades de Terapia Intensiva/organização & administração , Ferimentos e Lesões/complicações , Ferimentos e Lesões/imunologia , Estudos Prospectivos , Fatores de Tempo , Biomarcadores/sangue , Biomarcadores/análise , Sepse/complicações , Sepse/imunologia
9.
Virulence ; 15(1): 2367659, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38951957

RESUMO

Vancomycin-resistant Enterococcus faecium (E. faecium) infection is associated with higher mortality rates. Previous studies have emphasized the importance of innate immune cells and signalling pathways in clearing E. faecium, but a comprehensive analysis of host-pathogen interactions is lacking. Here, we investigated the interplay of host and E. faecium in a murine model of septic peritonitis. Following injection with a sublethal dose, we observed significantly increased murine sepsis score and histological score, decreased weight and bacterial burden, neutrophils and macrophages infiltration, and comprehensive activation of cytokine-mediated signalling pathway. In mice receiving a lethal dose, hypothermia significantly improved survival, reduced bacterial burden, cytokines, and CD86 expression of MHC-II+ recruited macrophages compared to the normothermia group. A mathematical model constructed by observational data from 80 animals, recapitulated the host-pathogen interplay, and further verified the benefits of hypothermia. These findings indicate that E. faecium triggers a severe activation of cytokine-mediated signalling pathway, and hypothermia can improve outcomes by reducing bacterial burden and inflammation.


Assuntos
Citocinas , Modelos Animais de Doenças , Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Interações Hospedeiro-Patógeno , Peritonite , Sepse , Enterococos Resistentes à Vancomicina , Animais , Peritonite/microbiologia , Peritonite/imunologia , Camundongos , Infecções por Bactérias Gram-Positivas/imunologia , Infecções por Bactérias Gram-Positivas/microbiologia , Enterococos Resistentes à Vancomicina/patogenicidade , Sepse/microbiologia , Sepse/imunologia , Citocinas/metabolismo , Camundongos Endogâmicos C57BL , Macrófagos/imunologia , Macrófagos/microbiologia , Transdução de Sinais
10.
Immun Inflamm Dis ; 12(6): e1286, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38860755

RESUMO

OBJECTIVE: This study aimed to link intracellular adenosine triphosphate content in CD4+ T lymphocytes (CD4+ iATP) with sepsis patient mortality, seeking a new predictive biomarker for outcomes and enhanced management. METHODS: 61 sepsis patients admitted to the Intensive Care Unit between October 2021 and November 2022 were enrolled. iATP levels were gauged using whole blood CD4+ T cells stimulated with mitogen PHA-L. Based on CD4+ iATP levels (<132.24 and ≥132.24 ng/mL), patients were categorized into two groups. The primary endpoint was all-cause mortality. To identify factors associated with mortality, both univariate and multivariate Cox proportional hazard analyses were conducted. RESULTS: Of the patients, 40 had high CD4+ iATP levels (≥132.24 ng/mL) and 21 had low levels (<132.24 ng/mL). In a 28-day follow-up, 21 (34.4%) patients perished. Adjusting for confounders like SOFA score, APACHE II score, lactic acid, and albumin, those with low CD4+ iATP had three- to fivefold higher mortality risk compared to high CD4+ iATP patients (61.9% vs. 20.0%; hazard ratio [95% confidence interval], Model 1: 4.515 [1.276-15.974], p = .019, Model 2: 3.512 [1.197-10.306], p = .022). CD4+ iATP correlated positively with white blood cell and neutrophil counts but not with lymphocytes, CD3, and CD4 counts. CONCLUSIONS: Low CD4+ iATP levels were associated with a higher risk of mortality in sepsis patients. Measurement of CD4+ iATP may serve as a useful tool for identifying patients at a higher risk of mortality and could potentially provide a basis for clinical treatment. Further research is warranted to fully elucidate the underlying mechanisms of this association.


Assuntos
Trifosfato de Adenosina , Linfócitos T CD4-Positivos , Sepse , Humanos , Trifosfato de Adenosina/metabolismo , Sepse/mortalidade , Sepse/imunologia , Sepse/sangue , Masculino , Feminino , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Pessoa de Meia-Idade , Estudos Prospectivos , Idoso , Biomarcadores , Prognóstico , Unidades de Terapia Intensiva/estatística & dados numéricos , Adulto
11.
Crit Care Explor ; 6(7): e1106, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38916619

RESUMO

OBJECTIVES: While cytokine response patterns are pivotal in mediating immune responses, they are also often dysregulated in sepsis and critical illness. We hypothesized that these immunological deficits, quantifiable through ex vivo whole blood stimulation assays, may be indicative of subsequent organ dysfunction. DESIGN: In a prospective observational study, adult septic patients and critically ill but nonseptic controls were identified within 48 hours of critical illness onset. Using a rapid, ex vivo assay based on responses to lipopolysaccharide (LPS), anti-CD3/anti-CD28 antibodies, and phorbol 12-myristate 13-acetate with ionomycin, cytokine responses to immune stimulants were quantified. The primary outcome was the relationship between early cytokine production and subsequent organ dysfunction, as measured by the Sequential Organ Failure Assessment score on day 3 of illness (SOFAd3). SETTING: Patients were recruited in an academic medical center and data processing and analysis were done in an academic laboratory setting. PATIENTS: Ninety-six adult septic and critically ill nonseptic patients were enrolled. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Elevated levels of tumor necrosis factor and interleukin-6 post-endotoxin challenge were inversely correlated with SOFAd3. Interferon-gamma production per lymphocyte was inversely related to organ dysfunction at day 3 and differed between septic and nonseptic patients. Clustering analysis revealed two distinct immune phenotypes, represented by differential responses to 18 hours of LPS stimulation and 4 hours of anti-CD3/anti-CD28 stimulation. CONCLUSIONS: Our rapid immune profiling technique offers a promising tool for early prediction and management of organ dysfunction in critically ill patients. This information could be pivotal for early intervention and for preventing irreversible organ damage during the acute phase of critical illness.


Assuntos
Estado Terminal , Insuficiência de Múltiplos Órgãos , Sepse , Humanos , Estudos Prospectivos , Sepse/imunologia , Sepse/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Insuficiência de Múltiplos Órgãos/imunologia , Insuficiência de Múltiplos Órgãos/diagnóstico , Idoso , Escores de Disfunção Orgânica , Adulto , Citocinas/sangue , Citocinas/metabolismo , Estudos de Coortes , Valor Preditivo dos Testes , Lipopolissacarídeos/farmacologia
12.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38928183

RESUMO

Sepsis is a life-threatening condition with a rising disease burden worldwide. It is a multifactorial disease and is defined as a dysregulated host response to infection. Neutrophils have been shown to be involved in the pathogenesis of sepsis by exacerbating inflammation. However, the exact effector mechanism of action still remains a mystery. Changes in the glycosylation pattern of the immunoglobulin G (IgG) Fc region are described for several diseases including meningococcal sepsis. In this study, we investigated the possible contribution of neutrophils and neutrophil implication, potentially related to degranulation or neutrophil extracellular trap (NET) formation in changing the IgG Fc N-glycosylation pattern in a murine sepsis model. We have measured the serum level of cytokines/chemokines and immunoglobulins, the serum activity of neutrophil elastase (NE), and analyzed the IgG Fc glycosylation pattern by Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (LC-ESI-MS) and Lectin enzyme-linked immunosorbent assay (ELISA). We observed an increased activity of NE- and neutrophil-associated cytokines such as keratinocyte chemoattractant (KC) with the development of sepsis. Regarding the IgG Fc N-glycosylation, we observed an increase in fucosylation and α1,3-galactosylation and a decrease for sialyation. Interestingly, these changes were not uniform for all IgG subclasses. After depletion of neutrophils, we saw a change in the exposure of fucose and α2,6-linked sialic acid during the time course of our experimental sepsis model. In conclusion, neutrophils can influence changes in the IgG glycosylation pattern in experimental sepsis.


Assuntos
Modelos Animais de Doenças , Imunoglobulina G , Neutrófilos , Sepse , Animais , Sepse/metabolismo , Sepse/imunologia , Neutrófilos/metabolismo , Neutrófilos/imunologia , Glicosilação , Imunoglobulina G/metabolismo , Imunoglobulina G/imunologia , Imunoglobulina G/sangue , Camundongos , Citocinas/metabolismo , Fragmentos Fc das Imunoglobulinas/metabolismo , Camundongos Endogâmicos C57BL , Elastase de Leucócito/metabolismo , Masculino , Armadilhas Extracelulares/metabolismo , Glicoproteínas
13.
Front Immunol ; 15: 1391395, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835773

RESUMO

Sepsis is a clinical syndrome caused by uncontrollable immune dysregulation triggered by pathogen infection, characterized by high incidence, mortality rates, and disease burden. Current treatments primarily focus on symptomatic relief, lacking specific therapeutic interventions. The core mechanism of sepsis is believed to be an imbalance in the host's immune response, characterized by early excessive inflammation followed by late immune suppression, triggered by pathogen invasion. This suggests that we can develop immunotherapeutic treatment strategies by targeting and modulating the components and immunological functions of the host's innate and adaptive immune systems. Therefore, this paper reviews the mechanisms of immune dysregulation in sepsis and, based on this foundation, discusses the current state of immunotherapy applications in sepsis animal models and clinical trials.


Assuntos
Imunoterapia , Sepse , Sepse/imunologia , Sepse/terapia , Humanos , Animais , Imunoterapia/métodos , Imunidade Adaptativa , Imunidade Inata , Modelos Animais de Doenças
14.
Crit Rev Immunol ; 44(6): 1-12, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38848289

RESUMO

Systemic immune-inflammation index (SII) and T cell subsets show involvement in mortality risk in septic patients, and we explored their predictive value in sepsis. Subjects were categorized into the Sepsis (SP)/Septic Shock (SSP)/Septic Shock (SPS) groups. T cell subsets [T-helper (Th)1, Th2, regulatory T cells (Treg), Th17]/platelets (PLT)/neutrophils (NEU)/lymphocytes (LYM)/C-reactive protein (CRP)/procalcitonin (PCT)/interleukin (IL)-4/IL-10/fibrinogen (FIB) were measured by an automatic blood biochemical analyzer/flow cytometry/Countess II FL automatic blood cell analyzer, with SII calculated. The correlations between SII/T cell subsets with Acute Physiology and Chronic Health Evaluation (APACH) II/Sequential Organ Failure Assessment (SOFA) scores and the predictive value of SII/Th1/Th2 for septic diagnosis/prognosis were analyzed using Spearman/ROC curve/Kaplan-Meier. The three groups varied in PLT/NEU/LYM/CRP/PCT/IL-4/IL-10/FIB levels and APACH II/SOFA scores. Compared with the SP group, the other two groups showed elevated APACH II/SOFA scores and SII/Th1/Th2/Th17/Treg levels. SII/Th1/Th2 levels significantly positively correlated with APACH II/SOFA scores. SII/Th1/Th2 levels had high predictive value for septic diagnosis/prognosis, with their combination exhibiting higher predictive value. Septic patients with high SII/Th1/Th2 levels exhibited lower survival rates. Altogether, SII, Th1, and Th2 had good predictive value for the diagnosis and prognosis of patients with varying severity of sepsis, with their high levels increasing mortality in septic patients.


Assuntos
Sepse , Índice de Gravidade de Doença , Subpopulações de Linfócitos T , Humanos , Sepse/diagnóstico , Sepse/imunologia , Sepse/mortalidade , Sepse/sangue , Prognóstico , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Inflamação/imunologia , Inflamação/diagnóstico , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Biomarcadores/sangue
15.
Proc Biol Sci ; 291(2025): 20240535, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38917861

RESUMO

Empirical data relating body mass to immune defence against infections remain limited. Although the metabolic theory of ecology predicts that larger organisms would have weaker immune responses, recent studies have suggested that the opposite may be true. These discoveries have led to the safety factor hypothesis, which proposes that larger organisms have evolved stronger immune defences because they carry greater risks of exposure to pathogens and parasites. In this study, we simulated sepsis by exposing blood from nine primate species to a bacterial lipopolysaccharide (LPS), measured the relative expression of immune and other genes using RNAseq, and fitted phylogenetic models to determine how gene expression was related to body mass. In contrast to non-immune-annotated genes, we discovered hypermetric scaling in the LPS-induced expression of innate immune genes, such that large primates had a disproportionately greater increase in gene expression of immune genes compared to small primates. Hypermetric immune gene expression appears to support the safety factor hypothesis, though this pattern may represent a balanced evolutionary mechanism to compensate for lower per-transcript immunological effectiveness. This study contributes to the growing body of immune allometry research, highlighting its importance in understanding the complex interplay between body size and immunity over evolutionary timescales.


Assuntos
Primatas , Sepse , Transcriptoma , Animais , Sepse/veterinária , Sepse/imunologia , Lipopolissacarídeos , Imunidade Inata , Tamanho Corporal , Filogenia
16.
Front Immunol ; 15: 1411930, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38881891

RESUMO

Introduction: Sepsis is a life-threatening inflammatory condition caused by dysregulated host responses to infection. Extracellular cold-inducible RNA-binding protein (eCIRP) is a recently discovered damage-associated molecular pattern that causes inflammation and organ injury in sepsis. Kupffer cells can be activated and polarized to the inflammatory M1 phenotype, contributing to tissue damage by producing proinflammatory mediators. We hypothesized that eCIRP promotes Kupffer cell M1 polarization in sepsis. Methods: We stimulated Kupffer cells isolated from wild-type (WT) and TLR4-/- mice with recombinant mouse (rm) CIRP (i.e., eCIRP) and assessed supernatant IL-6 and TNFα levels by ELISA. The mRNA expression of iNOS and CD206 for M1 and M2 markers, respectively, was assessed by qPCR. We induced sepsis in WT and CIRP-/- mice by cecal ligation and puncture (CLP) and assessed iNOS and CD206 expression in Kupffer cells by flow cytometry. Results: eCIRP dose- and time-dependently increased IL-6 and TNFα release from WT Kupffer cells. In TLR4-/- Kupffer cells, their increase after eCIRP stimulation was prevented. eCIRP significantly increased iNOS gene expression, while it did not alter CD206 expression in WT Kupffer cells. In TLR4-/- Kupffer cells, however, iNOS expression was significantly decreased compared with WT Kupffer cells after eCIRP stimulation. iNOS expression in Kupffer cells was significantly increased at 20 h after CLP in WT mice. In contrast, Kupffer cell iNOS expression in CIRP-/- mice was significantly decreased compared with WT mice after CLP. CD206 expression in Kupffer cells was not different across all groups. Kupffer cell M1/M2 ratio was significantly increased in WT septic mice, while it was significantly decreased in CIRP-/- mice compared to WT mice after CLP. Conclusion: Our data have clearly shown that eCIRP induces Kupffer cell M1 polarization via TLR4 pathway in sepsis, resulting in overproduction of inflammatory cytokines. eCIRP could be a promising therapeutic target to attenuate inflammation by preventing Kupffer cell M1 polarization in sepsis.


Assuntos
Células de Kupffer , Camundongos Knockout , Proteínas de Ligação a RNA , Sepse , Animais , Células de Kupffer/imunologia , Células de Kupffer/metabolismo , Sepse/imunologia , Sepse/metabolismo , Camundongos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Camundongos Endogâmicos C57BL , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Masculino , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Modelos Animais de Doenças , Inflamação/imunologia , Inflamação/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Receptor de Manose , Interleucina-6/metabolismo
17.
J Immunol Res ; 2024: 6876247, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38939744

RESUMO

Sepsis treatment is a challenging condition due to its complexity, which involves host inflammatory responses to a severe and potentially fatal infection, associated with organ dysfunction. The aim of this study was to analyze the scientific literature on the immunomodulatory effects of glucans in a murine model of systemic infection induced by cecal ligation and puncture. This study comprises an integrative literature review based on systematic steps, with searches carried out in the PubMed, ScienceDirect, Scopus, Web of Science, and Embase databases. In most studies, the main type of glucan investigated was ß-glucan, at 50 mg/kg, and a reduction of inflammatory responses was identified, minimizing the occurrence of tissue damage leading to increased animal survival. Based on the data obtained and discussed in this review, glucans represent a promising biotechnological alternative to modulate the immune response and could potentially be used in the clinical management of septic individuals.


Assuntos
Modelos Animais de Doenças , Sepse , Animais , Sepse/tratamento farmacológico , Sepse/imunologia , Sepse/terapia , Humanos , Camundongos , Glucanos/uso terapêutico , Glucanos/farmacologia , beta-Glucanas/uso terapêutico , Imunomodulação/efeitos dos fármacos
18.
J Ethnopharmacol ; 333: 118404, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-38824977

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Sepsis presents complex pathophysiological challenges. Taohe Chengqi Decoction (THCQ), a traditional Chinese medicine, offers potential in managing sepsis-related complications, though its exact mechanisms are not fully understood. AIM OF THE STUDY: This research aimed to assess the therapeutic efficacy and underlying mechanisms of THCQ on sepsis-induced lung injury. MATERIALS AND METHODS: The study began with validating THCQ's anti-inflammatory effects through in vitro and in vivo experiments. Network pharmacology was employed for mechanistic exploration, incorporating GO, KEGG, and PPI analyses of targets. Hub gene-immune cell correlations were assessed using CIBERSORT, with further scrutiny at clinical and single-cell levels. Molecular docking explored THCQ's drug-gene interactions, culminating in qPCR and WB validations of hub gene expressions in sepsis and post-THCQ treatment scenarios. RESULTS: THCQ demonstrated efficacy in modulating inflammatory responses in sepsis, identified through network pharmacology. Key genes like MAPK14, MAPK3, MMP9, STAT3, LYN, AKT1, PTPN11, and HSP90AA1 emerged as central targets. Molecular docking revealed interactions between these genes and THCQ components. qPCR results showed significant modulation of these genes, indicating THCQ's potential in reducing inflammation and regulating immune responses in sepsis. CONCLUSION: This study sheds light on THCQ's anti-inflammatory and immune regulatory mechanisms in sepsis, providing a foundation for further research and potential clinical application.


Assuntos
Anti-Inflamatórios , Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , Sepse , Sepse/tratamento farmacológico , Sepse/complicações , Sepse/imunologia , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Humanos , Lesão Pulmonar/tratamento farmacológico , Farmacologia em Rede , Modelos Animais de Doenças
19.
ACS Infect Dis ; 10(7): 2390-2402, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38850242

RESUMO

Understanding the sepsis-induced immunological response can be facilitated by identifying phenotypic changes in immune cells at the single-cell level. Mass cytometry, a novel multiparametric single-cell analysis technique, offers considerable benefits in characterizing sepsis-induced phenotypic changes in peripheral blood mononuclear cells. Here, we analyzed peripheral blood mononuclear cells from 20 sepsis patients and 10 healthy donors using mass cytometry and employing 23 markers. Both manual gating and automated clustering approaches (PhenoGraph) were used for cell identification, complemented by uniform manifold approximation and projection (UMAP) for dimensionality reduction and visualization. Our study revealed that patients with sepsis exhibited a unique immune cell profile, marked by an increased presence of monocytes, B cells, and dendritic cells, alongside a reduction in natural killer (NK) cells and CD4/CD8 T cells. Notably, significant changes in the distributions of monocytes and B and CD4 T cells were observed. Clustering with PhenoGraph unveiled the subsets of each cell type and identified elevated CCR6 expression in sepsis patients' monocyte subset (PG#5), while further PhenoGraph clustering on manually gated T and B cells discovered sepsis-specific CD4 T cell subsets (CCR4low CD20low CD38low) and B cell subsets (HLA-DRlow CCR7low CCR6high), which could potentially serve as novel diagnostic markers for sepsis.


Assuntos
Citometria de Fluxo , Sepse , Humanos , Sepse/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , Citometria de Fluxo/métodos , Monócitos/imunologia , Idoso , Leucócitos Mononucleares/imunologia , Fenótipo , Células Dendríticas/imunologia , Linfócitos B/imunologia , Adulto , Imunofenotipagem , Células Matadoras Naturais/imunologia , Linfócitos T CD4-Positivos/imunologia , Biomarcadores/sangue , Biomarcadores/análise
20.
Cell Immunol ; 401-402: 104841, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38878619

RESUMO

Pneumonia persists as a public health crisis, representing the leading cause of death due to infection. Whether respiratory tract infections progress to pneumonia and its sequelae such as acute respiratory distress syndrome and sepsis depends on numerous underlying conditions related to both the causative agent and host. Regarding the former, pneumonia burden remains staggeringly high, despite the effectiveness of pathogen-targeting strategies such as vaccines and antibiotics. This demands a greater understanding of host features that collaborate to promote immune resistance and tissue resilience in the infected lung. Such features inside the pulmonary compartment have drawn much attention, where major advances have been made related to resident and recruited immune activity. By comparison, extra-pulmonary processes guiding pneumonia susceptibility are relatively elusive, constituting the focus of this review. Here we will highlight examples of when, how, and why tissues outside of the lungs dispatch signals that modulate local immunity in the airspaces. Topics include the liver, gut, bone marrow, brain and more, all of which contribute in direct and indirect ways to pneumonia outcome. When tuned appropriately, it has become clear that these responses can serve protective roles, and this will be considered distinctly from what would otherwise be aberrant responses characteristic of pneumonia-induced organ injury and sepsis. Further advances in this area may reveal novel targetable areas for clinical intervention that are not confined to the intra-pulmonary space.


Assuntos
Pulmão , Humanos , Animais , Pulmão/imunologia , Pneumonia/imunologia , Fígado/imunologia , Infecções Respiratórias/imunologia , Encéfalo/imunologia , Sepse/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...