Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 321
Filtrar
1.
BMC Genomics ; 25(1): 842, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251911

RESUMO

BACKGROUND: DNA metabarcoding applies high-throughput sequencing approaches to generate numerous DNA barcodes from mixed sample pools for mass species identification and community characterisation. To date, however, most metabarcoding studies employ second-generation sequencing platforms like Illumina, which are limited by short read lengths and longer turnaround times. While third-generation platforms such as the MinION (Oxford Nanopore Technologies) can sequence longer reads and even in real-time, application of these platforms for metabarcoding has remained limited possibly due to the relatively high read error rates as well as the paucity of specialised software for processing such reads. RESULTS: We show that this is no longer the case by performing nanopore-based, cytochrome c oxidase subunit I (COI) metabarcoding on 34 zooplankton bulk samples, and benchmarking the results against conventional Illumina MiSeq sequencing. Nanopore R10.3 sequencing chemistry and super accurate (SUP) basecalling model reduced raw read error rates to ~ 4%, and consensus calling with amplicon_sorter (without further error correction) generated metabarcodes that were ≤ 1% erroneous. Although Illumina recovered a higher number of molecular operational taxonomic units (MOTUs) than nanopore sequencing (589 vs. 471), we found no significant differences in the zooplankton communities inferred between the sequencing platforms. Importantly, 406 of 444 (91.4%) shared MOTUs between Illumina and nanopore were also found to be free of indel errors, and 85% of the zooplankton richness could be recovered after just 12-15 h of sequencing. CONCLUSION: Our results demonstrate that nanopore sequencing can generate metabarcodes with Illumina-like accuracy, and we are the first study to show that nanopore metabarcodes are almost always indel-free. We also show that nanopore metabarcoding is viable for characterising species-rich communities rapidly, and that the same ecological conclusions can be obtained regardless of the sequencing platform used. Collectively, our study inspires confidence in nanopore sequencing and paves the way for greater utilisation of nanopore technology in various metabarcoding applications.


Assuntos
Código de Barras de DNA Taxonômico , Sequenciamento de Nucleotídeos em Larga Escala , Nanoporos , Código de Barras de DNA Taxonômico/métodos , Animais , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação INDEL , Sequenciamento por Nanoporos/métodos , Complexo IV da Cadeia de Transporte de Elétrons/genética , Zooplâncton/genética , Zooplâncton/classificação , Análise de Sequência de DNA/métodos
4.
Brief Bioinform ; 25(5)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39226890

RESUMO

Nanopore selective sequencing allows the targeted sequencing of DNA of interest using computational approaches rather than experimental methods such as targeted multiplex polymerase chain reaction or hybridization capture. Compared to sequence-alignment strategies, deep learning (DL) models for classifying target and nontarget DNA provide large speed advantages. However, the relatively low accuracy of these DL-based tools hinders their application in nanopore selective sequencing. Here, we present a DL-based tool named ReadCurrent for nanopore selective sequencing, which takes electric currents as inputs. ReadCurrent employs a modified very deep convolutional neural network (VDCNN) architecture, enabling significantly lower computational costs for training and quicker inference compared to conventional VDCNN. We evaluated the performance of ReadCurrent across 10 nanopore sequencing datasets spanning human, yeasts, bacteria, and viruses. We observed that ReadCurrent achieved a mean accuracy of 98.57% for classification, outperforming four other DL-based selective sequencing methods. In experimental validation that selectively sequenced microbial DNA from human DNA, ReadCurrent achieved an enrichment ratio of 2.85, which was higher than the 2.7 ratio achieved by MinKNOW using the sequence-alignment strategy. In summary, ReadCurrent can rapidly classify target and nontarget DNA with high accuracy, providing an alternative in the toolbox for nanopore selective sequencing. ReadCurrent is available at https://github.com/Ming-Ni-Group/ReadCurrent.


Assuntos
Sequenciamento por Nanoporos , Sequenciamento por Nanoporos/métodos , Humanos , Análise de Sequência de DNA/métodos , Redes Neurais de Computação , Nanoporos , Software , Aprendizado Profundo , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos
5.
Vet Res ; 55(1): 106, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227887

RESUMO

Frequent RNA virus mutations raise concerns about evolving virulent variants. The purpose of this study was to investigate genetic variation in salmonid alphavirus-3 (SAV3) over the course of an experimental infection in Atlantic salmon and brown trout. Atlantic salmon and brown trout parr were infected using a cohabitation challenge, and heart samples were collected for analysis of the SAV3 genome at 2-, 4- and 8-weeks post-challenge. PCR was used to amplify eight overlapping amplicons covering 98.8% of the SAV3 genome. The amplicons were subsequently sequenced using the Nanopore platform. Nanopore sequencing identified a multitude of single nucleotide variants (SNVs) and deletions. The variation was widespread across the SAV3 genome in samples from both species. Mostly, specific SNVs were observed in single fish at some sampling time points, but two relatively frequent (i.e., major) SNVs were observed in two out of four fish within the same experimental group. Two other, less frequent (i.e., minor) SNVs only showed an increase in frequency in brown trout. Nanopore reads were de novo clustered using a 99% sequence identity threshold. For each amplicon, a number of variant clusters were observed that were defined by relatively large deletions. Nonmetric multidimensional scaling analysis integrating the cluster data for eight amplicons indicated that late in infection, SAV3 genomes isolated from brown trout had greater variation than those from Atlantic salmon. The sequencing methods and bioinformatics pipeline presented in this study provide an approach to investigate the composition of genetic diversity during viral infections.


Assuntos
Infecções por Alphavirus , Alphavirus , Doenças dos Peixes , Variação Genética , Sequenciamento por Nanoporos , Salmo salar , Truta , Animais , Salmo salar/virologia , Doenças dos Peixes/virologia , Alphavirus/genética , Infecções por Alphavirus/veterinária , Infecções por Alphavirus/virologia , Sequenciamento por Nanoporos/veterinária , Sequenciamento por Nanoporos/métodos , Truta/virologia
6.
Front Cell Infect Microbiol ; 14: 1397989, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39258251

RESUMO

Background: Lung is the largest mucosal area of the human body and directly connected to the external environment, facing microbial exposure and environmental stimuli. Therefore, studying the internal microorganisms of the lung is crucial for a deeper understanding of the relationship between microorganisms and the occurrence and progression of lung cancer. Methods: Tumor and adjacent nontumor tissues were collected from 38 lung adenocarcinoma patients and used nanopore sequencing technology to sequence the 16s full-length sequence of bacteria, and combining bioinformatics methods to identify and quantitatively analyze microorganisms in tissues, as well as to enrich the metabolic pathways of microorganisms. Results: the microbial composition in lung adenocarcinoma tissues is highly similar to that in adjacent tissues, but the alpha diversity is significantly lower than that in adjacent tissues. The difference analysis results show that the bacterial communities of Streptococcaceae, Lactobacillaceae, and Neisseriales were significantly enriched in cancer tissues. The results of metabolic pathway analysis indicate that pathways related to cellular communication, transcription, and protein synthesis were significantly enriched in cancer tissue. In addition, clinical staging analysis of nicotine exposure and lung cancer found that Haemophilus, paralinfluenzae, Streptococcus gordonii were significantly enriched in the nicotine exposure group, while the microbiota of Cardiobactereae and Cardiobacterales were significantly enriched in stage II tumors. The microbiota significantly enriched in IA-II stages were Neisseriaeae, Enterobacteriales, and Cardiobacterales, respectively. Conclusion: Nanopore sequencing technology was performed on the full length 16s sequence, which preliminarily depicted the microbial changes and enrichment of microbial metabolic pathways in tumor and adjacent nontumor tissues. The relationship between nicotine exposure, tumor progression, and microorganisms was explored, providing a theoretical basis for the treatment of lung cancer through microbial targets.


Assuntos
Adenocarcinoma de Pulmão , Bactérias , Neoplasias Pulmonares , Microbiota , Sequenciamento por Nanoporos , Nicotina , Humanos , Adenocarcinoma de Pulmão/microbiologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Microbiota/genética , Nicotina/metabolismo , Masculino , Feminino , Neoplasias Pulmonares/microbiologia , Neoplasias Pulmonares/patologia , Pessoa de Meia-Idade , Sequenciamento por Nanoporos/métodos , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Idoso , RNA Ribossômico 16S/genética , Pulmão/microbiologia , Pulmão/patologia , Biologia Computacional/métodos , Redes e Vias Metabólicas/genética
7.
Int J Mol Sci ; 25(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39273363

RESUMO

MDM4 is upregulated in the majority of melanoma cases and has been described as a "key therapeutic target in cutaneous melanoma". Numerous isoforms of MDM4 exist, with few studies examining their specific expression in human tissues. The changes in splicing of MDM4 during human melanomagenesis are critical to p53 activity and represent potential therapeutic targets. Compounding this, studies relying on short reads lose "connectivity" data, so full transcripts are frequently only inferred from the presence of splice junction reads. To address this problem, long-read nanopore sequencing was utilized to read the entire length of transcripts. Here, MDM4 transcripts, both alternative and canonical, are characterized in a pilot cohort of human melanoma specimens. RT-PCR was first used to identify the presence of novel splice junctions in these specimens. RT-qPCR then quantified the expression of major MDM4 isoforms observed during sequencing. The current study both identifies and quantifies MDM4 isoforms present in melanoma tumor samples. In the current study, we observed high expression levels of MDM4-S, MDM4-FL, MDM4-A, and the previously undescribed Ensembl transcript MDM4-209. A novel transcript lacking both exons 6 and 9 is observed and named MDM4-A/S for its resemblance to both MDM4-A and MDM4-S isoforms.


Assuntos
Melanoma , Isoformas de Proteínas , Humanos , Melanoma/genética , Melanoma/patologia , Melanoma/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/metabolismo , Processamento Alternativo , Regulação Neoplásica da Expressão Gênica , Sequenciamento por Nanoporos/métodos
8.
Int J Mol Sci ; 25(17)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39273516

RESUMO

The contribution of splicing variants to molecular diagnostics of inherited diseases is reported to be less than 10%. This figure is likely an underestimation due to several factors including difficulty in predicting the effect of such variants, the need for functional assays, and the inability to detect them (depending on their locations and the sequencing technology used). The aim of this study was to assess the utility of Nanopore sequencing in characterizing and quantifying aberrant splicing events. For this purpose, we selected 19 candidate splicing variants that were identified in patients affected by inherited retinal dystrophies. Several in silico tools were deployed to predict the nature and estimate the magnitude of variant-induced aberrant splicing events. Minigene assay or whole blood-derived cDNA was used to functionally characterize the variants. PCR amplification of minigene-specific cDNA or the target gene in blood cDNA, combined with Nanopore sequencing, was used to identify the resulting transcripts. Thirteen out of nineteen variants caused aberrant splicing events, including cryptic splice site activation, exon skipping, pseudoexon inclusion, or a combination of these. Nanopore sequencing allowed for the identification of full-length transcripts and their precise quantification, which were often in accord with in silico predictions. The method detected reliably low-abundant transcripts, which would not be detected by conventional strategies, such as RT-PCR followed by Sanger sequencing.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Sequenciamento por Nanoporos , Distrofias Retinianas , Humanos , Distrofias Retinianas/genética , Distrofias Retinianas/diagnóstico , Sequenciamento por Nanoporos/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Processamento Alternativo/genética , Splicing de RNA/genética , Éxons/genética
9.
PeerJ ; 12: e18100, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39285918

RESUMO

Genetically modified organisms are commonly used in disease research and agriculture but the precise genomic alterations underlying transgenic mutations are often unknown. The position and characteristics of transgenes, including the number of independent insertions, influences the expression of both transgenic and wild-type sequences. We used long-read, Oxford Nanopore Technologies (ONT) to sequence and assemble two transgenic strains of Caenorhabditis elegans commonly used in the research of neurodegenerative diseases: BY250 (pPdat-1::GFP) and UA44 (GFP and human α-synuclein), a model for Parkinson's research. After scaffolding to the reference, the final assembled sequences were ∼102 Mb with N50s of 17.9 Mb and 18.0 Mb, respectively, and L90s of six contiguous sequences, representing chromosome-level assemblies. Each of the assembled sequences contained more than 99.2% of the Nematoda BUSCO genes found in the C. elegans reference and 99.5% of the annotated C. elegans reference protein-coding genes. We identified the locations of the transgene insertions and confirmed that all transgene sequences were inserted in intergenic regions, leaving the organismal gene content intact. The transgenic C. elegans genomes presented here will be a valuable resource for Parkinson's research as well as other neurodegenerative diseases. Our work demonstrates that long-read sequencing is a fast, cost-effective way to assemble genome sequences and characterize mutant lines and strains.


Assuntos
Animais Geneticamente Modificados , Caenorhabditis elegans , Sequenciamento por Nanoporos , Transgenes , Caenorhabditis elegans/genética , Animais , Transgenes/genética , Animais Geneticamente Modificados/genética , Sequenciamento por Nanoporos/métodos , alfa-Sinucleína/genética , Genoma Helmíntico , Mutagênese Insercional , Humanos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo
11.
Int J Mycobacteriol ; 13(3): 331-336, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39277897

RESUMO

BACKGROUND: Phenotypic drug susceptibility testing (DST) is considered the gold standard for detecting linezolid (LZD) resistance in Mycobacterium tuberculosis (MTB), but it is time-consuming. Nanopore sequencing offers a potentially faster alternative approach. This study evaluated the agreement between phenotypically detected LZD resistance and mutations in the rrl and rplC genes of MTB isolates using nanopore sequencing. METHODS: Consecutive drug-resistant MTB isolates from pulmonary samples collected in 2021 underwent liquid culture (LC) DST for LZD. All resistant isolates and an equal number of susceptible isolates were subjected to targeted sequencing of the rrl and rplC genes using nanopore technology. RESULTS: Sequencing identified a C154R mutation in the rplC gene in only one LZD-resistant isolate. No mutations were detected in the rrl gene. The agreement between sequencing and LC-DST for detecting LZD resistance was poor (Cohen's kappa: 0.03571, 95% confidence interval [CI]: -0.034-0.105). Additionally, no significant association was found between LZD resistance and clinical or microbiological outcomes at 6-month follow-up. CONCLUSION: This study revealed a considerable discrepancy between phenotypic and genotypic detection of LZD resistance in MTB. Further research is needed to better understand the genetic mechanisms underlying LZD resistance and to develop reliable molecular diagnostics for rapid resistance detection.


Assuntos
Antituberculosos , Linezolida , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis , Sequenciamento por Nanoporos , Fenótipo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Linezolida/farmacologia , Humanos , Sequenciamento por Nanoporos/métodos , Antituberculosos/farmacologia , Farmacorresistência Bacteriana/genética , Masculino , Feminino , Pessoa de Meia-Idade , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Adulto , Proteínas de Bactérias/genética
13.
Front Cell Infect Microbiol ; 14: 1423541, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39233907

RESUMO

Background: Patients who were infected by the Human Immunodeficiency Virus (HIV) could have weakened immunity that is complicated by opportunistic infections, especially for Mycobacterium tuberculosis (MTB). Notably, the HIV-MTB co-infection will accelerate the course of disease progress and greatly increase the mortality of patients. Since the traditional diagnostic methods are time-consuming and have low sensitivity, we aim to investigate the performance of mNGS (metagenomic Next-Generation Sequencing) and mNPS (metagenomic NanoPore Sequencing) for the rapid diagnosis of tuberculosis in HIV-infected patients. Methods: The 122 HIV-infected patients were enrolled for the retrospective analysis. All of the patients underwent traditional microbiological tests, mNGS, and (or) mNPS tests. The clinical comprehensive diagnosis was used as the reference standard to compare the diagnostic performance of culture, mNGS, and mNPS on tuberculosis. We also investigate the diagnostic value of mNGS and mNPS on mixed-infection. Furthermore, the treatment adjustment directed by mNGS and mNPS was analyzed. Results: Compared with the composite reference standard, the culture showed 42.6% clinical sensitivity and 100% specificity, and the OMT(other microbiological testing) had 38.9% sensitivity and 100% specificity. The mNGS had 58.6% clinical sensitivity and 96.8% specificity, and the mNPS had 68.0% clinical sensitivity and 100% specificity. The proportion of mixed-infection cases (88.9%) in the TB group was higher than those in the non-TB group (54.8%) and the mNGS and mNPS are more competitive on mixed-infection diagnosis compared with the traditional methods. Furthermore, there are 63 patients (69.2%) and 36 patients (63.2%) achieved effective treatment after receiving the detection of mNPS and mNGS, respectively. Conclusion: Our study indicated that mNPS and mNGS have high sensitivity and specificity for TB diagnosis compared with the traditional methods, and mNPS seems to have better diagnostic performance than mNGS. Moreover, mNGS and mNPS showed apparent advantages in detecting mixed infection. The mNPS and mNGS-directed medication adjustment have effective treatment outcomes for HIV-infected patients who have lower immunity.


Assuntos
Coinfecção , Infecções por HIV , Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica , Mycobacterium tuberculosis , Sequenciamento por Nanoporos , Sensibilidade e Especificidade , Tuberculose , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Masculino , Tuberculose/diagnóstico , Tuberculose/microbiologia , Feminino , Infecções por HIV/complicações , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Estudos Retrospectivos , Adulto , Pessoa de Meia-Idade , Coinfecção/diagnóstico , Coinfecção/microbiologia , Coinfecção/virologia , Sequenciamento por Nanoporos/métodos , Metagenômica/métodos
14.
Clin Epigenetics ; 16(1): 101, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095842

RESUMO

Adaptive nanopore sequencing as a diagnostic method for imprinting disorders and episignature analysis revealed an intragenic duplication of Exon 6 and 7 in UBE3A (NM_000462.5) in a patient with relatively mild Angelman-like syndrome. In an all-in-one nanopore sequencing analysis DNA hypomethylation of the SNURF:TSS-DMR, known contributing deletions on the maternal allele and point mutations in UBE3A could be ruled out as disease drivers. In contrast, breakpoints and orientation of the tandem duplication could clearly be defined. Segregation analysis in the family showed that the duplication derived de novo in the maternal grandfather. Our study shows the benefits of an all-in-one nanopore sequencing approach for the diagnostics of Angelman syndrome and other imprinting disorders.


Assuntos
Síndrome de Angelman , Metilação de DNA , Duplicação Gênica , Sequenciamento por Nanoporos , Ubiquitina-Proteína Ligases , Humanos , Síndrome de Angelman/genética , Síndrome de Angelman/diagnóstico , Ubiquitina-Proteína Ligases/genética , Sequenciamento por Nanoporos/métodos , Metilação de DNA/genética , Feminino , Duplicação Gênica/genética , Masculino , Éxons/genética , Linhagem , Impressão Genômica/genética
15.
Ann Clin Microbiol Antimicrob ; 23(1): 77, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39175046

RESUMO

PURPOSE: Bone and joint tuberculosis (BJTB) is a distinct variant of tuberculosis in which clinical diagnosis often leads to relative misdiagnosis and missed diagnoses. This study aimed to evaluate the diagnostic accuracy of the targeted nanopore sequencing (TNPseq) assay for BJTB patients in China. METHOD: The study enrolled a cohort of 163 patients with suspected BJTB. Diagnostic testing was performed using the TNPseq assay on samples including punctured tissue, pus, and blood. The diagnostic accuracy of the TNPseq assay was then compared with that of the T-SPOT and Xpert MTB/RIF assays. RESULT: TNPseq exhibited superior performance in terms of accuracy, demonstrating a sensitivity of 76.3% (95% CI: 71.0-81.6%) and a specificity of 98.8% (95% CI: 93.5-100%) in clinical diagnosis. When evaluated against a composite reference standard, TNPseq demonstrated a sensitivity of 74.4% (95% CI: 69.3-79.5%) and a specificity of 98.8% (95% CI: 93.7-100%). These results exceed the performance of both the T-SPOT and Xpert MTB/RIF tests. Notably, TNPseq demonstrated high specificity and accuracy in puncture specimens, with a sensitivity of 75.0% (95% CI: 70.2-79.8%) and a specificity of 98.3% (95% CI: 92.7-100%), as well as in pus samples, with a sensitivity of 83.3% (95% CI: 78.6-88.1%) and a specificity of 100% (95% CI: 100-100%). Additionally, TNPseq facilitated the detection of mixed infection scenarios, identifying 20 cases of bacterial-fungal co-infection, 17 cases of bacterial-viral co-infection, and two cases of simultaneous bacterial-fungal-viral co-infection. CONCLUSION: TNPseq demonstrated great potential in the diagnosis of BJTB due to its high sensitivity and specificity. The ability of TNPseq to diagnose pathogens and detect drug resistance genes can also guide subsequent treatment. Expanding the application scenarios and scope of TNPseq will enable it to benefit more clinical treatments.


Assuntos
Mycobacterium tuberculosis , Sensibilidade e Especificidade , Humanos , China , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Estudos de Coortes , Tuberculose Osteoarticular/diagnóstico , Tuberculose Osteoarticular/microbiologia , Idoso , Sequenciamento por Nanoporos/métodos , Adulto Jovem
16.
Brief Bioinform ; 25(5)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39177264

RESUMO

Recent nanopore sequencing system (R10.4) has enhanced base calling accuracy and is being increasingly utilized for detecting CpG methylation state. However, the robustness and universality of the methylation calling model in officially supplied Dorado remains poorly tested. In this study, we obtained heterogeneous datasets from human and plant sources to carry out comprehensive evaluations, which showed that Dorado performed significantly different across datasets. We therefore developed deep neural networks and implemented several optimizations in training a new model called DeepBAM. DeepBAM achieved superior and more stable performances compared with Dorado, including higher area under the ROC curves (98.47% on average and up to 7.36% improvement) and F1 scores (94.97% on average and up to 16.24% improvement) across the datasets. DeepBAM-based whole genome methylation frequencies have achieved >0.95 correlations with BS-seq on four of five datasets, outperforming Dorado in all instances. It enables unraveling allele-specific methylation patterns, including regions of transposable elements. The enhanced performance of DeepBAM paves the way for broader applications of nanopore sequencing in CpG methylation studies.


Assuntos
Ilhas de CpG , Metilação de DNA , Sequenciamento por Nanoporos , Sequenciamento por Nanoporos/métodos , Humanos , Software , Análise de Sequência de DNA/métodos , Redes Neurais de Computação
17.
Microbiologyopen ; 13(4): e1432, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39166362

RESUMO

The long-read sequencing platform MinION, developed by Oxford Nanopore Technologies, enables the sequencing of bacterial genomes in resource-limited settings, such as field conditions or low- and middle-income countries. For this purpose, protocols for extracting high-molecular-weight DNA using nonhazardous, inexpensive reagents and equipment are needed, and some methods have been developed for gram-negative bacteria. However, we found that without modification, these protocols are unsuitable for gram-positive Streptococcus spp., a major threat to fish farming and food security in low- and middle-income countries. Multiple approaches were evaluated, and the most effective was an extraction method using lysozyme, sodium dodecyl sulfate, and proteinase K for lysis of bacterial cells and magnetic beads for DNA recovery. We optimized the method to consistently achieve sufficient yields of pure high-molecular-weight DNA with minimal reagents and time and developed a version of the protocol which can be performed without a centrifuge or electrical power. The suitability of the method was verified by MinION sequencing and assembly of 12 genomes of epidemiologically diverse fish-pathogenic Streptococcus iniae and Streptococcus agalactiae isolates. The combination of effective high-molecular-weight DNA extraction and MinION sequencing enabled the discovery of a naturally occurring 15 kb low-copy number mobilizable plasmid in S. iniae, which we name pSI1. We expect that our resource-limited settings-adapted protocol for high-molecular-weight DNA extraction could be implemented successfully for similarly recalcitrant-to-lysis gram-positive bacteria, and it represents a method of choice for MinION-based disease diagnostics in low- and middle-income countries.


Assuntos
DNA Bacteriano , Sequenciamento por Nanoporos , Streptococcus , Streptococcus/genética , Streptococcus/isolamento & purificação , Streptococcus/classificação , DNA Bacteriano/genética , Sequenciamento por Nanoporos/métodos , Animais , Genoma Bacteriano/genética , Peso Molecular , Análise de Sequência de DNA/métodos , Peixes/microbiologia , Doenças dos Peixes/microbiologia , Infecções Estreptocócicas/microbiologia , Região de Recursos Limitados
18.
Methods Mol Biol ; 2851: 75-85, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39210172

RESUMO

A new nanopore sequencing-based method has been developed for the detection and identification of a wider range of microorganisms. This method uses universal primers to identify virtually all the bacterial or yeast/fungal species via the amplification and nucleotide sequencing of common ribosomal DNA regions. The simplicity of its protocol makes the method suitable for both small and large breweries.


Assuntos
Bactérias , Sequenciamento de Nucleotídeos em Larga Escala , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Bactérias/genética , Bactérias/isolamento & purificação , Fungos/genética , Análise de Sequência de DNA/métodos , Microbiologia de Alimentos/métodos , Cerveja/microbiologia , DNA Fúngico/genética , DNA Fúngico/isolamento & purificação , Sequenciamento por Nanoporos/métodos , DNA Bacteriano/genética
19.
Commun Biol ; 7(1): 1038, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39179660

RESUMO

Clinical metagenomics (CMg) Nanopore sequencing can facilitate infectious disease diagnosis. In China, sub-lineages ST11-KL64 and ST11-KL47 Carbapenem-resistant Klebsiella pneumoniae (CRKP) are widely prevalent. We propose PathoTracker, a specially compiled database and arranged method for strain feature identification in CMg samples and CRKP traceability. A database targeting high-prevalence horizontal gene transfer in CRKP strains and a ST11-only database for distinguishing two sub-lineages in China were created. To make the database user-friendly, facilitate immediate downstream strain feature identification from raw Nanopore metagenomic data, and avoid the need for phylogenetic analysis from scratch, we developed data analysis methods. The methods included pre-performed phylogenetic analysis, gene-isolate-cluster index and multilevel pan-genome database and reduced storage space by 10-fold and random-access memory by 52-fold compared with normal methods. PathoTracker can provide accurate and fast strain-level analysis for CMg data after 1 h Nanopore sequencing, allowing early warning of outbreaks. A user-friendly page ( http://PathoTracker.pku.edu.cn/ ) was developed to facilitate online analysis, including strain-level feature, species identifications and phylogenetic analyses. PathoTracker proposed in this study will aid in the downstream analysis of CMg.


Assuntos
Surtos de Doenças , Infecções por Klebsiella , Klebsiella pneumoniae , Metagenômica , Filogenia , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/isolamento & purificação , Metagenômica/métodos , Humanos , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/diagnóstico , China/epidemiologia , Sequenciamento por Nanoporos/métodos , Bases de Dados Genéticas , Genoma Bacteriano
20.
Nat Commun ; 15(1): 7450, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39198442

RESUMO

The increasing prevalence of gut colonization with CTX-M extended-spectrum ß-lactamase- and/or DHA plasmid-mediated AmpC-producing Escherichia coli is a concern. Here, we evaluate Nanopore-shotgun metagenomic sequencing (Nanopore-SMS) latest V14 chemistry to detect blaCTX-M and blaDHA genes from healthy stools. We test 25 paired samples characterized with culture-based methods (native and pre-enriched). Antimicrobial resistant genes (ARGs) are detected from reads and meta-assembled genomes (MAGs) to determine their associated genetic environments (AGEs). Sensitivity and specificity of native Nanopore-SMS are 61.1% and 100%, compared to 81.5% and 75% for pre-enriched Nanopore-SMS, respectively. Native Nanopore-SMS identifies only one sample with an AGE, whereas pre-enriched Nanopore-SMS recognizes 9/18 plasmids and 5/9 E. coli chromosomes. Pre-enriched Nanopore-SMS identifies more ARGs than native Nanopore-SMS (p < 0.001). Notably, blaCTX-Ms and blaDHAs AGEs (plasmid and chromosomes) are identified within 1 hour of sequencing. Furthermore, microbiota analyses show that pre-enriched Nanopore-SMS results in more E. coli classified reads (47% vs. 3.1%), higher differential abundance (5.69 log2 fold) and lower Shannon diversity index (p < 0.0001). Nanopore-SMS has the potential to be used for intestinal colonization screening. However, sample pre-enrichment is necessary to increase sensitivity. Further computational improvements are needed to reduce the turnaround time for clinical applications.


Assuntos
Escherichia coli , Fezes , Metagenômica , Nanoporos , beta-Lactamases , Fezes/microbiologia , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Humanos , beta-Lactamases/genética , beta-Lactamases/metabolismo , Metagenômica/métodos , Proteínas de Escherichia coli/genética , Plasmídeos/genética , Sequenciamento por Nanoporos/métodos , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Microbioma Gastrointestinal/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...