Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
1.
BMC Musculoskelet Disord ; 25(1): 647, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148085

RESUMO

BACKGROUND: Our study aimed to identify potential specific biomarkers for osteoarthritis (OA) and assess their relationship with immune infiltration. METHODS: We utilized data from GSE117999, GSE51588, and GSE57218 as training sets, while GSE114007 served as a validation set, all obtained from the GEO database. First, weighted gene co-expression network analysis (WGCNA) and functional enrichment analysis were performed to identify hub modules and potential functions of genes. We subsequently screened for potential OA biomarkers within the differentially expressed genes (DEGs) of the hub module using machine learning methods. The diagnostic accuracy of the candidate genes was validated. Additionally, single gene analysis and ssGSEA was performed. Then, we explored the relationship between biomarkers and immune cells. Lastly, we employed RT-PCR to validate our results. RESULTS: WGCNA results suggested that the blue module was the most associated with OA and was functionally associated with extracellular matrix (ECM)-related terms. Our analysis identified ALB, HTRA1, DPT, MXRA5, CILP, MPO, and PLAT as potential biomarkers. Notably, HTRA1, DPT, and MXRA5 consistently exhibited increased expression in OA across both training and validation cohorts, demonstrating robust diagnostic potential. The ssGSEA results revealed that abnormal infiltration of DCs, NK cells, Tfh, Th2, and Treg cells might contribute to OA progression. HTRA1, DPT, and MXRA5 showed significant correlation with immune cell infiltration. The RT-PCR results also confirmed these findings. CONCLUSIONS: HTRA1, DPT, and MXRA5 are promising biomarkers for OA. Their overexpression strongly correlates with OA progression and immune cell infiltration.


Assuntos
Biomarcadores , Progressão da Doença , Serina Peptidase 1 de Requerimento de Alta Temperatura A , Osteoartrite , Humanos , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Osteoartrite/imunologia , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoartrite/diagnóstico , Biomarcadores/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Bases de Dados Genéticas
2.
Nat Cardiovasc Res ; 3(6): 701-713, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39196222

RESUMO

Genetic variants in HTRA1 are associated with stroke risk. However, the mechanisms mediating this remain largely unknown, as does the full spectrum of phenotypes associated with genetic variation in HTRA1. Here we show that rare HTRA1 variants are linked to ischemic stroke in the UK Biobank and BioBank Japan. Integrating data from biochemical experiments, we next show that variants causing loss of protease function associated with ischemic stroke, coronary artery disease and skeletal traits in the UK Biobank and MyCode cohorts. Moreover, a common variant modulating circulating HTRA1 mRNA and protein levels enhances the risk of ischemic stroke and coronary artery disease while lowering the risk of migraine and macular dystrophy in genome-wide association study, UK Biobank, MyCode and BioBank Japan data. We found no interaction between proxied HTRA1 activity and levels. Our findings demonstrate the role of HTRA1 for cardiovascular diseases and identify two mechanisms as potential targets for therapeutic interventions.


Assuntos
Doença da Artéria Coronariana , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Serina Peptidase 1 de Requerimento de Alta Temperatura A , AVC Isquêmico , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Humanos , AVC Isquêmico/genética , AVC Isquêmico/sangue , AVC Isquêmico/epidemiologia , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/epidemiologia , Feminino , Masculino , Pessoa de Meia-Idade , Japão/epidemiologia , Medição de Risco , Idoso , Fatores de Risco , Polimorfismo de Nucleotídeo Único , Fenótipo , Reino Unido/epidemiologia , Mutação com Perda de Função
4.
Invest Ophthalmol Vis Sci ; 65(8): 34, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39028977

RESUMO

Purpose: A single-nucleotide polymorphism in HTRA1 has been linked to age-related macular degeneration (AMD). Here we investigated the potential links between age-related retinal changes, elastin turnover, elastin autoantibody production, and complement C3 deposition in a mouse model with RPE-specific human HTRA1 overexpression. Methods: HTRA1 transgenic mice and age-matched CD1 wild-type mice were analyzed at 6 weeks and 4, 6, and 12 to 14 months of age using in vivo retinal imaging by optical coherence tomography (OCT) and fundus photography, as well as molecular readouts, focusing on elastin and elastin-derived peptide quantification, antielastin autoantibody, and total Ig antibody measurements and immunohistochemistry to examine elastin, IgG, and C3 protein levels in retinal sections. Results: OCT imaging indicated thinning of inner nuclear layer as an early phenotype in HTRA1 mice, followed by age and age/genotype-related thinning of the photoreceptor layer, RPE, and total retina. HTRA1 mice exhibited reduced elastin protein levels in the RPE/choroid and increased elastin breakdown products in the retina and serum. A corresponding age-dependent increase of serum antielastin IgG and IgM autoantibodies and total Ig antibody levels was observed. In the RPE/choroid, these changes were associated with an age-related increase of IgG and C3 deposition. Conclusions: Our results confirm that RPE-specific overexpression of human HTRA1 induces certain AMD-like phenotypes in mice. This includes altered elastin turnover, immune response, and complement deposition in the RPE/choroid in addition to age-related outer retinal and photoreceptor layer thinning. The identification of elastin-derived peptides and corresponding antielastin autoantibodies, together with increased C3 deposition in the RPE/choroid, provides a rationale for an overactive complement system in AMD irrespective of the underlying genetic risk.


Assuntos
Modelos Animais de Doenças , Elastina , Serina Peptidase 1 de Requerimento de Alta Temperatura A , Degeneração Macular , Camundongos Transgênicos , Epitélio Pigmentado da Retina , Tomografia de Coerência Óptica , Animais , Humanos , Camundongos , Envelhecimento , Autoanticorpos/sangue , Complemento C3/genética , Complemento C3/metabolismo , Elastina/metabolismo , Elastina/genética , Regulação da Expressão Gênica , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Imunoglobulina G/sangue , Imuno-Histoquímica , Degeneração Macular/genética , Degeneração Macular/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
5.
Nat Commun ; 15(1): 5944, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013852

RESUMO

Loss-of-function mutations in the homotrimeric serine protease HTRA1 cause cerebral vasculopathy. Here, we establish independent approaches to achieve the functional correction of trimer assembly defects. Focusing on the prototypical R274Q mutation, we identify an HTRA1 variant that promotes trimer formation thus restoring enzymatic activity in vitro. Genetic experiments in Htra1R274Q mice further demonstrate that expression of this protein-based corrector in trans is sufficient to stabilize HtrA1-R274Q and restore the proteomic signature of the brain vasculature. An alternative approach employs supramolecular chemical ligands that shift the monomer-trimer equilibrium towards proteolytically active trimers. Moreover, we identify a peptidic ligand that activates HTRA1 monomers. Our findings open perspectives for tailored protein repair strategies.


Assuntos
Serina Peptidase 1 de Requerimento de Alta Temperatura A , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Animais , Humanos , Camundongos , Conformação Proteica , Multimerização Proteica , Células HEK293 , Encéfalo/metabolismo , Encéfalo/patologia , Mutação , Mutação com Perda de Função
6.
Mol Diagn Ther ; 28(4): 347-377, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38717523

RESUMO

PURPOSE: HtrA1, HtrA2, HtrA3 and HtrA4 appear to be involved in the development of pathologies such as cancer. This systematic review reports the results of a literature search performed to compare the expression of HtrA family genes and proteins in cancer versus non-cancer tissues and cell lines, assess relationships between HtrA expression and cancer clinical features in cancer, and analyse the molecular mechanism, by which HtrA family affects cancer. METHODS: The literature search was conducted according to the PRISMA statement among four databases (PubMed, Web of Science, Embase and Scopus). RESULTS: A total of 38 articles met the inclusion criteria and involved the expression of HtrA family members and concerned the effect of HtrA expression on cancer and metastasis development or on the factor that influences it. Additionally, 31 reports were retrieved manually. Most articles highlighted that HtrA1 and HtrA3 exhibited tumour suppressor activity, while HtrA2 was associated with tumour growth and metastasis. There were too few studies to clearly define the role of the HtrA4 protease in tumours. CONCLUSION: Although the expression of serine proteases of the HtrA family was dependent on tumour type, stage and the presence of metastases, most articles indicated that HtrA1 and HtrA3 expression in tumours was downregulated compared with healthy tissue or cell lines. The expression of HtrA2 was completely study dependent. The limited number of studies on HtrA4 expression made it impossible to draw conclusions about differences in expression between healthy and tumour tissue. The conclusions drawn from the study suggest that HtrA1 and HtrA3 act as tumour suppressors.


Assuntos
Regulação Neoplásica da Expressão Gênica , Serina Peptidase 1 de Requerimento de Alta Temperatura A , Serina Peptidase 2 de Requerimento de Alta Temperatura A , Neoplasias , Serina Endopeptidases , Humanos , Neoplasias/genética , Neoplasias/patologia , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Serina Peptidase 2 de Requerimento de Alta Temperatura A/genética , Serina Peptidase 2 de Requerimento de Alta Temperatura A/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
7.
J Clin Invest ; 134(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747292

RESUMO

Cerebral small vessel disease (cSVD) encompasses a heterogeneous group of age-related small vessel pathologies that affect multiple regions. Disease manifestations range from lesions incidentally detected on neuroimaging (white matter hyperintensities, small deep infarcts, microbleeds, or enlarged perivascular spaces) to severe disability and cognitive impairment. cSVD accounts for approximately 25% of ischemic strokes and the vast majority of spontaneous intracerebral hemorrhage and is also the most important vascular contributor to dementia. Despite its high prevalence and potentially long therapeutic window, there are still no mechanism-based treatments. Here, we provide an overview of the recent advances in this field. We summarize recent data highlighting the remarkable continuum between monogenic and multifactorial cSVDs involving NOTCH3, HTRA1, and COL4A1/A2 genes. Taking a vessel-centric view, we discuss possible cause-and-effect relationships between risk factors, structural and functional vessel changes, and disease manifestations, underscoring some major knowledge gaps. Although endothelial dysfunction is rightly considered a central feature of cSVD, the contributions of smooth muscle cells, pericytes, and other perivascular cells warrant continued investigation.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Colágeno Tipo IV , Receptor Notch3 , Humanos , Doenças de Pequenos Vasos Cerebrais/genética , Doenças de Pequenos Vasos Cerebrais/fisiopatologia , Doenças de Pequenos Vasos Cerebrais/patologia , Receptor Notch3/genética , Receptor Notch3/metabolismo , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Animais
8.
J Hypertens ; 42(7): 1154-1162, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690926

RESUMO

BACKGROUND: : Circular RNAs (circRNAs) have been shown to be extensively involved in preeclampsia progression. At present, the role of circ_0007445 in preeclampsia progression is not clear. METHODS: A total of 30 preeclampsia patients and 30 normal pregnant women were recruited in our study. The function of trophoblast cells was explored to clarify the role and mechanism of circ_0007445 on the preeclampsia progression. The expression of circ_0007445, microRNA (miR)-4432 and high temperature requirement A1 (HTRA1) was analyzed by quantitative real-time PCR. The proliferation, migration and invasion of trophoblast cells were determined by cell counting kit 8 assay, EdU assay, colony formation assay, flow cytometry, and transwell assay. Protein expression was examined by western blot analysis. Dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay and RNA pull-down assay were used to assess RNA interaction relationships. RESULTS: Our data suggested that circ_0007445 had increased expression in preeclampsia patients. Knockdown of circ_0007445 enhanced trophoblast cell proliferation, migration and invasion. MiR-4432 was lowly expressed in preeclampsia patients, and it could be sponged by circ_0007445. MiR-4432 inhibitor overturned the promotion effects of circ_0007445 knockdown on trophoblast cell functions. HTRA1 was highly expressed in preeclampsia patients, and it could be targeted by miR-4432. HTRA1 overexpression could also reverse the proliferation, migration and invasion of trophoblast cells promoted by miR-4432 mimic. In addition, circ_0007445 positively regulated HTRA1 through targeting miR-4432. CONCLUSION: :Our results suggested that circ_0007445 facilitated the development of preeclampsia by suppressing trophoblast cell function through miR-4432/HTRA1 axis.


Assuntos
Movimento Celular , Serina Peptidase 1 de Requerimento de Alta Temperatura A , MicroRNAs , Pré-Eclâmpsia , RNA Circular , Trofoblastos , Adulto , Feminino , Humanos , Gravidez , Movimento Celular/genética , Proliferação de Células/genética , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Trofoblastos/citologia , Trofoblastos/metabolismo
9.
Nat Commun ; 15(1): 4359, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777835

RESUMO

Cystine-knot peptides (CKPs) are naturally occurring peptides that exhibit exceptional chemical and proteolytic stability. We leveraged the CKP carboxypeptidase A1 inhibitor as a scaffold to construct phage-displayed CKP libraries and subsequently screened these collections against HTRA1, a trimeric serine protease implicated in age-related macular degeneration and osteoarthritis. The initial hits were optimized by using affinity maturation strategies to yield highly selective and potent picomolar inhibitors of HTRA1. Crystal structures, coupled with biochemical studies, reveal that the CKPs do not interact in a substrate-like manner but bind to a cryptic pocket at the S1' site region of HTRA1 and abolish catalysis by stabilizing a non-competent active site conformation. The opening and closing of this cryptic pocket is controlled by the gatekeeper residue V221, and its movement is facilitated by the absence of a constraining disulfide bond that is typically present in trypsin fold serine proteases, thereby explaining the remarkable selectivity of the CKPs. Our findings reveal an intriguing mechanism for modulating the activity of HTRA1, and highlight the utility of CKP-based phage display platforms in uncovering potent and selective inhibitors against challenging therapeutic targets.


Assuntos
Domínio Catalítico , Serina Peptidase 1 de Requerimento de Alta Temperatura A , Peptídeos , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Humanos , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Biblioteca de Peptídeos , Cristalografia por Raios X , Ligação Proteica , Cistina/química , Cistina/metabolismo , Modelos Moleculares
10.
Invest Ophthalmol Vis Sci ; 65(4): 34, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38648039

RESUMO

Purpose: The purpose of this study was to determine if levels of the HtrA1 protein in serum or vitreous humor are influenced by genetic risk for age-related macular degeneration (AMD) at the 10q26 locus, age, sex, AMD status, and/or AMD disease severity, and, therefore, to determine the contribution of systemic and ocular HtrA1 to the AMD disease process. Methods: A custom-made sandwich ELISA assay (SCTM ELISA) for detection of the HtrA1 protein was designed and compared with three commercial assays (R&D Systems, MyBiosource 1 and MyBiosource 2) using 65 serum samples. Concentrations of HtrA1 were thereafter determined in serum and vitreous samples collected from 248 individuals and 145 human donor eyes, respectively. Results: The SCTM ELISA demonstrated high specificity, good recovery, and parallelism within its linear detection range and performed comparably to the R&D Systems assay. In contrast, we were unable to demonstrate the specificity of the two assays from MyBioSource using either recombinant or native HtrA1. Analyses of concentrations obtained using the validated SCTM assay revealed that genetic risk at the 10q26 locus, age, sex, or AMD status are not significantly associated with altered levels of the HtrA1 protein in serum or in vitreous humor (P > 0.05). Conclusions: HtrA1 levels in serum and vitreous do not reflect the risk for AMD associated with the 10q26 locus or disease status. Localized alteration in HTRA1 expression in the retinal pigment epithelium, rather than systemic changes in HtrA1, is the most likely driver of elevated risk for developing AMD among individuals with risk variants at the 10q26 locus.


Assuntos
Serina Peptidase 1 de Requerimento de Alta Temperatura A , Degeneração Macular , Serina Endopeptidases , Corpo Vítreo , Idoso , Feminino , Humanos , Masculino , Cromossomos Humanos Par 10/genética , Ensaio de Imunoadsorção Enzimática/métodos , Predisposição Genética para Doença , Serina Peptidase 1 de Requerimento de Alta Temperatura A/sangue , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Degeneração Macular/genética , Degeneração Macular/metabolismo , Degeneração Macular/diagnóstico , Fatores de Risco , Sensibilidade e Especificidade , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Corpo Vítreo/metabolismo
11.
Front Biosci (Schol Ed) ; 16(1): 3, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38538345

RESUMO

Age-related macular degeneration (AMD) is a multifactorial genetic disease, with at least 52 identifiable associated gene variants at 34 loci, including variants in complement factor H (CFH) and age-related maculopathy susceptibility 2/high-temperature requirement A serine peptidase-1 (ARMS2/HTRA1). Genetic factors account for up to 70% of disease variability. However, population-based genetic risk scores are generally more helpful for clinical trial design and stratification of risk groups than for individual patient counseling. There is some evidence of pharmacogenetic influences on various treatment modalities used in AMD patients, including Age-Related Eye Disease Study (AREDS) supplements, photodynamic therapy (PDT), and anti-vascular endothelial growth factor (anti-VEGF) agents. However, there is currently no convincing evidence that genetic information plays a role in routine clinical care.


Assuntos
Degeneração Macular , Proteínas , Humanos , Degeneração Macular/tratamento farmacológico , Degeneração Macular/genética , Suplementos Nutricionais , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Fatores de Crescimento do Endotélio Vascular/genética , Fatores de Crescimento do Endotélio Vascular/uso terapêutico , Polimorfismo de Nucleotídeo Único , Fatores de Risco
12.
Nat Commun ; 15(1): 2436, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499535

RESUMO

Parkinson's disease (PD) is closely linked to α-synuclein (α-syn) misfolding and accumulation in Lewy bodies. The PDZ serine protease HTRA1 degrades fibrillar tau, which is associated with Alzheimer's disease, and inactivating mutations to mitochondrial HTRA2 are implicated in PD. Here, we report that HTRA1 inhibits aggregation of α-syn as well as FUS and TDP-43, which are implicated in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. The protease domain of HTRA1 is necessary and sufficient for inhibiting aggregation, yet this activity is proteolytically-independent. Further, HTRA1 disaggregates preformed α-syn fibrils, rendering them incapable of seeding aggregation of endogenous α-syn, while reducing HTRA1 expression promotes α-syn seeding. HTRA1 remodels α-syn fibrils by targeting the NAC domain, the key domain catalyzing α-syn amyloidogenesis. Finally, HTRA1 detoxifies α-syn fibrils and prevents formation of hyperphosphorylated α-syn accumulations in primary neurons. Our findings suggest that HTRA1 may be a therapeutic target for a range of neurodegenerative disorders.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Amiloide/metabolismo , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Corpos de Lewy/metabolismo
13.
Int J Mol Sci ; 25(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542204

RESUMO

Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly worldwide. The prevalence and phenotypes of AMD differ among populations, including between people in Taiwan and other regions. We performed a genome-wide association study to identify genetic variants and to develop genetic models to predict the risk of AMD development and progression in the Taiwanese population. In total, 4039 patients with AMD and 16,488 non-AMD controls (aged ≥ 65 years) were included. We identified 31 AMD-associated variants (p < 5 × 10-8) on chromosome 10q26, surrounding PLEKHA1-ARMS2-HTRA1. Two genetic models were constructed using the clump and threshold method. Model 1 included the single nucleotide polymorphism rs11200630 and showed a 1.31-fold increase in the risk of AMD per risk allele (95% confidence interval (CI) = 1.20-1.43, p < 0.001). In model 2, 1412 single-nucleotide polymorphisms were selected to construct a polygenic risk score (PRS). Individuals with the top 5% PRS had a 1.40-fold higher AMD risk compared with that of individuals with a PRS in the bottom quartile (95% CI = 1.04-1.89, p = 0.025). Moreover, the PRS in the upper quartile was related to a decreased age at AMD diagnosis by 0.62 years (95% CI = -1.15, -0.09, p = 0.023). Both genetic models provide useful predictive power for populations at high risk of AMD, affording a basis for identifying patients requiring close follow-up and early intervention.


Assuntos
Degeneração Macular , Proteínas , Idoso , Humanos , Proteínas/genética , Estudo de Associação Genômica Ampla , Degeneração Macular/diagnóstico , Degeneração Macular/epidemiologia , Degeneração Macular/genética , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Polimorfismo de Nucleotídeo Único , Diagnóstico Precoce , Predisposição Genética para Doença , Fatores de Risco , Genótipo
14.
JAMA Neurol ; 81(5): 551-552, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38466301
15.
Tissue Cell ; 87: 102329, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367326

RESUMO

High-temperature requirement A1 (HtrA1), a multidomain serine protease acting on Extracellular matrix (ECM) rearrangement, is also secreted by osteoblasts and osteoclasts. Recent and conflicting literature highlights HtrA1's role as a controller of bone remodeling, proposing it as a possible target for pathologies with unbalanced bone resorption, like Osteoporosis (OP). To add knowledge on this molecule function in bone physiopathology, here we compared HtrA1 distribution in the ECM of healthy (H) and OP bone tissue, also examining its localization in the sites of new bone formation. HtrA1 was homogeneously expressed in the mature bone ECM of H tissue showing a 55.6 ± 16.4% of the stained area, with a significant (p=0.0001) decrease in OP percentage stained area (21.1 ± 13.1). Moreover, HtrA1 was present in the endosteum and cells involved in osteogenesis, mainly in those "entrapped" in woven bone, whereas osteocytes in mature lamellar bone were negative. Based on our previous observation in OP tissue of a significantly increased expression of Decorin and Osteocalcin, both involved in bone mineralization and remodeling and equally substrates for HtrA1, we speculate that HtrA1 by controlling the proper amount of Decorin and Osteocalcin favors normal bone maturation and mineralization. Besides, we suggest that late-osteoblasts and pre-osteocytes secrete HtrA1 in the adjacent matrix whilst proceeding with their maturation and that HtrA1 expression is further modified during the remodeling from woven to the lamellar bone. Overall, our data suggest HtrA1 as a positive regulator of bone matrix formation and maturation: its reduced expression in mature OP bone, affecting protein content and distribution, could hamper correct bone remodeling and mineralization.


Assuntos
Osteoporose , Serina Proteases , Humanos , Osteocalcina/metabolismo , Serina Proteases/metabolismo , Matriz Óssea/metabolismo , Decorina/metabolismo , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Osso e Ossos/metabolismo , Matriz Extracelular/metabolismo , Osteoporose/genética
16.
Adv Exp Med Biol ; 1415: 27-36, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440010

RESUMO

Age-related macular degeneration (AMD) is the leading cause of blindness in the global aging population. Familial aggregation and genome-wide association (GWA) studies have identified gene variants associated with AMD, implying a strong genetic contribution to AMD development. Two loci, on human Chr 1q31 and 10q26, respectively, represent the most influential of all genetic factors. While the role of CFH at Chr 1q31 is well established, uncertainty remains about the genes ARMS2 and HTRA1, at the Chr 10q26 locus. Since both genes are in strong linkage disequilibrium, assigning individual gene effects is difficult. In this chapter, we review current literature about ARMS2 and HTRA1 and their relevance to AMD risk. Future studies will be necessary to unravel the mechanisms by which they contribute to AMD.


Assuntos
Degeneração Macular , Proteínas , Humanos , Idoso , Proteínas/genética , Serina Endopeptidases/genética , Estudo de Associação Genômica Ampla , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Degeneração Macular/genética , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Fator H do Complemento/genética , Genótipo
17.
J Stroke Cerebrovasc Dis ; 32(8): 107225, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37348440

RESUMO

Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL) is an extremely rare hereditary cerebral small vessel disease caused by homozygous or compound heterozygous mutations in the gene coding for high-temperature requirement A serine peptidase 1 (HtrA1). Given the rare nature of the disease, delays in diagnosis and misdiagnosis are not uncommon. In this article, we reported the first case of CARASIL from Saudi Arabia with a novel homozygous variant c.1156C>T in exon 7 of the HTRA1 gene. The patient was initially misdiagnosed with primary progressive multiple sclerosis and treated with rituximab. CARASIL should be considered in the differential diagnosis of patients with suspected atypical progressive multiple sclerosis who have additional signs such as premature scalp alopecia and low back pain with diffuse white matter lesions in brain MRI. Genetic testing is important to confirm the diagnosis.


Assuntos
Doenças Arteriais Cerebrais , Transtornos Cerebrovasculares , Leucoencefalopatias , Esclerose Múltipla , Humanos , Infarto Cerebral/diagnóstico por imagem , Infarto Cerebral/genética , Infarto Cerebral/patologia , Leucoencefalopatias/diagnóstico por imagem , Leucoencefalopatias/genética , Transtornos Cerebrovasculares/genética , Alopecia/diagnóstico , Alopecia/genética , Mutação , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética
18.
Proc Natl Acad Sci U S A ; 120(19): e2215005120, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37126685

RESUMO

Genome-wide association studies (GWAS) have identified genetic risk loci for age-related macular degeneration (AMD) on the chromosome 10q26 (Chr10) locus and are tightly linked: the A69S (G>T) rs10490924 single-nucleotide variant (SNV) and the AATAA-rich insertion-deletion (indel, del443/ins54), which are found in the age-related maculopathy susceptibility 2 (ARMS2) gene, and the G512A (G>A) rs11200638 SNV, which is found in the high-temperature requirement A serine peptidase 1 (HTRA1) promoter. The fourth variant is Y402H complement factor H (CFH), which directs CFH signaling. CRISPR manipulation of retinal pigment epithelium (RPE) cells may allow one to isolate the effects of the individual SNV and thus identify SNV-specific effects on cell phenotype. Clustered regularly interspaced short palindromic repeats (CRISPR) editing demonstrates that rs10490924 raised oxidative stress in induced pluripotent stem cell (iPSC)-derived retinal cells from patients with AMD. Sodium phenylbutyrate preferentially reverses the cell death caused by ARMS2 rs10490924 but not HTRA1 rs11200638. This study serves as a proof of concept for the use of patient-specific iPSCs for functional annotation of tightly linked GWAS to study the etiology of a late-onset disease phenotype. More importantly, we demonstrate that antioxidant administration may be useful for reducing reactive oxidative stress in AMD, a prevalent late-onset neurodegenerative disorder.


Assuntos
Células-Tronco Pluripotentes Induzidas , Degeneração Macular , Humanos , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteínas/metabolismo , Serina Endopeptidases/genética , Estudo de Associação Genômica Ampla , Degeneração Macular/genética , Estresse Oxidativo , Polimorfismo de Nucleotídeo Único , Fator H do Complemento/genética , Genótipo
20.
In Vitro Cell Dev Biol Anim ; 59(3): 166-178, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37017808

RESUMO

The present study identified a novel upstream long chain non-coding (lncRNA) NEAT1/miR-141-3p/HTRA1 axis that regulated the activation of NLR family pyrin domain containing 3 (NLRP3) inflammasome to modulate endometriosis (EM) development. Specifically, clinical data suggested that the expression of NLRP3 and apoptosis-associated speck-like protein containing CARD (ASC), the cleavage of caspase-1 and gasdermin D (GSDMD), and the production of inflammatory cytokines (interleukin (IL)-1ß, IL-6, tumor necrosis factor (TNF)-α, and IL-18) were all significantly increased in the ectopic endometrium (EE) tissues, compared to the normal endometrium (NE) tissues. Then, through analyzing the datasets from GEO database (GSE2339, GSE58178, and GSE7305) using the GEO2R bioinformatics tools, we verified that HtrA Serine Peptidase 1 (HTRA1) was especially enriched in the EE tissues compared to the NE tissues. To further confirm the biological functions of HTRA1, HTRA1 was overexpressed or downregulated in primary human endometrial stromal cells (hESCs) isolated from NE tissues or EE tissues, respectively. The results showed that upregulation of HTRA1 activated NLRP3 inflammasome-mediated pyroptotic cell death and cellular inflammation in NE-derived hESCs, whereas silencing of HTRA1 played an opposite role in EE-derived hESCs. In addition, the lncRNA NEAT1/miR-141-3p axis was screened as the upstream regulator of HTRA1. Mechanistically, lncRNA NEAT1 sponged miR-141-3p to positively regulate HTRA1 in a competing endogenous RNA (ceRNA) mechanisms-dependent manner. The recovery experiments in hESCs from NE and EE tissues confirmed that lncRNA NEAT1 overexpression promoted NLRP3 inflammasome-mediated pyroptotic cell death through regulating the miR-141-3p/HTRA1 axis. Taken together, this study firstly uncovered the underlying mechanisms by which a novel lncRNA NEAT1/miR-141-3p/HTRA1-NLRP3 pathway contributed to the development of EM, which provided novel diagnostic and therapeutic biomarkers for this disease.


Assuntos
Endometriose , MicroRNAs , RNA Longo não Codificante , Animais , Feminino , Humanos , Endometriose/genética , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Inflamassomos/genética , Inflamassomos/metabolismo , Inflamação/genética , Inflamação/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...