Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 340
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38892028

RESUMO

Amino acid permeases (AAPs) transporters are crucial for the long-distance transport of amino acids in plants, from source to sink. While Arabidopsis and rice have been extensively studied, research on foxtail millet is limited. This study identified two transcripts of SiAAP9, both of which were induced by NO3- and showed similar expression patterns. The overexpression of SiAAP9L and SiAAP9S in Arabidopsis inhibited plant growth and seed size, although SiAAP9 was found to transport more amino acids into seeds. Furthermore, SiAAP9-OX transgenic Arabidopsis showed increased tolerance to high concentrations of glutamate (Glu) and histidine (His). The high overexpression level of SiAAP9 suggested its protein was not only located on the plasma membrane but potentially on other organelles, as well. Interestingly, sequence deletion reduced SiAAP9's sensitivity to Brefeldin A (BFA), and SiAAP9 had ectopic localization on the endoplasmic reticulum (ER). Protoplast amino acid uptake experiments indicated that SiAAP9 enhanced Glu transport into foxtail millet cells. Overall, the two transcripts of SiAAP9 have similar functions, but SiAAP9L shows a higher colocalization with BFA compartments compared to SiAAP9S. Our research identifies a potential candidate gene for enhancing the nutritional quality of foxtail millet through breeding.


Assuntos
Arabidopsis , Retículo Endoplasmático , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Retículo Endoplasmático/metabolismo , Sementes/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Setaria (Planta)/crescimento & desenvolvimento , Sistemas de Transporte de Aminoácidos/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Transporte Proteico , Brefeldina A/farmacologia , Aminoácidos/metabolismo , Ácido Glutâmico/metabolismo
2.
Theor Appl Genet ; 137(7): 168, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38909331

RESUMO

KEY MESSAGE: Key message Three major QTLs for resistance to downy mildew were located within an 0.78 Mb interval on chromosome 8 in foxtail millet. Downy mildew, a disease caused by Sclerospora graminicola, is a serious problem that jeopardizes the yield and quality of foxtail millet. Breeding resistant varieties represents one of the most economical and effective solutions, yet there is a lack of molecular markers related to the resistance. Here, a mapping population comprising of 158 F6:7 recombinant inbred lines (RILs) was constructed from the crossing of G1 and JG21. Based on the specific locus amplified fragment sequencing results, a high-density linkage map of foxtail millet with 1031 bin markers, spanning 1041.66 cM was constructed. Based on the high-density linkage map and the phenotype data in four environments, a total of nine quantitative trait loci (QTL) associated with resistance to downy mildew were identified. Further BSR-seq confirmed the genomic regions containing the potential candidate genes related to downy mildew resistance. Interestingly, a 0.78-Mb interval between C8M257 and C8M268 on chromosome 8 was highlighted because of its presence in three major QTL, qDM8_1, qDM8_2, and qDM8_4, which contains 10 NBS-LRR genes. Haplotype analysis in RILs and natural population suggest that 9 SNP loci on Seita8G.199800, Seita8G.195900, Seita8G.198300, and Seita.8G199300 genes were significantly correlated with disease resistance. Furthermore, we found that those genes were taxon-specific by collinearity analysis of pearl millet and foxtail millet genomes. The identification of these new resistance QTL and the prediction of resistance genes against downy mildew will be useful in breeding for resistant varieties and the study of genetic mechanisms of downy mildew disease resistance in foxtail millet.


Assuntos
Mapeamento Cromossômico , Resistência à Doença , Ligação Genética , Fenótipo , Doenças das Plantas , Locos de Características Quantitativas , Setaria (Planta) , Resistência à Doença/genética , Mapeamento Cromossômico/métodos , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Setaria (Planta)/genética , Setaria (Planta)/microbiologia , Marcadores Genéticos , Polimorfismo de Nucleotídeo Único , Melhoramento Vegetal , Cromossomos de Plantas/genética
3.
Planta ; 260(1): 22, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847958

RESUMO

MAIN CONCLUSION: The SiMBR genes in foxtail millet were identified and studied. Heterologous expression of SiMBR2 in Arabidopsis can improve plant tolerance to drought stress by decreasing the level of reactive oxygen species. Foxtail millet (Setaria italica L.), a C4 crop recognized for its exceptional resistance to drought stress, presents an opportunity to improve the genetic resilience of other crops by examining its unique stress response genes and understanding the underlying molecular mechanisms of drought tolerance. In our previous study, we identified several genes linked to drought stress by transcriptome analysis, including SiMBR2 (Seita.7G226600), a member of the MED25 BINDING RING-H2 PROTEIN (MBR) gene family, which is related to protein ubiquitination. Here, we have identified ten SiMBR genes in foxtail millet and conducted analyses of their structural characteristics, chromosomal locations, cis-acting regulatory elements within their promoters, and predicted transcription patterns specific to various tissues or developmental stages using bioinformatic approaches. Further investigation of the stress response of SiMBR2 revealed that its transcription is induced by treatments with salicylic acid and gibberellic acid, as well as by salt and osmotic stresses, while exposure to high or low temperatures led to a decrease in its transcription levels. Heterologous expression of SiMBR2 in Arabidopsis thaliana enhanced the plant's tolerance to water deficit by reducing the accumulation of reactive oxygen species under drought stress. In summary, this study provides support for exploring the molecular mechanisms associated with drought resistance of SiMBR genes in foxtail millet and contributing to genetic improvement and molecular breeding in other crops.


Assuntos
Arabidopsis , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Setaria (Planta) , Estresse Fisiológico , Setaria (Planta)/genética , Setaria (Planta)/fisiologia , Setaria (Planta)/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/fisiologia , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Secas , Plantas Geneticamente Modificadas , Família Multigênica , Regiões Promotoras Genéticas/genética , Espécies Reativas de Oxigênio/metabolismo
4.
Planta ; 260(1): 23, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850310

RESUMO

MAIN CONCLUSION: In this study, we assembled the first complete mitochondrial genome of Setaria italica and confirmed the multi-branched architecture. The foxtail millet (Setaria italica) holds significant agricultural importance, particularly in arid and semi-arid regions. It plays a pivotal role in diversifying dietary patterns and shaping planting strategies. Although the chloroplast genome of S. italica has been elucidated in recent studies, the complete mitochondrial genome remains largely unexplored. In this study, we employed PacBio HiFi sequencing platforms to sequence and assemble the complete mitochondrial genome. The mitochondrial genome spans a total length of 446,614 base pairs and harbors a comprehensive set of genetic elements, including 33 unique protein-coding genes (PCGs), encompassing 24 unique mitochondrial core genes and 9 variable genes, along with 20 transfer RNA (tRNA) genes and 3 ribosomal RNA (rRNA) genes. Our analysis of mitochondrial PCGs revealed a pronounced codon usage preference. For instance, the termination codon exhibits a marked preference for UAA, while alanine (Ala) exhibits a preference for GCU, and glutamine (Gln) favors CAA. Notably, the maximum Relative Synonymous Codon Usage (RSCU) values for cysteine (Cys) and phenylalanine (Phe) are both below 1.2, indicating a lack of strong codon usage preference for these amino acids. Phylogenetic analyses consistently place S. italica in close evolutionary proximity to Chrysopogon zizanioides, relative to other Panicoideae plants. Collinearity analysis showed that a total of 39 fragments were identified to display homology with both the mitochondrial and chloroplast genomes. A total of 417 potential RNA-editing sites were discovered across the 33 mitochondrial PCGs. Notably, all these editing events involved the conversion of cytosine (C) to uracil (U). Through the employment of PCR validation coupled with Sanger sequencing for the anticipated editing sites of these codons, RNA-editing events were conclusively identified at two specific loci: nad4L-2 and atp6-1030. The results of this study provide a pivotal foundation for advanced genomic breeding research in foxtail millet. Furthermore, they impart essential insights that will be instrumental for forthcoming investigations into the evolutionary and molecular dynamics of Panicoideae species.


Assuntos
Genoma Mitocondrial , Setaria (Planta) , Setaria (Planta)/genética , Genoma Mitocondrial/genética , Filogenia , RNA de Transferência/genética , Genoma de Planta/genética , Uso do Códon , RNA Ribossômico/genética , Códon/genética
5.
Gene ; 921: 148499, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38718970

RESUMO

Cell wall invertase (CIN) is a vital member of plant invertase (INV) and plays a key role in the breakdown of sucrose. This enzyme facilitates the hydrolysis of sucrose into glucose and fructose, which is crucial for various aspects of plant growth and development. However, the function of CIN genes in foxtail millet (Setaria italica) is less studied. In this research, we used the blast-p of NCBI and TBtools for bidirectional comparison, and a total of 13 CIN genes (named SiCINs) were identified from foxtail millet by using Arabidopsis and rice CIN sequences as reference sequences. The phylogenetic tree analysis revealed that the CIN genes can be categorized into three subfamilies: group 1, group 2, and group 3. Furthermore, upon conducting chromosomal localization analysis, it was observed that the 13 SiCINs were distributed unevenly across five chromosomes. Cis-acting elements of SiCIN genes can be classified into three categories: plant growth and development, stress response, and hormone response. The largest number of cis-acting elements were those related to light response (G-box) and the cis-acting elements related to seed-specific regulation (RY-element). qRT-PCR analysis further confirmed that the expression of SiCIN7 and SiCIN8 in the grain was higher than that in any other tissues. The overexpression of SiCIN7 in Arabidopsis improved the grain size and thousand-grain weight, suggesting that SiCIN7 could positively regulate grain development. Our findings will help to further understand the grain-filling mechanism of SiCIN and elucidate the biological mechanism underlying the grain development of SiCIN.


Assuntos
Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Setaria (Planta) , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Setaria (Planta)/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Família Multigênica , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismo , Cromossomos de Plantas/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Genoma de Planta , Mapeamento Cromossômico
6.
J Agric Food Chem ; 72(19): 10814-10827, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38710027

RESUMO

Foxtail millet is an important cereal crop that is relatively sensitive to salt stress, with its yield significantly affected by such stress. Alternative splicing (AS) widely affects plant growth, development, and adaptability to stressful environments. Through RNA-seq analysis of foxtail millet under different salt treatment periods, 2078 AS events were identified, and analyses were conducted on differential gene (DEG), differential alternative splicing gene (DASG), and overlapping gene. To investigate the regulatory mechanism of AS in response to salt stress in foxtail millet, the foxtail millet AS genes SiCYP19, with two AS variants (SiCYP19-a and SiCYP19-b), were identified and cloned. Yeast overexpression experiments indicated that SiCYP19 may be linked to the response to salt stress. Subsequently, we conducted overexpression experiments of both alternative splicing variants in foxtail millet roots to validate them experimentally. The results showed that, under salt stress, both SiCYP19-a and SiCYP19-b jointly regulated the salt tolerance of foxtail millet. Specifically, overexpression of SiCYP19-b significantly increased the proline content and reduced the accumulation of reactive oxygen species (ROS) in foxtail millet, compared to that in SiCYP19-a. This shows that SiCYP19-b plays an important role in increasing the content of proline and promoting the clearance of ROS, thus improving the salt tolerance of foxtail millet.


Assuntos
Processamento Alternativo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Tolerância ao Sal , Setaria (Planta) , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Setaria (Planta)/efeitos dos fármacos , Tolerância ao Sal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
7.
Plant Mol Biol ; 114(3): 37, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602592

RESUMO

Reactive oxygen species (ROS) is a chemically reactive chemical substance containing oxygen and a natural by-product of normal oxygen metabolism. Excessive ROS affect the growth process of crops, which will lead to the decrease of yield. Nitrogen, as a critical nutrient element in plants and plays a vital role in plant growth and crop production. Nitrate is the primary nitrogen source available to plants in agricultural soil and various natural environments. However, the molecular mechanism of ROS-nitrate crosstalk is still unclear. In this study, we used the foxtail millet (Setaria italica L.) as the material to figure it out. Here, we show that excessive NaCl inhibits nitrate-promoted plant growth and nitrogen use efficiency (NUE). NaCl induces ROS accumulation in roots, and ROS inhibits nitrate-induced gene expression in a short time. Surprisingly, low concentration ROS slight promotes and high concentration of ROS inhibits foxtail millet growth under long-term H2O2 treatment. These results may open a new perspective for further exploration of ROS-nitrate signaling pathway in plants.


Assuntos
Nitratos , Setaria (Planta) , Espécies Reativas de Oxigênio , Nitratos/farmacologia , Setaria (Planta)/genética , Peróxido de Hidrogênio , Cloreto de Sódio , Oxigênio , Transdução de Sinais , Perfilação da Expressão Gênica , Nitrogênio
8.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612713

RESUMO

Leaf senescence, a pivotal process in plants, directly influences both crop yield and nutritional quality. Foxtail millet (Setaria italica) is a C4 model crop renowned for its exceptional nutritional value and stress tolerance characteristics. However, there is a lack of research on the identification of senescence-associated genes (SAGs) and the underlying molecular regulatory mechanisms governing this process. In this study, a dark-induced senescence (DIS) experimental system was applied to investigate the extensive physiological and transcriptomic changes in two foxtail millet varieties with different degrees of leaf senescence. The physiological and biochemical indices revealed that the light senescence (LS) variety exhibited a delayed senescence phenotype, whereas the severe senescence (SS) variety exhibited an accelerated senescence phenotype. The most evident differences in gene expression profiles between these two varieties during DIS included photosynthesis, chlorophyll, and lipid metabolism. Comparative transcriptome analysis further revealed a significant up-regulation of genes related to polysaccharide and calcium ion binding, nitrogen utilization, defense response, and malate metabolism in LS. In contrast, the expression of genes associated with redox homeostasis, carbohydrate metabolism, lipid homeostasis, and hormone signaling was significantly altered in SS. Through WGCNA and RT-qPCR analyses, we identified three SAGs that exhibit potential negative regulation towards dark-induced leaf senescence in foxtail millet. This study establishes the foundation for a further comprehensive examination of the regulatory network governing leaf senescence and provides potential genetic resources for manipulating senescence in foxtail millet.


Assuntos
Setaria (Planta) , Transcriptoma , Setaria (Planta)/genética , Senescência Vegetal , Perfilação da Expressão Gênica , Clorofila
9.
Genes (Basel) ; 15(4)2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38674410

RESUMO

WUSCHEL-related homeobox (WOX) transcription factors are unique to plants and play pivotal roles in plant development and stress responses. In this investigation, we acquired protein sequences of foxtail millet WOX gene family members through homologous sequence alignment and a hidden Markov model (HMM) search. Utilizing conserved domain prediction, we identified 13 foxtail millet WOX genes, which were classified into ancient, intermediate, and modern clades. Multiple sequence alignment results revealed that all WOX proteins possess a homeodomain (HD). The SiWOX genes, clustered together in the phylogenetic tree, exhibited analogous protein spatial structures, gene structures, and conserved motifs. The foxtail millet WOX genes are distributed across 7 chromosomes, featuring 3 pairs of tandem repeats: SiWOX1 and SiWOX13, SiWOX4 and SiWOX5, and SiWOX11 and SiWOX12. Collinearity analysis demonstrated that WOX genes in foxtail millet exhibit the highest collinearity with green foxtail, followed by maize. The SiWOX genes primarily harbor two categories of cis-acting regulatory elements: Stress response and plant hormone response. Notably, prominent hormones triggering responses include methyl jasmonate, abscisic acid, gibberellin, auxin, and salicylic acid. Analysis of SiWOX expression patterns and hormone responses unveiled potential functional diversity among different SiWOX genes in foxtail millet. These findings lay a solid foundation for further elucidating the functions and evolution of SiWOX genes.


Assuntos
Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Setaria (Planta) , Fatores de Transcrição , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Família Multigênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Estresse Fisiológico/genética
10.
J Agric Food Chem ; 72(18): 10439-10450, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38676695

RESUMO

Trypsin inhibitors derived from plants have various pharmacological activities and promising clinical applications. In our previous study, a Bowman-Birk-type major trypsin inhibitor from foxtail millet bran (FMB-BBTI) was extracted with antiatherosclerotic activity. Currently, we found that FMB-BBTI possesses a prominent anticolorectal cancer (anti-CRC) activity. Further, a recombinant FMB-BBTI (rFMB-BBTI) was successfully expressed in a soluble manner in host strain Escherichia coli. BL21 (DE3) was induced by isopropyl-ß-d-thiogalactoside (0.1 mM) at 37 °C for 3.5 h by the pET28a vector system. Fortunately, a purity greater than 93% of rFMB-BBTI with anti-CRC activity was purified by nickel-nitrilotriacetic acid affinity chromatography. Subsequently, we found that rFMB-BBTI displays a strikingly anti-CRC effect, characterized by the inhibition of cell proliferation and clone formation ability, cell cycle arrest at the G2/M phase, and induction of cell apoptosis. It is interesting that the rFMB-BBTI treatment had no obvious effect on normal colorectal cells in the same concentration range. Importantly, the anti-CRC activity of rFMB-BBTI was further confirmed in the xenografted nude mice model. Taken together, our study highlights the anti-CRC activity of rFMB-BBTI in vitro and in vivo, uncovering the clinical potential of rFMB-BBTI as a targeted agent for CRC in the future.


Assuntos
Neoplasias Colorretais , Extratos Vegetais , Proteínas de Plantas , Setaria (Planta) , Inibidores da Tripsina , Animais , Humanos , Masculino , Camundongos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Expressão Gênica , Camundongos Endogâmicos BALB C , Camundongos Nus , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Setaria (Planta)/genética , Setaria (Planta)/química , Inibidores da Tripsina/farmacologia , Inibidores da Tripsina/isolamento & purificação , Inibidores da Tripsina/química
11.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674049

RESUMO

DNA methylation is a highly conserved epigenetic modification involved in many biological processes, including growth and development, stress response, and secondary metabolism. DNA demethylase (DNA-deMTase) genes have been identified in some plant species; however, there are no reports on the identification and analysis of DNA-deMTase genes in Foxtail millet (Setaria italica L.). In this study, seven DNA-deMTases were identified in S. italica. These DNA-deMTase genes were divided into four subfamilies (DML5, DML4, DML3, and ROS1) by phylogenetic and gene structure analysis. Further analysis shows that the physical and chemical properties of these DNA-deMTases proteins are similar, contain the typical conserved domains of ENCO3c and are located in the nucleus. Furthermore, multiple cis-acting elements were observed in DNA-deMTases, including light responsiveness, phytohormone responsiveness, stress responsiveness, and elements related to plant growth and development. The DNA-deMTase genes are expressed in all tissues detected with certain tissue specificity. Then, we investigated the abundance of DNA-deMTase transcripts under abiotic stresses (cold, drought, salt, ABA, and MeJA). The results showed that different genes of DNA-deMTases were involved in the regulation of different abiotic stresses. In total, our findings will provide a basis for the roles of DNA-deMTase in response to abiotic stress.


Assuntos
Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Setaria (Planta) , Estresse Fisiológico , Setaria (Planta)/genética , Setaria (Planta)/enzimologia , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Família Multigênica , Metilação de DNA
12.
Theor Appl Genet ; 137(4): 84, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493242

RESUMO

KEY MESSAGE: Agronomic traits were evaluated in 1250 foxtail millet accessions, and a crucial gene SiTGW6 governing grain yield was identified. Elite haplotypes and dCAPS markers developed for SiTGW6 facilitate molecular breeding. A comprehensive evaluation of phenotypic characteristics and genetic diversity in germplasm resources are important for gene discovery and breeding improvements. In this study, we conducted a comprehensive evaluation of 1250 foxtail millet varieties, assessing seven grain yield-related traits and fourteen common agronomic traits over two years. Principal component analysis, correlation analysis, and cluster analysis revealed a strong positive correlation between 1000-grain weight and grain width with grain yield, emphasizing their importance in foxtail millet breeding. Additionally, we found that panicle weight positively correlated with 1000-grain weight but negatively correlated with branch and tiller numbers, indicating selection factors during domestication and breeding. Using this information, we identified 27 germplasm resources suitable for high-yield foxtail millet breeding. Furthermore, through an integration of haplotype variations and phenotype association analysis, we pinpointed a crucial gene, SiTGW6, responsible for governing grain yield in foxtail millet. SiTGW6 encodes an IAA-glucose hydrolase, primarily localized in the cytoplasm and predominantly expressed in flowering panicles. Employing RNAseq analysis, we identified 1439 differentially expressed genes across various SiTGW6 haplotypes. Functional enrichment analysis indicating that SiTGW6 regulates grain yield through the orchestration of auxin and glucan metabolism, as well as plant hormone signaling pathways. Additionally, we have identified elite haplotypes and developed dCAPS markers for SiTGW6, providing valuable technical tools to facilitate molecular breeding efforts in foxtail millet.


Assuntos
Setaria (Planta) , Setaria (Planta)/genética , Melhoramento Vegetal , Fenótipo , Grão Comestível/genética , Variação Genética
13.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38542145

RESUMO

Setaria italica is an important crop in China that plays a vital role in the Chinese dietary structure. In the last several decades, high temperature has become the most severe climate issue in the world, which causes great harm to the yield and quality formation of millet. In this study, two main cultivated varieties (ZG2 and AI88) were used to explore the photosynthesis and yield index of the whole plant under heat stress. Results implied that photosynthesis was not inhibited during the heat stress, and that the imbalance in sugar transport between different tissues may be the main factor that affects yield formation. In addition, the expression levels of seven SiSUT and twenty-four SiSWEET members were explored. Sugar transporters were heavily affected during the heat stress. The expression of SiSWEET13a was inhibited by heat stress in the stems, which may play a vital role in sugar transport between different tissues. These results provide new insights into the yield formation of crops under heat stress, which will provide guidance to crop breeding and cultivation.


Assuntos
Setaria (Planta) , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Melhoramento Vegetal , Perfilação da Expressão Gênica , Resposta ao Choque Térmico/genética , Açúcares/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
14.
BMC Plant Biol ; 24(1): 164, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431546

RESUMO

BACKGROUND: ABA Insensitive 5 (ABI5) is a basic leucine zipper transcription factor that crucially influences plant growth, development, and stress response. However, there is minimal research on the ABI5 family in foxtail millet. RESULTS: In this study, 16 ABI5 genes were identified in foxtail millet, and their sequence composition, gene structures, cis-acting elements, chromosome positions, and gene replication events were analyzed. To more thoroughly evaluate the developmental mechanisms of the SiABI5 family during evolution, we selected three dicotyledons (S. lycopersicum, A. thaliana, F. tataricum) and three (Z. mays, O. sativa, S. bicolor) specific representative monocotyledons associated with foxtail millet for comparative homology mapping. The results showed that foxtail millet ABI5 genes had the best homology with maize. A promoter sequence analysis showed that the SiABI5s contain numerous cis-acting elements related to hormone and stress responses, indicating that the regulation of SiABI5 expression was complex. The expression responses of 16 genes in different tissues, seed germination, and ear development were analyzed. A total of six representative genes were targeted from five subfamilies to characterize their gene expression responses to four different abiotic stresses. Overexpression of SiABI5.12 confers tolerance to osmotic stress in transgenic Arabidopsis thaliana, which demonstrated the function of SiABI5 responded to abiotic stress. CONCLUSIONS: In summary, our research results comprehensively characterized the SiABI5 family and can provide a valuable reference for demonstrating the role of SiABI5s in regulating abiotic stress responses in foxtail millet.


Assuntos
Setaria (Planta) , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Estresse Fisiológico/genética , Regiões Promotoras Genéticas/genética , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica
15.
New Phytol ; 241(6): 2495-2505, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38323734

RESUMO

Photosynthetic efficiency is reduced by the dual role of Rubisco, which acts either as a carboxylase or as an oxygenase, the latter leading to photorespiration. C4 photosynthesis evolved as a carbon-concentrating mechanism to reduce photorespiration. To engineer C4 into a C3 plant, it is essential to understand how C4 genes, such as phosphoenolpyruvate carboxylase (PEPC1), are regulated to be expressed at high levels and in a cell-specific manner. Yeast one-hybrid screening was used to show that OsPRI1, a rice bHLH transcription factor involved in iron homeostasis, binds to the Setaria viridis PEPC1 promoter. This promoter drives mesophyll-specific gene expression in rice. The role of OsPRI1 in planta was characterized using a rice line harbouring SvPEPC1pro ::GUS. We show that OsPRI1 activates the S. viridis PEPC1 promoter by binding to an N-box in the proximal promoter, and that GUS activity is highly reduced in SvPEPC1pro ::GUS lines when OsPRI1 is mutated. Cross-species comparisons showed that the SvPRI1 homolog binds to the SvPEPC1 promoter but the maize ZmPRI1 does not bind to the ZmPEPC1 promoter. Our results suggest that elements of the iron homeostasis pathway were co-opted to regulate PEPC1 gene expression during the evolution of some but not all C4 species.


Assuntos
Oryza , Setaria (Planta) , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Oryza/genética , Oryza/metabolismo , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Regiões Promotoras Genéticas/genética , Fotossíntese/genética , Ferro
17.
Theor Appl Genet ; 137(1): 18, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38206376

RESUMO

KEY MESSAGE: Eleven QTLs for agronomic traits were identified by RTM- and MLM-GWAS, putative candidate genes were predicted and two markers for grain weight were developed and validated. Foxtail millet (Setaria italica), the second most cultivated millet crop after pearl millet, is an important grain crop in arid regions. Seven agronomic traits of 408 diverse foxtail millet accessions from 15 provinces in China were evaluated in three environments. They were clustered into two divergent groups based on genotypic data using ADMIXTURE, which was highly consistent with their geographical distribution. Two models for genome-wide association studies (GWAS), namely restricted two-stage multi-locus multi-allele (RTM)-GWAS and mixed linear model (MLM)-GWAS, were used to dissect the genetic architecture of the agronomic traits based on 13,723 SNPs. Eleven quantitative trait loci (QTLs) for seven traits were identified using two models (RTM- and MLM-GWAS). Among them, five were considered stable QTLs that were identified in at least two environments using MLM-GWAS. One putative candidate gene (SETIT_006045mg, Chr4: 744,701-746,852) that can enhance grain weight per panicle was identified based on homologous gene comparison and gene expression analysis and was validated by haplotype analysis of 330 accessions with high-depth (10×) resequencing data (unpublished). In addition, homologous gene comparison and haplotype analysis identified one putative foxtail millet ortholog (SETIT_032906mg, Chr2: 5,020,600-5,029,771) with rice affecting the target traits. Two markers (cGWP6045 and kTGW2906) were developed and validated and can be used for marker-assisted selection of foxtail millet with high grain weight. The results provide a fundamental resource for foxtail millet genetic research and breeding and demonstrate the power of integrating RTM- and MLM-GWAS approaches as a complementary strategy for investigating complex traits in foxtail millet.


Assuntos
Setaria (Planta) , Setaria (Planta)/genética , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Melhoramento Vegetal , Fenótipo , Grão Comestível
18.
Theor Appl Genet ; 137(1): 22, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227064

RESUMO

KEY MESSAGE: The transcriptome is beneficial for dissecting the mechanism of millet in response to low potassium stress and SiSnRK2.6 was identified as a potential target for improving low potassium stress tolerance. Foxtail millet (Setaria italica L.), which originated in China, has high nutrient utilization character. Nevertheless, the molecular mechanism of its tolerance to low potassium stress is largely unclear. In this research, the low potassium tolerant variety "Yugu28" was screened out by low potassium stress treatment, and the transcriptome of "Yugu28" under low potassium stress was comprehensively analyzed. A total of 4254 differentially expressed genes (DEGs) were identified, including 1618 up-regulated and 2636 down-regulated genes, respectively. In addition, there were 302 transcription factor (TF) genes in the DEGs and MYB TFs accounted for the highest proportion, which was 14.9%. After functional analysis of all DEGs, a total of 7 genes involved in potassium transport and potassium ion channels and 50 genes corresponding to hormones were screened. The expression levels of randomly selected 17 DEGs were verified by qRT-PCR and the results coincided well with the RNA-seq analysis, indicating the reliability of our transcriptome data. Moreover, one of the ABA signaling pathway genes, SiSnRK2.6, was identified and selected for further functional verification. Compared with the wild type, transgenic rice with ecotopic expression of SiSnRK2.6 showed remarkably increased root length and root number, indicating that overexpression of SiSnRK2.6 can enhance the resistance of transgenic plants to low potassium stress.


Assuntos
Setaria (Planta) , Setaria (Planta)/genética , Reprodutibilidade dos Testes , Perfilação da Expressão Gênica , Transcriptoma , Potássio
19.
Theor Appl Genet ; 137(2): 39, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294546

RESUMO

KEY MESSAGE: Two major genetic loci, qTN5.1 and qAB9.1, were identified and finely mapped to the 255 Kb region with one potential candidate gene for tiller number and the 521 Kb region with eight candidate genes for axillary branch number, respectively. Vegetative branching including tillering and axillary branching are vital traits affecting both the plant architecture and the biomass in cereal crops. However, the mechanism underlying the formation of vegetative branching in foxtail millet is largely unknown. Here, a foxtail millet cultivar and its bushy wild relative Setaria viridis accession were used to construct segregating populations to identify candidate genes regulating tiller number and axillary branch number. Transcriptome analysis using vegetative branching bud samples of parental accessions was performed, and key differentially expressed genes and pathways regulating vegetative branching were pointed out. Bulk segregant analysis on their F2:3 segregating population was carried out, and a major QTL for tiller number (qTN5.1) and two major QTLs for axillary branch number (qAB2.1 and qAB9.1) were detected. Fine-mapping strategy was further performed on F2:4 segregate population, and Seita.5G356600 encoding ß-glucosidase 11 was identified as the promising candidate gene for qTN5.1, and eight genes, especially Seita.9G125300 and Seita.9G125400 annotated as B-S glucosidase 44, were finally identified as candidate genes for regulating axillary branching. Findings in this study will help to elucidate the genetic basis of the vegetative branching formation of foxtail millet and lay a foundation for breeding foxtail millet varieties with ideal vegetative branching numbers.


Assuntos
Setaria (Planta) , Setaria (Planta)/genética , Melhoramento Vegetal , Perfilação da Expressão Gênica , Transcriptoma , Locos de Características Quantitativas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...