Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Oral Biosci ; 65(1): 111-118, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36640838

RESUMO

OBJECTIVES: Glycocalyx lines the vascular intraluminal space that regulates fluid movement between the intra- and extra-vascular compartments. The depletion of glycocalyx (GCX) is associated with leukocyte accumulation, possibly causing the endothelial cells to become hyperpermeable in various organs, including oral tissues. Whether neutrophils or macrophages are responsible for developing interstitial edema remains controversial. We explored the pathophysiological mechanism of interstitial edema by examining the role of reactive neutrophils and macrophages and their interactions with GCX. METHODS: An anti-MHC class I antibody was administered intravenously to male BALB/c mice to induce pulmonary edema. Pulmonary edema was evaluated by measuring the lung wet-to-dry weight ratio. Changes in the GCX were evaluated by electron microscopy and measurements of the serum level of soluble syndecan-1. Heparin sulfate was administered to examine its protective effect on the GCX. The macrophages were depleted using clodronate to examine their role in developing edema. RESULTS: The GCX degradation induced by the anti-MHC class I antibody was accompanied by increased serum syndecan-1 and heparan sulfate levels. Macrophage depletion inhibited the development of pulmonary edema, and the administration of supplemental heparin suppressed the edema. CONCLUSIONS: We demonstrated that the degradation of the GCX induced by the anti-MHC class I antibody was suppressed by macrophage depletion. These results suggest that macrophages may play a key role in interstitial edema. Heparin inhibited both the degradation of the GCX and interstitial edema. This study's results may be extrapolated to develop an interventional strategy for inhibiting interstitial edema in various organs.


Assuntos
Células Endoteliais , Edema Pulmonar , Camundongos , Animais , Masculino , Células Endoteliais/metabolismo , Sindecana-1/metabolismo , Sindecana-1/farmacologia , Glicocálix/metabolismo , Edema Pulmonar/metabolismo , Heparina/metabolismo , Heparina/farmacologia
2.
Nutrients ; 14(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36297099

RESUMO

(1) Background: The disease-modifying mechanisms of high-dose intravenous vitamin C (HDIVC) in sepsis induced acute respiratory distress syndrome (ARDS) is unclear. (2) Methods: We performed a post hoc study of plasma biomarkers from subjects enrolled in the randomized placebo-controlled trial CITRIS-ALI. We explored the effects of HDIVC on cell-free DNA (cfDNA) and syndecan-1, surrogates for neutrophil extracellular trap (NET) formation and degradation of the endothelial glycocalyx, respectively. (3) Results: In 167 study subjects, baseline cfDNA levels in HDIVC (84 subjects) and placebo (83 subjects) were 2.18 ng/µL (SD 4.20 ng/µL) and 2.65 ng/µL (SD 3.87 ng/µL), respectively, p = 0.45. At 48-h, the cfDNA reduction was 1.02 ng/µL greater in HDIVC than placebo, p = 0.05. Mean baseline syndecan-1 levels in HDIVC and placebo were 9.49 ng/mL (SD 5.57 ng/mL) and 10.83 ng/mL (SD 5.95 ng/mL), respectively, p = 0.14. At 48 h, placebo subjects exhibited a 1.53 ng/mL (95% CI, 0.96 to 2.11) increase in syndecan-1 vs. 0.75 ng/mL (95% CI, 0.21 to 1.29, p = 0.05), in HDIVC subjects. (4) Conclusions: HDIVC infusion attenuated cell-free DNA and syndecan-1, biomarkers associated with sepsis-induced ARDS. Improvement of these biomarkers suggests amelioration of NETosis and shedding of the vascular endothelial glycocalyx, respectively.


Assuntos
Ácidos Nucleicos Livres , Armadilhas Extracelulares , Síndrome do Desconforto Respiratório , Sepse , Humanos , Glicocálix , Sindecana-1/metabolismo , Sindecana-1/farmacologia , Ácido Ascórbico/uso terapêutico , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/etiologia , Vitaminas/uso terapêutico , Biomarcadores
3.
J Surg Res ; 251: 287-295, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32199337

RESUMO

BACKGROUND: The endothelial glycocalyx (EG) is involved in critical regulatory mechanisms that maintain endothelial vascular integrity. We hypothesized that prolonged cardiopulmonary bypass (CPB) may be associated with EG degradation. We performed an analysis of soluble syndecan-1 levels in relation to duration of CPB, as well as factors associated with cell stress and damage, such as mitochondrial DNA (mtDNA) and inflammation. METHODS: Blood samples from subjects undergoing cardiac surgery with CPB (n = 54) were obtained before and during surgery, 4-8 h and 24 h after completion of CPB, and on postoperative day 4. Flow cytometry was used to determine subpopulations of white blood cells. Plasma levels of mtDNA were determined using quantitative polymerase chain reaction and plasma content of shed syndecan-1 was measured. To determine whether syndecan-1 was signaling white blood cells, the effect of recombinant syndecan-1 on mobilization of neutrophils from bone marrow was tested in mice. RESULTS: CPB is associated with increased mtDNA during surgery, increased syndecan-1 blood levels at 4-8 h, and increased white blood cell count at 4-8 h and 24 h. Correlation analysis revealed significant positive associations between time on CPB and syndecan-1 (rs = 0.488, P < 0.001) and level of syndecan-1 and neutrophil count (rs = 0.351, P = 0.038) at 4-8 h. Intravenous administration of recombinant syndecan-1 in mice resulted in a 2.5-fold increase in the number of circulating neutrophils, concurrent with decreased bone marrow neutrophil number. CONCLUSIONS: Longer duration of CPB is associated with increased plasma levels of soluble syndecan-1, a signal for EG degradation, which can induce neutrophil egress from the bone marrow. Development of therapy targeting EG shedding may be beneficial in patients with prolonged CPB.


Assuntos
Ponte Cardiopulmonar/efeitos adversos , Endotélio/ultraestrutura , Glicocálix/fisiologia , Duração da Cirurgia , Idoso , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/patologia , Ponte Cardiopulmonar/métodos , DNA Mitocondrial/sangue , Feminino , Humanos , Interleucina-6/sangue , Contagem de Leucócitos , Masculino , Camundongos , Pessoa de Meia-Idade , Neutrófilos/patologia , Proteínas Recombinantes/farmacologia , Sindecana-1/sangue , Sindecana-1/farmacologia
4.
Cell Death Dis ; 9(11): 1119, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30389911

RESUMO

Syndecans, a family of cell surface heparan sulfate proteoglycans, regulate cell differentiation via binding of their heparan sulfate chains to growth factors and cytokines and play a role in tumor growth and progression, wound repair, and intestinal mucosal damage. However, the functional and mechanistic roles of syndecans in osteoclast differentiation and bone metabolism are yet unclear. Here, we demonstrated that post-translationally glycosylated ectodomains of syndecan-1 to 4 obtained from mammalian cells efficiently suppressed osteoclast differentiation compared to those obtained from Escherichia coli with no systems for glycosylation. A concomitant decrease in the expression of osteoclast markers such as nuclear factor of activated T cells 1 (NFATc1), c-Fos, and ATP6V0D2 was observed. In addition, heparan sulfate and selectively N-desulfated heparin derivatives with 2-O- and 6-O-sulfate groups and no anticoagulant activity in blood inhibited osteoclast differentiation. The inhibitory effects of syndecan ectodomains, heparan sulfate, and N-desulfated heparin derivatives on osteoclast differentiation were attributed to their direct binding to the macrophage-colony stimulating factor (M-CSF), resulting in the blocking of M-CSF-mediated downstream signals such as extracellular signal-regulated kinase (ERK), c-JUN N-terminal kinase (JNK), p38, and Akt. Furthermore, mice injected with syndecan ectodomains, heparan sulfate, and N-desulfated heparin derivatives into periosteal regions of calvaria showed reduction in the formation of tartrate-resistant acid phosphatase (TRAP)-positive mature osteoclasts on the calvarial bone surface, thereby exhibiting decreased bone resorption. Together, these results revealed a novel role of heparan sulfate chains of syndecan ectodomains in the regulation of osteoclast differentiation.


Assuntos
Fator Estimulador de Colônias de Macrófagos/metabolismo , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Processamento de Proteína Pós-Traducional , Sindecana-1/farmacologia , Sindecana-4/farmacologia , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fêmur/citologia , Fêmur/metabolismo , Glicosilação , Heparina/análogos & derivados , Heparina/química , Heparina/farmacologia , Humanos , Fator Estimulador de Colônias de Macrófagos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/citologia , Osteoclastos/metabolismo , Osteogênese/genética , Ligação Proteica , Domínios Proteicos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Sindecana-1/genética , Sindecana-1/metabolismo , Sindecana-4/genética , Sindecana-4/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
5.
Am J Respir Crit Care Med ; 194(3): 333-44, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-26959387

RESUMO

RATIONALE: Syndecan-1 is a cell surface heparan sulfate proteoglycan primarily expressed in the lung epithelium. Because the influenza virus is tropic to the airway epithelium, we investigated the role of syndecan-1 in influenza infection. OBJECTIVES: To determine the mechanism by which syndecan-1 regulates the lung mucosal response to influenza infection. METHODS: Wild-type (WT) and Sdc1(-/-) mice were infected with a H1N1 virus (PR8) as an experimental model of influenza infection. Human and murine airway epithelial cell cultures were also infected with PR8 to study the mechanism by which syndecan-1 regulates the inflammatory response. MEASUREMENT AND MAIN RESULTS: We found worsened outcomes and lung injury in Sdc1(-/-) mice compared with WT mice after influenza infection. Our data demonstrated that syndecan-1 suppresses bronchial epithelial apoptosis during influenza infection to limit widespread lung inflammation. Furthermore, we determined that syndecan-1 attenuated apoptosis by crosstalking with c-Met to potentiate its cytoprotective signals in airway epithelial cells during influenza infection. CONCLUSIONS: Our work shows that cell-associated syndecan-1 has an important role in regulating lung injury. Our findings demonstrate a novel mechanism in which cell membrane-associated syndecan-1 regulates the innate immune response to influenza infection by facilitating cytoprotective signals through c-Met signaling to limit bronchial epithelial apoptosis, thereby attenuating lung injury and inflammation.


Assuntos
Apoptose/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Lesão Pulmonar/prevenção & controle , Infecções por Orthomyxoviridae/imunologia , Proteínas Proto-Oncogênicas c-met/imunologia , Transdução de Sinais/imunologia , Sindecana-1/farmacologia , Animais , Modelos Animais de Doenças , Células Epiteliais/imunologia , Humanos , Imunidade Inata/imunologia , Pulmão/imunologia , Lesão Pulmonar/imunologia , Camundongos , Proteínas Proto-Oncogênicas c-met/genética , Sindecana-1/imunologia
6.
Free Radic Biol Med ; 50(9): 1075-80, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21334435

RESUMO

The extracellular matrix is a complex system that regulates cell function within a tissue. The antioxidant enzyme extracellular superoxide dismutase (EC-SOD) is bound to the matrix, and previous studies show that a lack of EC-SOD results in increased cardiac injury, fibrosis, and loss of cardiac function. This study tests the hypothesis that EC-SOD protects against cardiac fibrosis mechanistically by limiting oxidative stress and oxidant-induced shedding of syndecan-1 in the extracellular matrix. Wild-type and EC-SOD null mice were treated with a single dose of doxorubicin, 15 mg/kg, and evaluated on day 15. Serum and left-ventricle tissue were collected for biochemical assays, including Western blot, mRNA expression, and immunohistochemical staining for syndecan-1. The loss of EC-SOD and doxorubicin-induced oxidative injury led to increases in shed syndecan-1 in the serum, which originates from the endothelium of the vasculature. The shed syndecan-1 ectodomain induces proliferation of primary mouse cardiac fibroblasts. This study suggests that one mechanism by which EC-SOD protects the heart against cardiac fibrosis is the prevention of oxidative shedding of cardiovascular syndecan-1 and its subsequent induction of fibroblast proliferation. This study provides potential new targets for understanding and altering fibrosis progression in the heart.


Assuntos
Doxorrubicina/efeitos adversos , Matriz Extracelular/enzimologia , Fibroblastos/metabolismo , Superóxido Dismutase/metabolismo , Sindecana-1/metabolismo , Sindecana-1/farmacologia , Animais , Antioxidantes/metabolismo , Western Blotting , Técnicas de Cultura de Células , Proliferação de Células/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/patologia , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Fibrose/prevenção & controle , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/análise , RNA Mensageiro/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
Antimicrob Agents Chemother ; 54(7): 2753-66, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20439611

RESUMO

In the absence of a vaccine, there is an urgent need for the development of safe and effective topical microbicides to prevent the sexual transmission of human immunodeficiency virus type 1 (HIV-1). In this study, we proposed to develop a novel class of microbicides using syndecan as the antiviral agent. Specifically, we generated a soluble syndecan-Fc hybrid molecule by fusing the ectodomain of syndecan-1 to the Fc domain of a human IgG. We then tested the syndecan-Fc hybrid molecule for various in vitro microbicidal anti-HIV-1 properties. Remarkably, the syndecan-Fc hybrid molecule possesses multiple attractive microbicidal properties: (i) it blocks HIV-1 infection of primary targets including T cells, macrophages, and dendritic cells (DC); (ii) it exhibits a broad range of antiviral activity against primary HIV-1 isolates, multidrug resistant HIV-1 isolates, HIV-2, and simian immunodeficiency virus (SIV); (iii) it prevents transmigration of HIV-1 through human primary genital epithelial cells; (iv) it prevents HIV-1 transfer from dendritic cells to CD4(+) T cells; (v) it is potent when added 2 h prior to addition of HIV-1 to target cells; (vi) it is potent at a low pH; (vii) it blocks HIV-1 infectivity when diluted in genital fluids; and (viii) it prevents herpes simplex virus infection. The heparan sulfate chains of the syndecan-Fc hybrid molecule are absolutely required for HIV-1 neutralization. Several lines of evidence suggest that the highly conserved Arg298 in the V3 region of gp120 serves as the locus for the syndecan-Fc hybrid molecule neutralization. In conclusion, this study suggests that the syndecan-Fc hybrid molecule represents the prototype of a new generation of microbicidal agents that may have promise for HIV-1 prevention.


Assuntos
Fármacos Anti-HIV/farmacologia , HIV-1/efeitos dos fármacos , Fragmentos Fc das Imunoglobulinas/metabolismo , Fragmentos Fc das Imunoglobulinas/farmacologia , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Sindecana-1/metabolismo , Sindecana-1/farmacologia , Fármacos Anti-HIV/metabolismo , Fármacos Anti-HIV/uso terapêutico , Linhagem Celular , Linhagem Celular Tumoral , Células Dendríticas/virologia , Ensaio de Imunoadsorção Enzimática , Infecções por HIV/tratamento farmacológico , Infecções por HIV/prevenção & controle , Humanos , Concentração de Íons de Hidrogênio , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/uso terapêutico , Macrófagos/virologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/uso terapêutico , Sindecana-1/genética , Sindecana-1/uso terapêutico , Linfócitos T/virologia , Integração Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...