RESUMO
BACKGROUND: Calorie restriction (CR) is suggested to activate protective mechanisms in neurodegenerative diseases (NDDs). Despite existing literature highlighting the protective role of Sirtuin (SIRT) proteins against age-related neurodegeneration (ND), no study has explored the total levels of SIRT 1, 3, and 6 proteins simultaneously in brain homogenates by ELISA following intermittent calorie restriction. Applying CR protocols in mice to induce stress, we aimed to determine whether ND would be more pronounced with ad libitum (AL) or with CR. METHODS: Mice were randomly assigned to ad libitum (AL), Chronic CR (CCR), or Intermittent CR (ICR) groups at 10 weeks of baseline age (BL). SIRT 1, 3, and 6 protein levels were measured in the homogenized whole-brain supernatants of 49/50 weeks old mice by the ELISA method. Neuronal morphology was evaluated by the cresyl violet on the hippocampus. Neurodegeneration (ND) was assessed by the fluoro-jade and ImageJ was used for quantifications. RESULTS: In the ICR group, SIRT1 levels were elevated compared to both the AL and BL groups. Similarly, the CCR group exhibited higher SIRT1 values compared to the AL and BL groups. While SIRT3 levels were higher in both the ICR and CCR groups compared to the AL and BL groups, this disparity did not reach statistical significance. SIRT6 levels were also higher in the ICR group compared to both the BL and AL groups, with the CCR group showing higher values compared to the BL and AL groups as well. Image quantification demonstrated significant neurodegeneration in the AL group compared to the CCR and ICR group, with no observed alterations in nerve cell morphology and number. CONCLUSION: This study revealed that the levels of SIRT 1, SIRT 3, and SIRT 6 in brain tissue were notably elevated, and there was less evidence of ND at the 50-week mark in groups undergoing continuous calorie restriction and intermittent calorie restriction compared to baseline and ad libitum groups. Our findings illustrate that CR promotes increased SIRT expression in the mouse brain, thereby potentially mitigating neurodegeneration.
Assuntos
Encéfalo , Restrição Calórica , Sirtuína 3 , Sirtuínas , Animais , Sirtuínas/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Masculino , Sirtuína 3/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Camundongos , Sirtuína 1/metabolismo , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/patologiaRESUMO
Hepatocellular carcinoma (HCC) is a formidable challenge to global human health, while recent years have witnessed the important role of NAD+ in tumorigenesis and progression. However, the expression pattern and prognostic value of NAD+ in HCC still remain elusive. Gene expression files and corresponding clinical pathological files associated with HCC were obtained from the Cancer Genome Atlas (TCGA) database, and genes associated with NAD+ were retrieved from the GSEA and differentially analyzed in tumor and normal tissues. A consensus clustering analysis was conducted by breaking down TCGA patients into four distinct groups, while Kaplan-Meier curves were generated to investigate the disparity in clinical pathology and endurance between clusters. A prognostic model based on NAD+-associated genes was established and assessed by combining LASSO-Cox regression, uni- and multi-variate Cox regression, and ROC curve analyses. Investigations were conducted to determine the expression of distinct mRNAs and proteins in both HCC and non-tumor tissues. A novel two-gene signature including poly (ADP-Ribose) polymerase 2 (PARP2) and sirtuin 6 (SIRT6) was obtained through LASSO-Cox regression and was identified to have favorable prognostic performance in HCC patients from TCGA. Analyses of both single and multiple variables showed that the prognostic model was a distinct prognostic factor in the endurance of liver cancer patients in both the training and trial groups. The nomogram also exhibited clinical significance in the prognosis of HCC patients. Immunohistochemistry, qRT-PCR, and Western blotting revealed that HCC samples exhibited higher PARP2 and SIRT6 expression levels than those of normal controls. This study identified a robust prognostic model comprising two NAD+-associated genes using bioinformatic methods, which is accurate in predicting the survival outcome of HCC patients. This model might benefit the early diagnosis of HCC and further facilitate the management of individualized medical service and clinical decision-making.
Assuntos
Biomarcadores Tumorais , Carcinoma Hepatocelular , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , NAD , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/mortalidade , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/mortalidade , NAD/metabolismo , Prognóstico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Masculino , Feminino , Estimativa de Kaplan-Meier , Sirtuínas/genética , Sirtuínas/metabolismo , Perfilação da Expressão Gênica , Pessoa de Meia-IdadeRESUMO
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide, driven mainly by chronic hepatitis infections and metabolic disorders, which highlights the urgent need for novel therapeutic strategies. Sirtuins, particularly SIRT1 are crucial in HCC pathogenesis, making it a promising drug target. Indole-based molecules show potential as therapeutic agents by interacting with key proteins like sirtuins involved in cancer progression. In this study, we designed and synthesized novel indole-based small molecules and investigated their potential sirtuin inhibitory action and anticancer activity on HCC cell lines. Four of the twenty-eight tested small molecules on different cancer types were selected (4 g, 4 h, 4o, and 7j) based on their structure-activity relationship and studied on a panel of HCC cell lines. Compounds had active drug-target interactions with SIRT1 or SIRT2 based on DEEPScreen DTI predictions and docking studies which confirmed that 4o, 4 g, and 7j were most potent in their interaction with SIRT1. Compound 4 g caused the highest sirtuin activity inhibition in vitro and induced G1 arrest and apoptosis in HCC cell lines.
Assuntos
Antineoplásicos , Desenho de Fármacos , Indóis , Humanos , Indóis/farmacologia , Indóis/química , Indóis/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Simulação de Acoplamento Molecular , Sirtuína 2/antagonistas & inibidores , Neoplasias Hepáticas/tratamento farmacológico , Carcinoma Hepatocelular/tratamento farmacológico , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/metabolismo , Proliferação de Células/efeitos dos fármacos , Sirtuínas/antagonistas & inibidores , Sirtuínas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/síntese químicaRESUMO
Lung cancer is a malignant tumor originating from the bronchial mucosa or gland of the lung. Recently, lidocaine, a widely used amide local anesthetic, was demonstrated to inhibit many cancer progression. This research was performed to explore the specific mechanism of lidocaine in the lung cancer progression. The human normal lung epithelial cells (BEAS-2B), and NSCLC cell lines (A549 and H1299) were used and treated with lidocaine in this study. The cell biological behaviors were detected by CCK-8, wound healing and transwell assay. Besides, the mRNA and protein levels of related genes were detected by western blot. The results showed that lidocaine treatment significantly decreased the cell viability and migration of the A549 and H1299 cells. Furthermore, the lidocaine treatment significantly decreased the succinylation and protein levels of HIST1H2BL, which was reversed after SIRT5 knockdown. Additionally, HIST1H2BL knockdown decreased the cell viability and migration of the A549 and H1299 cells, while HIST1H2BL overexpression reversed the effects of lidocaine on the cell viability and migration of the A549 and H1299 cells. In conclusion, lidocaine treatment might inhibited the lung cancer progression through decreasing the SIRT5 mediated succinylation of HIST1H2BL.
Assuntos
Movimento Celular , Sobrevivência Celular , Lidocaína , Neoplasias Pulmonares , Sirtuínas , Humanos , Lidocaína/farmacologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Sirtuínas/metabolismo , Sirtuínas/genética , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células A549 , Progressão da Doença , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genéticaRESUMO
Over the past two decades, epigenetic regulation has become a rapidly growing and influential field in biology and medicine. One key mechanism involves the acetylation and deacetylation of lysine residues on histone core proteins and other critical proteins that regulate gene expression and cellular signaling. Although histone deacetylases (HDACs) have received significant attention, the roles of individual HDAC isoforms in the pathogenesis of psychiatric diseases still require further research. This is particularly true with regard to the sirtuins, class III HDACs. Sirtuins have unique functional activity and significant roles in normal neurophysiology, as well as in the mechanisms of addiction, mood disorders, and other neuropsychiatric abnormalities. This review aims to elucidate the differences in catalytic structure and function of the seven sirtuins as they relate to psychiatry.
Assuntos
Histona Desacetilases , Transtornos Mentais , Sirtuínas , Humanos , Transtornos Mentais/metabolismo , Histona Desacetilases/metabolismo , Histona Desacetilases/química , Sirtuínas/metabolismo , Sirtuínas/química , Animais , Acetilação , Epigênese GenéticaRESUMO
Maintaining metabolic homeostasis is crucial for cellular and organismal health throughout their lifespans. The intricate link between metabolism and inflammation through immunometabolism is pivotal in maintaining overall health and disease progression. The multifactorial nature of metabolic and inflammatory processes makes study of the relationship between them challenging. Homologs of Saccharomyces cerevisiae silent information regulator 2 protein, known as Sirtuins (SIRTs), have been demonstrated to promote longevity in various organisms. As nicotinamide adenine dinucleotide-dependent deacetylases, members of the Sirtuin family (SIRT1-7) regulate energy metabolism and inflammation. In this review, we provide an extensive analysis of SIRTs involved in regulating key metabolic pathways, including glucose, lipid, and amino acid metabolism. Furthermore, we systematically describe how the SIRTs influence inflammatory responses by modulating metabolic pathways, as well as inflammatory cells, mediators, and pathways. Current research findings on the preferential roles of different SIRTs in metabolic disorders and inflammation underscore the potential of SIRTs as viable pharmacological and therapeutic targets. Future research should focus on the development of promising compounds that target SIRTs, with the aim of enhancing their anti-inflammatory activity by influencing metabolic pathways within inflammatory cells.
Assuntos
Metabolismo Energético , Inflamação , Sirtuínas , Sirtuínas/metabolismo , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Animais , Redes e Vias MetabólicasRESUMO
Sirtuin 5 (SIRT5) plays an important role in the maintenance of lipid metabolism and in white adipose tissue browning. In this study, we established a mouse model for diet-induced obesity and the browning of white fat; combined with gene expression intervention, transcriptome sequencing, and cell molecular biology methods, the regulation and molecular mechanisms of SIRT5 on fat deposition and beige fat formation were studied. The results showed that the loss of SIRT5 in obese mice exacerbated white adipose tissue deposition and metabolic inflexibility. Furthermore, the deletion of SIRT5 in a white-fat-browning mouse increased the succinylation of uncoupling protein 1 (UCP1), resulting in a loss of the beiging capacity of the subcutaneous white adipose tissue and impaired cold tolerance. Mechanistically, the inhibition of SIRT5 results in impaired CCAAT/enhancer binding protein beta (C/EBPß) expression in brown adipocytes, which in turn reduces the UCP1 transcriptional pathway. Thus, the transcription of UCP1 mediated by the SIRT5-C/EBPß axis is critical in regulating energy balance and obesity-related metabolism.
Assuntos
Tecido Adiposo Branco , Proteína beta Intensificadora de Ligação a CCAAT , Obesidade , Transdução de Sinais , Sirtuínas , Proteína Desacopladora 1 , Animais , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Tecido Adiposo Branco/metabolismo , Camundongos , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/genética , Sirtuínas/metabolismo , Sirtuínas/genética , Obesidade/metabolismo , Obesidade/genética , Tecido Adiposo Marrom/metabolismo , Regulação para Cima , Camundongos Endogâmicos C57BL , Masculino , Metabolismo Energético , Camundongos KnockoutRESUMO
Sirtuins (SIRTs) are well-known as nicotinic adenine dinucleotide+(NAD+)-dependent histone deacetylases, which are important epigenetic enzymes consisting of seven family members (SIRT1-7). Of note, SIRT1 and SIRT2 are distributed in the nucleus and cytoplasm, while SIRT3, SIRT4 and SIRT5 are localized in the mitochondria. SIRT6 and SIRT7 are distributed in the nucleus. SIRTs catalyze the deacetylation of various substrate proteins, thereby modulating numerous biological processes, including transcription, DNA repair and genome stability, metabolism, and signal transduction. Notably, accumulating evidence has recently underscored the multi-faceted roles of SIRTs in both the suppression and progression of various types of human cancers. Crucially, SIRTs have been emerging as promising therapeutic targets for cancer therapy. Thus, in this review, we not only present an overview of the molecular structure and function of SIRTs, but elucidate their intricate associations with oncogenesis. Additionally, we discuss the current landscape of small-molecule activators and inhibitors targeting SIRTs in the contexts of cancer and further elaborate their combination therapies, especially highlighting their prospective utility for future cancer drug development.
Assuntos
Epigênese Genética , Neoplasias , Sirtuínas , Humanos , Sirtuínas/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Animais , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Terapia de Alvo Molecular/métodos , Transdução de Sinais/efeitos dos fármacosRESUMO
BACKGROUND: Podocyte injury plays an important role in the occurrence and progression of diabetic kidney disease (DKD), which leads to albuminuria. Cytoskeletal remodeling is an early manifestation of podocyte injury in DKD. However, the underlying mechanism of cytoskeletal remodeling has not been clarified. Histone deacetylase sirtuin6 (Sirt6) has been found to play a key role in DKD progression, and the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/AKT) pathway directly regulates the cytoskeletal structure of podocytes. Whereas, the relationship between Sirt6, the PI3K/AKT pathway and DKD progression remains unclear. METHODS: Renal injury of db/db mice was observed by PAS staining and transmission electron microscope. Expression of Sirt6 in the glomeruli of db/db mice was detected by immunofluorescence. UBCS039, a Sirt6 activator, was used to explore the renal effects of Sirt6 activation on diabetic mouse kidneys. We also downregulating Sirt6 expression in podocytes using the Sirt6 inhibitor, OSS_128167, and induced upregulation of Sirt6 using a recombinant plasmid, after which the effects of Sirt6 on high glucose (HG)-induced podocyte damage were assessed in vitro. Podocyte cytoskeletal structures were observed by phalloidin staining. The podocyte apoptotic rate was assessed by flow cytometry, and PI3K/AKT signaling activation was measured by Western blotting. RESULTS: Db/db mice exhibited renal damage including elevated urine albumin-to-creatinine ratio (ACR), increased mesangial matrix, fused podocyte foot processes, and thickened glomerular basement membrane. The expression of Sirt6 and PI3K/AKT pathway components was decreased in db/db mice. UBCS039 increased the expressions of Sirt6 and PI3K/AKT pathway components and ameliorated renal damage in db/db mice. We also observed consistent Sirt6 expression was in HG-induced podocytes in vitro. Activation of the PI3K/AKT pathway via a Sirt6 recombinant plasmid ameliorated podocyte cytoskeletal remodeling and apoptosis in HG-treated immortalized human podocytes in vitro, whereas Sirt6 inhibition by OSS_128167 accelerated HG-induced podocyte damage in vitro. CONCLUSIONS: Sirt6 protects podocytes against HG-induced cytoskeletal remodeling and apoptosis through activation of the PI3K/AKT signaling pathway. These findings provide evidence supporting the potential efficacy of Sirt6 activation as a promising therapeutic strategy for addressing podocyte injury in DKD.
Assuntos
Citoesqueleto , Nefropatias Diabéticas , Podócitos , Transdução de Sinais , Sirtuínas , Camundongos , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Sirtuínas/metabolismo , Podócitos/metabolismo , Podócitos/patologia , Glucose/metabolismo , Albuminúria/metabolismo , Albuminúria/patologia , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Glomérulos Renais/lesões , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , ApoptoseRESUMO
The Notch1 signaling pathway plays a crucial role in the development of the central nervous system, governing pivotal functional activities in the brain, such as neurogenesis. Sirt3 is instrumental in managing mitochondrial homeostasis and is essential to cell survival. Dysregulation of these signaling pathways is implicated in the pathogenesis of a wide range of diseases, including neurodegenerative disorders such as stroke. We have previously shown that melatonin significantly improved the perinatal brain damage caused by hypoxia-ischemia (HI) through the activation of several protective mechanisms such as restoring mitochondria status and increasing the hippocampal cell proliferation. This study assessed whether melatonin affects the Notch1 signaling pathway and Sirt3 after neonatal HI. Results show that HI significantly increased Notch1 expression both in hippocampal neurons and glial cells as well as the expression of the key proteins of the pathway NICD, HES1, and c-Myc. Melatonin significantly prevented the Notch1 signaling pathway activation induced by HI, maintaining NICD and HES1 expression to control levels. In the same neurons, melatonin also prevents the Sirt3 depletion caused by HI. In summary, this study provides new insights into the effects of melatonin on the Notch1 signaling pathway and Sirt3 in in vivo neonatal brain ischemia. We suggest that the rapid modulation of the Notch1 signaling pathway and Sirt3 induced by melatonin may support neuronal survival during ischemia.
Assuntos
Animais Recém-Nascidos , Hipocampo , Hipóxia-Isquemia Encefálica , Melatonina , Neurônios , Receptor Notch1 , Transdução de Sinais , Sirtuína 3 , Animais , Melatonina/farmacologia , Receptor Notch1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Sirtuína 3/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia-Isquemia Encefálica/patologia , Ratos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , SirtuínasRESUMO
Ischemic stroke (IS) poses a serious threat to patient survival. The inhibition of ferroptosis can effectively alleviate ischemia-reperfusion (I/R) injury, suggesting potential targets in the ferroptosis pathway for the treatment of IS. In this study, MCAO/R mice and OGD/R-induced HT22 cell were constructed. It was found that baicalein decreased ROS, MDA, and Fe2+ levels, upregulated GSH levels, and enhanced the expression of ferroptosis-related proteins (GPX4 and SLC7A11), downregulated the expression of proapoptotic proteins (Bax, cytochrome c, and cleaved caspase-3), and upregulated the expression of an antiapoptotic protein (Bcl-2), ameliorating cerebral I/R injury. In animal and cell models, Sirtuin6 (SIRT6) is downregulated, and Forkhead boxA2 (FOXA2) expression and acetylation levels are abnormally upregulated. SIRT6 inhibited FOXA2 expression and acetylation. Baicalein promoted FOXA2 deacetylation by upregulating SIRT6 expression. FOXA2 transcriptionally inhibits SLC7A11 expression. In conclusion, baicalein inhibited apoptosis and partially suppressed the role of ferroptosis to alleviate cerebral I/R injury via SIRT6-mediated FOXA2 deacetylation to promote SLC7A11 expression.
Assuntos
Sistema y+ de Transporte de Aminoácidos , Ferroptose , Flavanonas , Fator 3-beta Nuclear de Hepatócito , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão , Sirtuínas , Animais , Sirtuínas/metabolismo , Flavanonas/farmacologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Masculino , Camundongos , Sistema y+ de Transporte de Aminoácidos/metabolismo , Fator 3-beta Nuclear de Hepatócito/metabolismo , Ferroptose/efeitos dos fármacos , Ferroptose/fisiologia , Acetilação/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Linhagem CelularRESUMO
The prevalence and mortality rates of colorectal cancer have been increasing in recent years, driven in part by the reliance of cancerous cells on aerobic glycolysis for growth. Sodium butyrate (NaB) has been shown to impede this process in colorectal cancer cells, although its mechanism of action remains unclear. In this study, we used cobalt chloride (CoCl2) to simulate a hypoxic environment and demonstrated that NaB downregulated hypoxia-inducible factor-1α (HIF-1α) protein levels under both normoxic and hypoxic conditions. By employing cycloheximide (CHX), MG132, and chloroquine (CQ), we investigated whether NaB affects HIF-1α protein levels via the autophagy pathway. Importantly, siRNA-mediated SIRT4 knockdown revealed that NaB promotes HIF-1α autophagic degradation by upregulating SIRT4 expression. This subsequently inhibits HIF-1α-mediated expression of GLUT1 and LDHA, reducing glucose uptake, lactate production, and ATP generation, ultimately suppressing aerobic glycolysis and cell proliferation in colorectal cancer cells. Furthermore, a human colorectal cancer xenograft model confirmed that butyric acid inhibited tumor growth in vivo, correlating with SIRT4 and HIF-1α modulation. In conclusion, our findings indicate that NaB hinders colorectal cancer progression by disrupting aerobic glycolysis mediated by SIRT4/HIF-1α.
Assuntos
Ácido Butírico , Proliferação de Células , Neoplasias Colorretais , Glicólise , Subunidade alfa do Fator 1 Induzível por Hipóxia , Sirtuínas , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Glicólise/efeitos dos fármacos , Ácido Butírico/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Sirtuínas/metabolismo , Camundongos , Linhagem Celular Tumoral , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 1/genética , Camundongos Nus , Autofagia/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Cobalto/farmacologia , L-Lactato Desidrogenase , Proteínas MitocondriaisRESUMO
Phagocytosis of Mycobacterium tuberculosis (Mtb) followed by its integration into the matured lysosome is critical in the host defense against tuberculosis. How Mtb escapes this immune attack remains elusive. In this study, we unveiled a novel regulatory mechanism by which SIRT7 regulates cytoskeletal remodeling by modulating RAC1 activation. We discovered that SIRT7 expression was significantly reduced in CD14+ monocytes of TB patients. Mtb infection diminished SIRT7 expression by macrophages at both the mRNA and protein levels. SIRT7 deficiency impaired actin cytoskeleton-dependent macrophage phagocytosis, LC3II expression, and bactericidal activity. In a murine tuberculosis model, SIRT7 deficiency detrimentally impacted host resistance to Mtb, while Sirt7 overexpression significantly increased the host defense against Mtb, as determined by bacterial burden and inflammatory-histopathological damage in the lung. Mechanistically, we demonstrated that SIRT7 limits Mtb infection by directly interacting with and activating RAC1, through which cytoskeletal remodeling is modulated. Therefore, we concluded that SIRT7, in its role regulating cytoskeletal remodeling through RAC1, is critical for host responses during Mtb infection and proposes a potential target for tuberculosis treatment.IMPORTANCETuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a significant global health issue. Critical to macrophages' defense against Mtb is phagocytosis, governed by the actin cytoskeleton. Previous research has revealed that Mtb manipulates and disrupts the host's actin network, though the specific mechanisms have been elusive. Our study identifies a pivotal role for SIRT7 in this context: Mtb infection leads to reduced SIRT7 expression, which, in turn, diminishes RAC1 activation and consequently impairs actin-dependent phagocytosis. The significance of our research is that SIRT7 directly engages with and activates Rac Family Small GTPase 1 (RAC1), thus promoting effective phagocytosis and the elimination of Mtb. This insight into the dynamic between host and pathogen in TB not only broadens our understanding but also opens new avenues for therapeutic development.
Assuntos
Citoesqueleto , Macrófagos , Mycobacterium tuberculosis , Fagocitose , Sirtuínas , Proteínas rac1 de Ligação ao GTP , Sirtuínas/genética , Sirtuínas/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/genética , Animais , Camundongos , Humanos , Macrófagos/imunologia , Macrófagos/microbiologia , Citoesqueleto/metabolismo , Tuberculose/microbiologia , Tuberculose/imunologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Feminino , Interações Hospedeiro-Patógeno , NeuropeptídeosRESUMO
Metabolic dysfunction-associated steatotic liver disease (MASLD) is primarily attributed to the abnormal upregulation of hepatic lipogenesis, which is especially caused by the overactivation of the liver X receptor/sterol regulatory element-binding protein-1c (LXR/SREBP-1c) pathway in hepatocytes. In this study, we report the rational design and synthesis of a novel series of squaramides via bioisosteric replacement, which was evaluated for its inhibitory activity on the LXR/SREBP-1c pathway using dual cell-based assays. Compound 31 was found to significantly downregulate LXR, SREBP-1c, and their target genes associated with lipogenesis. Further investigation revealed that compound 31 may indirectly inhibit the LXR/SREBP-1c pathway by activating the upstream regulator sirtuin 6 (SIRT6). Encouragingly, compound 31 substantially attenuated lipid accumulation in HepG2 cells and in the liver of high-fat-diet-fed mice. These findings suggest that compound 31 holds promise as a candidate for the development of treatments for MASLD and other lipid metabolism-related diseases.
Assuntos
Receptores X do Fígado , Transdução de Sinais , Sirtuínas , Proteína de Ligação a Elemento Regulador de Esterol 1 , Humanos , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/antagonistas & inibidores , Animais , Receptores X do Fígado/metabolismo , Receptores X do Fígado/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Células Hep G2 , Sirtuínas/antagonistas & inibidores , Sirtuínas/metabolismo , Camundongos , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Relação Estrutura-Atividade , Dieta Hiperlipídica , Descoberta de DrogasRESUMO
Sirtuin 6 (SIRT6), a member of the SIRT family, plays essential roles in the regulation of metabolism, inflammation, aging, DNA repair, and cancer development, making it a promising anticancer drug target. Herein, we present our use of proteolysis-targeting chimera (PROTAC) technology to formulate a series of highly potent and selective SIRT6 degraders. One of the degraders, SZU-B6, induced the near-complete degradation of SIRT6 in both SK-HEP-1 and Huh-7 cell lines and more potently inhibited hepatocellular carcinoma (HCC) cell proliferation than the parental inhibitors. In preliminary mechanistic studies, SZU-B6 hampered DNA damage repair, promoting the cellular radiosensitization of cancer cells. Our SIRT6 degrader SZU-B6 displayed promising antitumor activity, particularly when combined with the well-known kinase inhibitor sorafenib or irradiation in an SK-HEP-1 xenograft mouse model. Our results suggest that these PROTACs might constitute a potent therapeutic strategy for HCC.
Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Proliferação de Células , Neoplasias Hepáticas , Proteólise , Sirtuínas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Sirtuínas/antagonistas & inibidores , Sirtuínas/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Proteólise/efeitos dos fármacos , Camundongos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto , Descoberta de Drogas , Relação Estrutura-AtividadeRESUMO
MitoAMPK was proved to inhibit the Warburg effect, but the specific mechanisms on non-small-cell lung cancer remain unclear. Here, we selected SIRT6 and MZF1 to clarify the mechanism. By western blotting, quantitative polymerase chain reaction, the CCK-8 assay, and immunohistochemistry assays, we found SIRT6 expression was lower in NSCLC tissues and cell lines than normal tissues and cells. Moreover, SIRT6 could inhibit the Warburg effect by regulating glycolysis-related genes of SLC2A2, SLC2A4 and PKM2. Finally, we demonstrated the interaction between SIRT6 and MZF1 using ChIP-qPCR. In conclusion, mitoAMPK inhibits the Warburg effect by regulating the expression of the MZF1-SIRT6 complex.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição Kruppel-Like , Neoplasias Pulmonares , Sirtuínas , Efeito Warburg em Oncologia , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Sirtuínas/metabolismo , Sirtuínas/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Linhagem Celular Tumoral , Glicólise/genética , Feminino , MasculinoRESUMO
The accumulation of SIRT4 in the nuclei of kidney cells drives kidney fibrosis, so blocking the movement of this protein could be a potential therapeutic strategy against fibrosis.
Assuntos
Fibrose , Sirtuínas , Sirtuínas/metabolismo , Animais , Humanos , Rim/patologia , Rim/metabolismo , Camundongos , Nefropatias/metabolismo , Nefropatias/patologia , Proteínas MitocondriaisRESUMO
Abnormal SUMOylation is implicated in non-alcoholic fatty liver disease (NAFLD) progression. Forkhead box protein A1 (FoxA1) has been shown to protect liver from steatosis, which was down-regulated in NAFLD. This study elucidated the role of FoxA1 deSUMOylation in NAFLD. NAFLD models were established in high-fat diet (HFD)-induced mice and palmitate acid (PAL)-treated hepatocytes. Hepatic steatosis was evaluated by biochemical and histological methods. Lipid droplet formation was determined by BODIPY and Oil red O staining. Target molecule levels were analyzed by RT-qPCR, Western blotting, and immunohistochemistry staining. SUMOylation of FoxA1 was determined by Ni-NTA pull-down assay and SUMOylation assay Ultra Kit. Protein interaction and ubiquitination were detected by Co-IP. Gene transcription was assessed by ChIP and dual luciferase reporter assays. Liver FoxA1 knockout mice developed severe liver steatosis, which could be ameliorated by sirtuin 6 (Sirt6) overexpression. Nutritional stresses reduced Sumo2/3-mediated FoxA1 SUMOylation at lysine residue K6, which promoted lipid droplet formation by repressing fatty acid ß-oxidation. Moreover, Sirt6 was a target gene of FoxA1, and Sirt6 transcription activity was restrained by deSUMOylation of FoxA1 at site K6. Furthermore, nutritional stresses-induced deSUMOylation of FoxA1 promoted the ubiquitination and degradation of FoxA1 with assistance of murine double minute 2 (Mdm2). Finally, activating FoxA1 SUMOylation delayed the progression of NAFLD in mice. DeSUMOylation of FoxA1 at K6 promotes FoxA1 degradation and then inhibits Sirt6 transcription, thereby suppressing fatty acid ß-oxidation and facilitating NAFLD development. Our findings suggest that FoxA1 SUMOylation activation might be a promising therapeutic strategy for NAFLD.
Assuntos
Regulação para Baixo , Fator 3-alfa Nuclear de Hepatócito , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica , Sirtuínas , Sumoilação , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Fator 3-alfa Nuclear de Hepatócito/genética , Camundongos , Humanos , Sirtuínas/metabolismo , Sirtuínas/genética , Masculino , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica , Modelos Animais de DoençasRESUMO
Demyelination occurs widely in the central nervous system (CNS) neurodegenerative diseases, especially the multiple sclerosis (MS), which with a complex and inflammatory lesion microenvironment inhibiting remyelination. Sirtuin6 (SIRT6), a histone/protein deacetylase is of interest for its promising effect in transcriptional regulation, cell cycling, inflammation, metabolism and longevity. Here we show that SIRT6 participates in the remyelination process in mice subjected to LPC-induced demyelination. Using pharmacological SIRT6 inhibitor or activator, we found that SIRT6 modulated LPC-induced damage in motor or cognitive function. Inhibition of SIRT6 impaired myelin regeneration, exacerbated neurological deficits, and decreased oligodendrocyte precursor cells (OPCs) proliferation and differentiation, whereas activation of SIRT6 reversed behavioral performance in mice, demonstrating a beneficial effect of SIRT6. Importantly, based on RNA sequencing analysis of the corpus callosum tissues, it was further revealed that SIRT6 took charge in regulation of glial activation during remyelination, and significant alterations in CHI3L1 were obtained, a glycoprotein specifically secreted by astrocytes. Impaired proliferation and differentiation of OPCs could be induced in vitro using supernatants from reactive astrocyte, especially when SIRT6 was inhibited. Mechanistically, SIRT6 regulates the secretion of CHI3L1 from reactive astrocytes by histone-H3-lysine-9 acetylation (H3K9Ac). Adeno-associated virus-overexpression of SIRT6 (AAV-SIRT6-OE) in astrocytes improved remyelination and functional recovery after LPC-induced demyelination, whereas together with AAV-CHI3L1-OE inhibits this therapeutic effect. Collectively, our data elucidate the role of SIRT6 in remyelination and further reveal astrocytic SIRT6/CHI3L1 as the key regulator for improving the remyelination environment, which may be a potential target for MS therapy.
Assuntos
Astrócitos , Doenças Desmielinizantes , Sirtuínas , Animais , Masculino , Camundongos , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Células Cultivadas , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Lisofosfatidilcolinas/toxicidade , Camundongos Endogâmicos C57BL , Remielinização/efeitos dos fármacos , Remielinização/fisiologia , Sirtuínas/metabolismo , Sirtuínas/genéticaRESUMO
OBJECTIVE: Bidirectional influences between senescence and inflammation are newly discovered. This study aimed to clarify the roles and mechanism of Porphyromonas gingivalis (P. gingivalis) in exacerbating senescence in human gingival fibroblasts (HGFs). DESIGN: Subgingival plaque and gingivae were collected from twenty-four periodontitis patients and eighteen periodontally healthy subjects. Quantities of P. gingivalis in subgingival plaque were explored using real-time PCR and the expressions of p53, p21 and SIRT6 in gingivae were detected by IHC. Moreover, senescence in HGFs was induced by P. gingivalis lipopolysaccharide (LPS) and the expressions of senescence-related ß-galactosidase (SA-ß-gal), p53, p21 and senescence-associated secretory phenotype (IL-6 and IL-8) with or without treatment by SIRT6 activator UBCS039 were explored by IHC, western blot and ELISA, respectively. In addition, the levels of SIRT6, Nrf2, HO-1 and reactive oxygen species (ROS) were examined by western blot and flow cytometry. RESULTS: Quantities of P. gingivalis in subgingival plaque and semi-quantitative scores of p53 and p21 in gingivae of periodontitis patients were increased compared with healthy controls (p < 0.05), while SIRT6 score in periodontitis patients was decreased (p < 0.001). Quantities of P. gingivalis were positively correlated with p53 and p21 scores (0.6 < r < 0.9, p < 0.01), and negatively correlated with SIRT6 score (-0.9 < r<-0.6, p < 0.01). Moreover, P. gingivalis LPS increased the levels of SA-ß-gal, p53, p21, IL-6, IL-8 and ROS and decreased the levels of SIRT6, Nrf2 and HO-1 in HGFs, which was rescued by UBCS039 (p < 0.05). CONCLUSIONS: P. gingivalis LPS could induce senescence of HGFs, which could be reversed by SIRT6 via Nrf2-HO-1 signaling pathway.