Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.503
Filtrar
1.
PeerJ ; 12: e17539, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952964

RESUMO

The association between sleep and the immune-endocrine system is well recognized, but the nature of that relationship is not well understood. Sleep fragmentation induces a pro-inflammatory response in peripheral tissues and brain, but it also activates the hypothalamic-pituitary-adrenal (HPA) axis, releasing glucocorticoids (GCs) (cortisol in humans and corticosterone in mice). It is unclear whether this rapid release of glucocorticoids acts to potentiate or dampen the inflammatory response in the short term. The purpose of this study was to determine whether blocking or suppressing glucocorticoid activity will affect the inflammatory response from acute sleep fragmentation (ASF). Male C57BL/6J mice were injected i.p. with either 0.9% NaCl (vehicle 1), metyrapone (a glucocorticoid synthesis inhibitor, dissolved in vehicle 1), 2% ethanol in polyethylene glycol (vehicle 2), or mifepristone (a glucocorticoid receptor antagonist, dissolved in vehicle 2) 10 min before the start of ASF or no sleep fragmentation (NSF). After 24 h, samples were collected from brain (prefrontal cortex, hypothalamus, hippocampus) and periphery (liver, spleen, heart, and epididymal white adipose tissue (EWAT)). Proinflammatory gene expression (TNF-α and IL-1ß) was measured, followed by gene expression analysis. Metyrapone treatment affected pro-inflammatory cytokine gene expression during ASF in some peripheral tissues, but not in the brain. More specifically, metyrapone treatment suppressed IL-1ß expression in EWAT during ASF, which implies a pro-inflammatory effect of GCs. However, in cardiac tissue, metyrapone treatment increased TNF-α expression in ASF mice, suggesting an anti-inflammatory effect of GCs. Mifepristone treatment yielded more significant results than metyrapone, reducing TNF-α expression in liver (only NSF mice) and cardiac tissue during ASF, indicating a pro-inflammatory role. Conversely, in the spleen of ASF-mice, mifepristone increased pro-inflammatory cytokines (TNF-α and IL-1ß), demonstrating an anti-inflammatory role. Furthermore, irrespective of sleep fragmentation, mifepristone increased pro-inflammatory cytokine gene expression in heart (IL-1ß), pre-frontal cortex (IL-1ß), and hypothalamus (IL-1ß). The results provide mixed evidence for pro- and anti-inflammatory functions of corticosterone to regulate inflammatory responses to acute sleep loss.


Assuntos
Glucocorticoides , Metirapona , Camundongos Endogâmicos C57BL , Mifepristona , Privação do Sono , Animais , Masculino , Metirapona/farmacologia , Privação do Sono/metabolismo , Privação do Sono/tratamento farmacológico , Camundongos , Mifepristona/farmacologia , Glucocorticoides/farmacologia , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Corticosterona/sangue , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/antagonistas & inibidores , Receptores de Glucocorticoides/genética
2.
Eur J Psychotraumatol ; 15(1): 2364441, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38973398

RESUMO

Background: Trauma-focused treatments for post-traumatic stress disorder (PTSD) are effective for many patients. However, relapse may occur when acquired extinction memories fail to generalize beyond treatment contexts. A subgroup of PTSD patients - potentially with substantial exposure to early-life adversity (ELA) - show dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, which results in lower cortisol levels. Glucocorticoids, including cortisol, appear to facilitate strength and generalization of emotional memories.Objective: We describe the protocol of an integrated PTSD study. We investigate (A) associations between HPA-axis dysregulation, ELA, epigenetic markers, and PTSD treatment outcome (observational study); and (B) effects of exogenous glucocorticoids on strength and generalization of extinction memories and associated neural mechanisms [pharmacological intervention study with functional magnetic resonance imaging (fMRI)]. The objective is to provide proof of concept that PTSD patients with HPA-axis dysregulation often experienced ELA and may show improved strength and generalization of extinction learning after glucocorticoid administration.Method: The observational study (n = 160 PTSD group, n = 30 control group) assesses ELA, follow-up PTSD symptoms, epigenetic markers, and HPA-axis characteristics (salivary cortisol levels during low-dose dexamethasone suppression test and socially evaluated cold-pressor test). The pharmacological intervention study (n = 80 PTSD group, with and without HPA-axis dysregulation) is a placebo-controlled fMRI study with a crossover design. To investigate strength and generalization of extinction memories, we use a differential fear acquisition, extinction, and extinction recall task with spatial contexts within a virtual environment. Prior to extinction learning, 20 mg hydrocortisone or placebo is administered. During next-day recall, strength of the extinction memory is determined by recovery of skin conductance and pupil dilation differential responding, whereas generalization is assessed by comparing responses between different spatial contexts.Conclusion: The integrated study described in the current protocol paper could inform a personalized treatment approach in which these PTSD patients may receive glucocorticoids as a treatment enhancer in trauma-focused therapies.Trial registration: The research project is registered in the European Union Drug Regulating Authorities Clinical Trials (EudraCT) database, https://eudract.ema.europa.eu/, EudraCT number 2020-000712-30.


This protocol reports a proof-of-concept study for glucocorticoids as an enhancer for PTSD treatment.The study examines whether glucocorticoids enhance the strength and generalization of extinction memory.A further aim is to identify HPA-axis-related PTSD subgroups that may particularly benefit.


Assuntos
Extinção Psicológica , Glucocorticoides , Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Transtornos de Estresse Pós-Traumáticos , Humanos , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia , Glucocorticoides/farmacologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Hidrocortisona , Masculino , Adulto , Feminino , Imageamento por Ressonância Magnética
3.
Bull Exp Biol Med ; 177(1): 10-14, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38954295

RESUMO

Spatial learning, memory, and reactivity of the hypothalamic-pituitary-adrenocortical system (HPA axis) were studied in adult male rats, whose mothers during pregnancy were subjected to acute moderate normobaric hypoxia, or repeated injections of buspirone, an agonist of type 1A serotonergic receptors (5HT1A), or their combination. Prenatal treatment with buspirone in rats with prenatal hypoxia impaired learning ability during the first day of 5-day training. A decrease in the effectiveness of long-term memory in comparison with short-term memory was revealed in two groups of rats: prenatal treatment with buspirone in combination with hypoxia and injection of physiological saline without hypoxia. The effectiveness of long-term memory and the level of corticosterone in response to stress did not differ between the groups, which can indicate adaptation of the 5HT1A receptor and the HPA axis to the prenatal buspirone and normobaric hypoxia during ontogeny.


Assuntos
Buspirona , Sistema Hipotálamo-Hipofisário , Hipóxia , Efeitos Tardios da Exposição Pré-Natal , Buspirona/farmacologia , Animais , Gravidez , Feminino , Ratos , Masculino , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Hipóxia/fisiopatologia , Hipóxia/metabolismo , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Corticosterona/sangue , Corticosterona/metabolismo , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/metabolismo , Cognição/efeitos dos fármacos , Cognição/fisiologia , Ratos Wistar , Receptor 5-HT1A de Serotonina/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Memória de Longo Prazo/efeitos dos fármacos , Memória de Longo Prazo/fisiologia , Estresse Fisiológico/efeitos dos fármacos
4.
Bull Exp Biol Med ; 177(1): 1-9, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38954296

RESUMO

In sexually mature male Wistar rats with modeled post-traumatic stress disorder, personalized characteristics of neurobiological reactions in the population of predator-induced stress-resilient and stress-susceptible heparinized animals were determined. Characteristics of the systemic response of immune mechanisms, hypothalamic-pituitary-adrenal axis, behavioral manifestations, as well as basic properties of the CNS (excitation/inhibition) are presented. The study demonstrated encouraging positive results of the course administration of unfractionated heparin at a dose below the therapeutic and prophylactic doses. The inclusion of heparin drugs into the clinical practice for the treatment of post-traumatic stress disorder will not require large-scale clinical trials, because many effects of heparin as a nonspecific adaptogen are well studied. Moreover, these properties were confirmed at a higher technological level during the COVID-19 pandemic.


Assuntos
Heparina , Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Ratos Wistar , Transtornos de Estresse Pós-Traumáticos , Animais , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Masculino , Heparina/uso terapêutico , Heparina/farmacologia , Ratos , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Modelos Animais de Doenças , COVID-19/virologia , Comportamento Animal/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos
5.
Front Endocrinol (Lausanne) ; 15: 1406931, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994010

RESUMO

Background: It has been reported that central adrenal insufficiency (CAI) in pediatric patients (pts) with Prader-Willi syndrome (PWS) may be a potential cause of their sudden death. In addition, the risk of CAI may increase during treatment with recombinant human growth hormone (rhGH). Objective: To prevent both over- and undertreatment with hydrocortisone, we evaluated the prevalence of CAI in a large multicenter cohort of pediatric pts with PWS analyzing adrenal response in the low-dose ACTH test (LDAT) and/or the glucagon stimulation test (GST) and reviewing the literature. Methods: A total of 46 pts with PWS were enrolled to the study, including 34 treated with rhGH with a median dose of 0.21 mg/kg/week. LDAT was performed in 46 pts, and GST was carried out in 13 pts. Both tests were conducted in 11 pts. The tests began at 8:00 a.m. Hormones were measured by radioimmunoassays. Serum cortisol response >181.2 ng/mL (500 nmol/L) in LDAT and >199.3 ng/mL (550 nmol/L) in GST was considered a normal response. Additionally, cortisol response delta (the difference between baseline and baseline) >90 ng/mL and doubling/tripling of baseline cortisol were considered indicators of normal adrenal reserve. Results: Three GSTs were not diagnostic (no hypoglycemia obtained). LDAT results suggested CAI in four pts, but in two out of four pts, and CAI was excluded in GST. GST results suggested CAI in only one patient, but it was excluded in LDAT. Therefore, CAI was diagnosed in 2/46 pts (4.3%), 1 treated and 1 untreated with rhGH, with the highest cortisol values of 162 and 175 ng/dL, but only in one test. However, in one of them, the cortisol delta response was >90 ng/mL and peak cortisol was more than tripled from baseline. Finally, CAI was diagnosed in one patient treated with rhGH (2.2%). Conclusion: We present low prevalence of CAI in pediatric pts with PWS according to the latest literature. Therefore, we do not recommend to routinely screen the function of the hypothalamic-pituitary-adrenal axis (HPAA) in all pts with PWS, both treated and untreated with rhGH. According to a review of the literature, signs and symptoms or low morning ACTH levels suggestive of CAI require urgent and appropriate diagnosis of HPAA by stimulation test. Our data indicate that the diagnosis of CAI should be confirmed by at least two tests to prevent overtreatment with hydrocortisone.


Assuntos
Hidrocortisona , Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Síndrome de Prader-Willi , Humanos , Síndrome de Prader-Willi/tratamento farmacológico , Síndrome de Prader-Willi/sangue , Síndrome de Prader-Willi/complicações , Feminino , Masculino , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/metabolismo , Criança , Pré-Escolar , Hidrocortisona/sangue , Adolescente , Insuficiência Adrenal/diagnóstico , Insuficiência Adrenal/sangue , Insuficiência Adrenal/tratamento farmacológico , Insuficiência Adrenal/epidemiologia , Lactente , Hormônio do Crescimento Humano/sangue , Hormônio Adrenocorticotrópico/sangue , Hormônio Adrenocorticotrópico/administração & dosagem , Glucagon/sangue
6.
J Drugs Dermatol ; 23(6): 433-437, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38834220

RESUMO

BACKGROUND: Clascoterone cream 1% is a topical androgen receptor inhibitor approved to treat acne vulgaris in patients =>12 years of age. This report provides details of patients who developed laboratory signs of hypothalamic-pituitary-adrenal (HPA) axis suppression without clinical signs of adrenal suppression during the clascoterone development program. METHODS: Two open-label, multicenter, Phase 2 trials evaluated HPA axis suppression in patients with moderate-to-severe acne vulgaris. Study 1 (NCT01831960) enrolled cohorts of adults =>18 years of age and adolescents =>12 to <18 years of age. Study 2 (NCT02720627) enrolled adolescents 9 to <12 years of age. Patients applied clascoterone twice daily at maximum-exposure dosages for 14 days. Adrenal suppression was evaluated via cosyntropin stimulation test (CST) at baseline and day 14. Patients with an abnormal CST result (serum cortisol level =<18 µg/dL) had a follow-up CST approximately 4 weeks later. Blood was collected for pharmacokinetic analysis. Other safety assessments included adverse events (AEs), physical examination/vital signs, and electrocardiography. RESULTS: Overall, 5/69 clascoterone-treated patients had an abnormal CST result on day 14, including 1/20 adults, 2/22 patients aged =>12 to <18 years, and 2/27 patients aged 9 to <12 years. All patients had normal cortisol levels at follow-up testing approximately 4 weeks later. No relationship was observed between abnormal CST results and clascoterone plasma concentrations or the amount of study drug applied. No clinically relevant AEs or clinically significant changes in safety measures were observed in patients with adrenal suppression. CONCLUSION: Clascoterone induced laboratory evidence of mild, reversible HPA axis suppression under maximum-use exposure. J Drugs Dermatol. 2024;23(6):433-437.     doi:10.36849/JDD.7997.


Assuntos
Acne Vulgar , Hidrocortisona , Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Humanos , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Acne Vulgar/tratamento farmacológico , Adolescente , Masculino , Feminino , Adulto , Criança , Adulto Jovem , Hidrocortisona/sangue , Cortodoxona/administração & dosagem , Cortodoxona/análogos & derivados , Cortodoxona/sangue , Administração Cutânea , Creme para a Pele/administração & dosagem , Creme para a Pele/efeitos adversos , Antagonistas de Receptores de Andrógenos/administração & dosagem , Antagonistas de Receptores de Andrógenos/efeitos adversos , Resultado do Tratamento , Cosintropina/administração & dosagem , Propionatos
7.
Pestic Biochem Physiol ; 202: 105961, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879309

RESUMO

Exposure to specific pesticides has been demonstrated to alter normal thyroid function of aquatic vertebrates. This study aimed to investigate the impact of penthiopyrad (PO) on the thyroid function of zebrafish, further elucidating its toxic mechanisms on the early developmental stages of zebrafish. Exposure to sublethal doses of PO (0.3-1.2 mg/L) for 8 days from 2 h after fertilization resulted in a significant reduction in larval swim bladder size and body weight, accompanied by developmental abnormalities such as pigment deposition and abnormal abdominal development. Perturbations in the hypothalamic-pituitary-thyroid (HPT) axis in larvae manifested as a marked upregulation of crh, tg, ttr, and ugt1ab expression, alongside downregulation of trß expression, culminating in elevated thyroxine (T4) and triiodothyronine (T3) levels. Additionally, molecular docking results suggest that PO and its metabolites may disrupt the binding of thyroid hormones to thyroid hormone receptor beta (TRß), compromising the normal physiological function of TRß. These findings highlight the PO-induced adverse effects on the HPT axis of larvae under sublethal doses, eventually leading to abnormal development and growth inhibition.


Assuntos
Glândula Tireoide , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/metabolismo , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Larva/efeitos dos fármacos , Larva/metabolismo , Tiroxina/metabolismo , Tri-Iodotironina/metabolismo , Simulação de Acoplamento Molecular , Hormônios Tireóideos/metabolismo , Hipófise/metabolismo , Hipófise/efeitos dos fármacos , Receptores beta dos Hormônios Tireóideos/metabolismo , Receptores beta dos Hormônios Tireóideos/genética
8.
Physiol Behav ; 283: 114601, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38838800

RESUMO

AIM: The hypothesis of this study is to determine the effects of intracerebroventricular (icv) prokineticin 2 infusion on food consumption and body weight and to elucidate whether it has effects on energy expenditure via the hypothalamus-pituitary-thyroid (HPT) axis in adipose tissue. MATERIAL AND METHODS: A total of 40 rats were used in the study and 4 groups were established: Control, Sham, Prokineticin 1.5 and Prokineticin 4.5 (n=10). Except for the Control group, rats were treated intracerebroventricularly via osmotic minipumps, the Sham group was infused with aCSF (vehicle), and the Prokineticin 1.5 and Prokineticin 4.5 groups were infused with 1.5 nMol and 4.5 nMol prokineticin 2, respectively. Food and water consumption and body weight were monitored during 7-day infusion in all groups. At the end of the infusion, the rats were decapitated and serum TSH, fT4 and fT3 levels were determined by ELISA. In addition, PGC-1α and UCP1 gene expression levels in white adipose tissue (WAT) and brown adipose tissue (BAT), TRH from rat hypothalamic tissue were determined by real-time PCR. RESULTS: Icv prokineticin 2 (4.5 nMol) infusion had no effect on water consumption but reduced daily food consumption and body weight (p<0.05). Icv prokineticin 2 (4.5 nMol) infusion significantly increased serum TSH, fT4 and fT3 levels when compared to Control and Sham groups (p<0.05). Also, icv prokineticin 2 (4.5 nMol) infusion increased the expression of TRH in the hypothalamus tissue and expression of PGC-1α UCP1 in the WAT and BAT (p<0.05). CONCLUSION: Icv prokineticin 2 (4.5 nMol) infusion may suppress food consumption via its receptors in the hypothalamus and reduce body weight by stimulating energy expenditure and thermogenesis in adipose tissue through the HPT axis.


Assuntos
Peso Corporal , Ingestão de Alimentos , Metabolismo Energético , Hormônios Gastrointestinais , Infusões Intraventriculares , Glândula Tireoide , Animais , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Masculino , Peso Corporal/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/metabolismo , Ratos , Hormônios Gastrointestinais/metabolismo , Hormônios Gastrointestinais/administração & dosagem , Proteína Desacopladora 1/metabolismo , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Neuropeptídeos/metabolismo , Neuropeptídeos/administração & dosagem , Tireotropina/sangue , Tireotropina/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Tiroxina/sangue , Tiroxina/administração & dosagem , Ingestão de Líquidos/efeitos dos fármacos , Tri-Iodotironina/administração & dosagem , Tri-Iodotironina/sangue , Tri-Iodotironina/farmacologia , Ratos Wistar , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos
9.
Ecotoxicol Environ Saf ; 281: 116584, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38896904

RESUMO

Carbaryl is a widely used carbamate pesticide that has been detected in the marine environment, but its effects on marine fish are still unknown. This study was aimed to investigate the effects of long-term exposure of carbaryl on male marine medaka. For this purpose, we set up five exposure concentration groups of 0, 0.1, 1, 10, and 100 µg/L for 180 days. On the one hand, we observed increased aggression and decreased ability to avoid predators in males after exposure, which was affected by the levels of HPA-axis hormones, especially decreased cortisol level. On the other hand, after exposure, HPG axis hormone levels and gene transcription levels were disturbed. Males exhibited a decreased gonadosomatic index and a notable reduction in mature sperm proportion and the F1 generation displayed a significant increase in malformation rate. Additionally, the number of apoptotic cells and the transcription level of apoptosis-related genes in the brains of male marine medaka substantially increased after exposure. Apoptosis of brain cells may be responsible for the disturbance of HPA and HPG axes, consequently leading to behavioral and reproductive abnormalities. These findings provide novel insights into evaluating the toxic effects of carbaryl on male marine medaka and emphasizing the criticality of exploring the potential environmental risks posed by carbaryl in the marine environment, thus providing toxicity value basis for further strengthening marine environmental monitoring and the protection of biological resources.


Assuntos
Apoptose , Comportamento Animal , Carbaril , Sistema Hipotálamo-Hipofisário , Oryzias , Reprodução , Poluentes Químicos da Água , Animais , Masculino , Oryzias/fisiologia , Carbaril/toxicidade , Apoptose/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Hidrocortisona , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Inseticidas/toxicidade
10.
Environ Sci Pollut Res Int ; 31(29): 42212-42229, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38862804

RESUMO

The present study investigated the effects of zinc on the hypothalamo-pituitary-gonadal-liver (HPGL) axis of the bagrid catfish Mystus vittatus. Female fish (pre-ovulatory and ovulatory phases) were exposed to zinc sulphate at 1/10th of LC50 (5.62 mg/L) for 60 days and sacrificed at every 15-day interval to collect tissues. Zinc concentration in all tissues was significantly higher in the metal-exposed group at all exposure durations compared to control for both phases. Metallothionein (MT) levels increased in the brain, liver and ovary of fish from both phases with exposure duration. Reactive oxygen species (ROS) generation in the brain, liver and ovary tissues increased with exposure duration at both reproductive phases while serum cortisol levels in ovulatory fish increased significantly compared to pre-ovulatory. Condition factor, gonadosomatic index and hepatosomatic index decreased in Zn-exposed fish. Brain GnRH and kisspeptin levels decreased significantly in the Zn-exposed group for both phases. GnIH was significantly higher in Zn-exposed fish. Serum FSH levels in pre-ovulatory and LH levels in ovulatory fish decreased gradually with an increase in the duration of exposure. Zn exposure reduced vitellogenin (Vtg) and estradiol (E2) in the liver and ovary with an increase in duration from both phases. Ovary maturation-inducing hormone (MIH) levels showed a decrease with exposure duration in ovulatory fish. Moreover, Zn-exposed ovulatory fish showed a degenerated oocyte nucleus due to the disintegration of the nuclear membrane. It might be inferred that Zn altered the HPGL regulatory system of M. vittatus reproduction at both the pre-ovulatory and ovulatory phases.


Assuntos
Peixes-Gato , Sistema Hipotálamo-Hipofisário , Fígado , Reprodução , Zinco , Animais , Feminino , Reprodução/efeitos dos fármacos , Fígado/efeitos dos fármacos , Peixes-Gato/fisiologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Ovário/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade
11.
Biochem Biophys Res Commun ; 725: 150219, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-38941883

RESUMO

BACKGROUND: Neonates undergo numerous painful procedures throughout their hospitalization. Repeated procedural pain may cause adverse long-term effects. Glucose as a non-pharmacological analgesia, is used for neonate pain management. In this study, potential mechanism of attenuate pain induced by glucose in neurodevelopment effect of neonate pain stimulus was investigated. METHODS: Neonatal rats to perform a repetitive injury model and glucose intervention model in the postnatal day 0-7(P0-7). Pain thresholds were measured by von Frey test weekly. The puberty behavioral outcome, tissue loss and protein expression in hippocampus were analyzed. RESULTS: Oral administration of glucose after repeated pain stimulation can maintain the hippocampal structure in, and reduce the expressions of corticotropin releasing factor (CFR) and glucocorticoid receptor (GR), therefore, resulted in long-term threshold of pain and cognitive improvement. CONCLUSION: Exposure to neonatal repeated procedural pain causes persistent mechanical hypersensitivity and the dysfunction of spatial memory retention at puberty. In addition, glucose can relieve these adverse effects, possibly via decreasing CRF/GR levels to change the hypothalamus-pituitary-adrenal (HPA) axis.


Assuntos
Animais Recém-Nascidos , Hormônio Liberador da Corticotropina , Glucose , Hipocampo , Dor , Ratos Sprague-Dawley , Receptores de Glucocorticoides , Animais , Glucose/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Receptores de Glucocorticoides/metabolismo , Dor/metabolismo , Dor/etiologia , Ratos , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Masculino , Limiar da Dor/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/metabolismo , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Feminino
12.
Birth Defects Res ; 116(6): e2368, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38873958

RESUMO

BACKGROUND: Nanoplastics can be considered a novel contaminant for the environment because of their extensive applications in modern society, which represents a possible threat to humans. Nevertheless, the negative effect of polystyrene nanoplastics (PS-NPs) on male reproduction, fertility, and progeny outcomes is not well known. Thus, the aim of the present work was to calculate the median lethal dose (LD50) and investigate the consequences of exposure to PS-NPs (25 nm) on male reproductive toxicity. METHODS: This investigation first determined the LD50 of PS-NPs in male Wistar rats, and then in a formal study, 24 rats were distributed into three groups (n = 8): the control group; the low-dose group (3 mg/kg bw); and the high-dose group (10 mg/kg bw) of PS-NPs administered orally for 60 days. On the 50th day of administration, the fertility test was conducted. RESULTS: The LD50 was determined to be 2500 mg/kg. PS-NP administration induced significant alternations, mainly indicating mortality in the high-dose group, a significant elevation in body weight gain, declined sperm quality parameters, altered reproductive hormonal levels, thyroid endocrine disruption, an alternation of the normal histo-architecture and the histo-morphometric analysis of the testes, and impaired male fertility. CONCLUSION: Altogether, the current findings provide novel perspectives on PS-NP general toxicity with specific reference to male reproductive toxicity.


Assuntos
Poliestirenos , Ratos Wistar , Reprodução , Testículo , Animais , Masculino , Testículo/efeitos dos fármacos , Testículo/metabolismo , Poliestirenos/toxicidade , Ratos , Reprodução/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Administração Oral , Fertilidade/efeitos dos fármacos , Nanopartículas/toxicidade , Microplásticos/toxicidade , Dose Letal Mediana , Hormônios/metabolismo , Espermatozoides/efeitos dos fármacos
13.
Mol Biol Rep ; 51(1): 656, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740671

RESUMO

BACKGROUND: Prokineticin 2 (PROK2), an important neuropeptide that plays a key role in the neuronal migration of gonadotropin-releasing hormone (GnRH) in the hypothalamus, is known to have regulatory effects on the gonads. In the present study, the impact of intracerebroventricular (icv) PROK2 infusion on hypothalamic-pituitary-gonadal axis (HPG) hormones, testicular tissues, and sperm concentration was investigated. METHODS AND RESULTS: Rats were randomly divided into four groups: control, sham, PROK2 1.5 and PROK2 4.5. Rats in the PROK2 1.5 and PROK2 4.5 groups were administered 1.5 nmol and 4.5 nmol PROK2 intracerebroventricularly for 7 days via an osmotic mini pump (1 µl/h), respectively. Rat blood serum follicle stimulating hormone (FSH), luteinizing hormone (LH) and testosterone hormone levels were determined with the ELISA method in the blood samples after 7 days of infusion. GnRH mRNA expression was determined with the RT-PCR in hypothalamus tissues. analyze Sperm concentration was determined, and testicular tissue was examined histologically with the hematoxylin-eosin staining method. It was observed that GnRH mRNA expression increased in both PROK2 infusion groups. Serum FSH, LH and testosterone hormone levels also increased in these groups. Although sperm concentration increased in PROK2 infusion groups when compared to the control and sham, the differences were not statistically significant. Testicular tissue seminiferous epithelial thickness was higher in the PROK2 groups when compared to the control and sham groups. CONCLUSION: The present study findings demonstrated that icv PROK2 infusion induced the HPG axis. It could be suggested that PROK2 could be a potential agent in the treatment of male infertility induced by endocrinological defects.


Assuntos
Hormônio Foliculoestimulante , Hormônios Gastrointestinais , Hormônio Liberador de Gonadotropina , Hormônio Luteinizante , Neuropeptídeos , Testículo , Testosterona , Masculino , Animais , Ratos , Hormônios Gastrointestinais/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Testosterona/sangue , Testosterona/metabolismo , Hormônio Foliculoestimulante/sangue , Hormônio Foliculoestimulante/metabolismo , Testículo/metabolismo , Testículo/efeitos dos fármacos , Hormônio Luteinizante/sangue , Hormônio Luteinizante/metabolismo , Neuropeptídeos/metabolismo , Neuropeptídeos/farmacologia , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Infusões Intraventriculares , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacos , Contagem de Espermatozoides , Ratos Sprague-Dawley , Eixo Hipotalâmico-Hipofisário-Gonadal
14.
Stress ; 27(1): 2357330, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38775373

RESUMO

Why individuals suffer negative consequences following stress is a complex phenomenon that is dictated by individual factors, the timing of stress within the lifespan, and when in the lifespan the consequences are measured. Women who undergo adverse childhood experiences are at risk for lasting biological consequences, including affective and stress dysregulation. We have shown that pubertal adversity is associated with a blunted hypothalamic-pituitary-adrenal axis glucocorticoid response in peripartum humans and mice. In mice, our prior examination of the paraventricular nucleus (PVN) of the hypothalamus showed that pubertal stress led to an upregulation of baseline mRNA expression of six immediate early genes (IEGs) in the PVN of adult, pregnant mice. Separately, we showed that the pregnancy-associated hormone allopregnanolone is necessary and sufficient to produce the blunted stress response phenotype in pubertally stressed mice. In the current study, we further examined a potential mechanistic role for the IEGs in the PVN. We found that in pubertally stressed adult female, but not male, mice, intra-PVN allopregnanolone was sufficient to recapitulate the baseline IEG mRNA expression profile previously observed in pubertally stressed, pregnant mice. We also examined baseline IEG mRNA expression during adolescence, where we found that IEGs have developmental trajectories that showed sex-specific disruption by pubertal stress. Altogether, these data establish that IEGs may act as a key molecular switch involved in increased vulnerability to negative outcomes in adult, pubertally stressed animals. How the factors that produce vulnerability combine throughout the lifespan is key to our understanding of the etiology of stress-related disorders.


Assuntos
Núcleo Hipotalâmico Paraventricular , Estresse Psicológico , Transcriptoma , Animais , Feminino , Masculino , Camundongos , Estresse Psicológico/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Pregnanolona , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacos , Gravidez , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Maturidade Sexual , Genes Precoces
15.
Pharmacol Res Perspect ; 12(3): e1205, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38764237

RESUMO

This study aimed to examine the effect of acute exogenous melatonin administration on salivary cortisol and alpha-amylase (sCort and sAA) as representatives of the HPA axis and the sympathetic nervous system, respectively. A single-dose prolonged-release melatonin (2 mg) or a placebo tablet was given to healthy volunteers (n = 64) at 20:00 h in a crossover design. The saliva was collected at six time points (20:00, 21:00, awakening, 30 min after awakening, 10:00, and 12:00 h) and was measured for sCort, sAA, and salivary melatonin (sMT) levels. Pulse rates and sleep parameters were also collected. Melatonin was effective in improving sleep onset latency by 7:04 min (p = .037) and increasing total sleep time by 24 min (p = .006). Participants with poor baseline sleep quality responded more strongly to melatonin than participants with normal baseline sleep quality as they reported more satisfaction in having adequate sleep (p = .017). Melatonin administration resulted in higher sCort levels at awakening time point (p = .023) and a tendency of lower sAA levels but these were not significant. Melatonin ingestion at 20:00 h resulted in a marked increase in sMT levels at 21:00 h and remained higher than baseline up to at least 10:00 h (p < .001). Melatonin increases sCort levels at certain time point with a tendency to lower sAA levels. These opposing effects of melatonin suggested a complex interplay between melatonin and these biomarkers. Also, the results confirmed the positive acute effect of a single-dose melatonin on sleep quality.


Assuntos
Estudos Cross-Over , Hidrocortisona , Melatonina , Saliva , Humanos , Melatonina/administração & dosagem , Melatonina/farmacologia , Saliva/química , Saliva/metabolismo , Hidrocortisona/metabolismo , Masculino , Adulto , Feminino , Adulto Jovem , alfa-Amilases/metabolismo , Sono/efeitos dos fármacos , Qualidade do Sono , Método Duplo-Cego , Voluntários Saudáveis , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/metabolismo , Preparações de Ação Retardada
16.
Nutrients ; 16(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38732539

RESUMO

BACKGROUND: Stress is a known causative factor in modulating cognitive health, which overall well-being and quality of life are dependent on. Long-term stress has been shown to disrupt the balance of the hypothalamic-pituitary-adrenal (HPA) axis. Adaptogens, such as Withania somnifera (ashwagandha), are commonly used in Ayurvedic medicine for stress relief and ameliorating HPA-axis dysfunction. The aim of this study was to support the role of a root and leaf water-extracted ashwagandha extract (WS) in stress reduction by confirming the lowest clinically validated dose for stress management (125 mg/day) in a dose-dependent clinical study in adults with self-reported high stress. METHODS: An 8-week, randomized, double-blinded, placebo-controlled study to compare the effects of three different WS extract doses (125, 250 and 500 mg) was performed. A total of 131 adults were enrolled, and 98 were included in the final analysis. Attenuation of chronic stress was measured using the 14-item Perceived Stress Scale (PSS) and biochemical-related stress parameters. RESULTS: We have shown that aqueous WS extract (roots and leaves) safely reduces mild to moderate chronic stress at doses of 125 mg, 250 mg, and 500 mg/day for 8 weeks. CONCLUSIONS: Our findings demonstrate the stress-reduction capabilities of this well-characterized aqueous extract of WS (root and leaf) at the low dose of 125 mg/day, in a dose-dependent manner, via the modulation of the HPA axis. TRIAL REGISTRATION: This study was registered with the Clinical Trials Registry-India (CTRI) with the registration number: CTRI/2019/11/022100.


Assuntos
Extratos Vegetais , Folhas de Planta , Raízes de Plantas , Estresse Psicológico , Withania , Humanos , Withania/química , Extratos Vegetais/farmacologia , Masculino , Feminino , Adulto , Método Duplo-Cego , Estresse Psicológico/tratamento farmacológico , Folhas de Planta/química , Pessoa de Meia-Idade , Raízes de Plantas/química , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Doença Crônica , Ayurveda , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Adulto Jovem , Fitoterapia
17.
Fitoterapia ; 176: 106006, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38744386

RESUMO

Yinyanghuo, a famous herb, includes the folium of Epimedium brevicornu Maxim. and Epimedium sagittatum Maxim. It is believed that their processed products, the prepared slices of the folium of Epimedium brevicornu Maxim. (PFEB) and Epimedium sagittatum Maxim. (PFES) have greater efficacy in tonifying kidney Yang to treat kidney-Yang deficiency syndrome (KDS). However, there are few studies comparing the pharmacological effects of PFEB and PFES, and the underlying mechanisms. This study compared their effects on improving hypothalamic-pituitary-adrenal (HPA) axis, immune system and sexual characteristic, as well as repairing liver injury complications in the KDS model mice. Additionally, the mechanisms of the effects relevance to their main components were explored. It was found that PFEB was more effective than PFES in increasing cAMP/cGMP ratio, SOD activity, CRH and ACTH levels, eNOS and testosterone levels, splenic lymphocytes proliferation, while in decreasing MDA content, atrophy of spleen and thymus, splenic lymphocytes apoptosis, and PDE5 level. PFES showed stronger protection than PFEB in decreasing triglyceride and hepatic lipid. The contents of baohuoside I and epimedin A, B were much higher in PFEB, while Epimedin C, Icariin, 2-O″-rhamnosylicaridide II were higher in PFES. Consequently, PFEB exhibits superior efficacy over PFES in tonifying the kidney-Yang by improving the neuroendocrine-immune network, including HPA axis, immune systems, and corpus cavernosum. However, PFES has better recovery effect on mild hepatic lipid caused by KDS. The efficacy difference between PFEB and PFES in kidney-Yang and liver may be attributed to the content variations of baohuoside I.


Assuntos
Epimedium , Deficiência da Energia Yang , Animais , Epimedium/química , Camundongos , Deficiência da Energia Yang/tratamento farmacológico , Masculino , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Rim/efeitos dos fármacos , Baço/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Fígado/efeitos dos fármacos , Nefropatias/tratamento farmacológico
19.
Ecotoxicol Environ Saf ; 276: 116300, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583312

RESUMO

Bisphenol AF (BPAF), an analogue of bisphenol A (BPA), is commonly found in manufacturing industries and known for its endocrine-disrupting properties. Despite potential similarities in adverse effects with BPA, limited toxicological data exist specifically for BPAF and its impact on male reproductive physiology. This mini-review aims to elucidate the influence of BPAF on the male reproductive system, focusing on estrogenic effects, effects on the hypothalamus-pituitary-gonad (HPG) axis, steroidogenesis, spermatogenesis, and transgenerational reproductive toxicity. Additionally, we outline the current insights into the potential mechanisms underlying BPAF-induced male reproductive disorders. BPAF exposure, either directly or maternally, has been associated with detrimental effects on male reproductive functions, including damage to the blood-testis barrier (BTB) structure, disruptions in steroidogenesis, testis dysfunction, decreased anogenital distance (AGD), and defects in sperm and semen quality. Mechanistically, altered gene expression in the HPG axis, deficits in the steroidogenesis pathway, activation of the aromatase pathway, cascade effects induced by reactive oxygen species (ROS), activation of ERK signaling, and immunological responses collectively contribute to the adverse effects of BPAF on the male reproductive system. Given the high prevalence of male reproductive issues and infertility, along with the widespread environmental distribution of bisphenols, this study provides valuable insights into the negative effects of BPAF. The findings underscore the importance of considering the safe use of this compound, urging further exploration and regulatory attention to decrease potential risks associated with BPAF exposure.


Assuntos
Compostos Benzidrílicos , Disruptores Endócrinos , Fluorocarbonos , Fenóis , Masculino , Disruptores Endócrinos/toxicidade , Fenóis/toxicidade , Compostos Benzidrílicos/toxicidade , Humanos , Animais , Saúde Reprodutiva , Reprodução/efeitos dos fármacos , Genitália Masculina/efeitos dos fármacos , Espermatogênese/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Testículo/efeitos dos fármacos
20.
Food Chem Toxicol ; 188: 114656, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615797

RESUMO

In recent years, with the acceleration of industrialization, the decline of male fertility caused by heavy metal pollution has attracted much attention. However, whether the inhibition of testicular function after cadmium exposure is reversible remains to be studied. In this study, we constructed rat models of cadmium exposure and dis-exposure, and collected relative samples to observe the changes of related indicators. The results showed that cadmium exposure could reduce the fertility, inhibit the hypothalamic-pituitary-testis axis and activate hypothalamic-pituitary-adrenal axis function, the testicular GR/PI3K-AKT/AMPK signal was abnormal, cell proliferation was inhibited and apoptosis was enhanced. Four weeks after the exposure was stopped, the fertility was still decreased, testicular testosterone synthesis and spermatogenesis were inhibited, cell proliferation was inhibited and apoptosis was enhanced, but all of them were reversed. After eight weeks of cadmium exposure, the above indicators were observed to return to normal. At the same time, by giving different concentrations of corticosterone to spermatogonium, we confirmed that corticosterone may regulate the proliferation and apoptosis of spermatogonium through GR/PI3K-AKT/AMPK signal. In this study, the reproductive toxicity of cadmium, a metal environmental pollutant, was analyzed in depth to provide a new theoretical and experimental basis for ensuring male reproductive health.


Assuntos
Apoptose , Cádmio , Ratos Sprague-Dawley , Testículo , Masculino , Animais , Cádmio/toxicidade , Testículo/efeitos dos fármacos , Testículo/metabolismo , Ratos , Apoptose/efeitos dos fármacos , Testosterona/metabolismo , Espermatogênese/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Corticosterona , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...