Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.903
Filtrar
2.
Bone Res ; 12(1): 42, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103328

RESUMO

Ageing as a natural irreversible process inherently results in the functional deterioration of numerous organ systems and tissues, including the skeletal and immune systems. Recent studies have elucidated the intricate bidirectional interactions between these two systems. In this review, we provide a comprehensive synthesis of molecular mechanisms of cell ageing. We further discuss how age-related skeletal changes influence the immune system and the consequent impact of immune system alterations on the skeletal system. Finally, we highlight the clinical implications of these findings and propose potential strategies to promote healthy ageing and reduce pathologic deterioration of both the skeletal and immune systems.


Assuntos
Envelhecimento , Osso e Ossos , Sistema Imunitário , Humanos , Envelhecimento/imunologia , Envelhecimento/fisiologia , Sistema Imunitário/imunologia , Sistema Imunitário/fisiologia , Osso e Ossos/imunologia , Animais
3.
Immunohorizons ; 8(8): 552-562, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39172025

RESUMO

Mother and child are immunologically interconnected by mechanisms that we are only beginning to understand. During pregnancy, multiple molecular and cellular factors of maternal origin are transferred across the placenta and influence the development and function of the fetal and newborn immune system. Altered maternal immune states arising from pregnancy-associated infections or immunizations have the potential to program offspring immune function in ways that may have long-term health consequences. In this study, we review current literature on the impact of prenatal infection and vaccination on the developing immune system, highlight knowledge gaps, and look to the horizon to envision maternal interventions that could benefit both the mother and her child.


Assuntos
Vacinação , Humanos , Gravidez , Feminino , Recém-Nascido , Placenta/imunologia , Sistema Imunitário/imunologia , Complicações Infecciosas na Gravidez/imunologia , Troca Materno-Fetal/imunologia , Mães , Criança , Feto/imunologia , Efeitos Tardios da Exposição Pré-Natal/imunologia
4.
Dev Comp Immunol ; 160: 105237, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39103004

RESUMO

Historically, amphibians have been essential to our understanding of vertebrate biology and animal development. Because development from egg to tadpole to adult frog can be directly observed, amphibians contributed greatly to our understanding of not only vertebrate animal development but also the development of the immune system. The South African clawed frog (Xenopus laevis) has been key to many of these findings. For example, using Xenopus as a model, the comparative immunology community learned about the contribution of hematopoietic stem cells to development of the immune system and about the diversity of antibodies, B cells, T cells and antigen presenting cells. Amphibians offer many advantages as unique potential model systems to address questions about immune skin interactions, host responses to mycobacteria, the diverse functions of interferons, and immune and mucosal interactions. However, there are also many challenges to advance the research including the lack of specific reagents and well annotated genomes of diverse species. While much is known, many important questions remain. The aim of this short commentary is to look to the future of comparative immunology of amphibians as a group. By identifying some important questions or "information-deficit" areas of research, I hope to pique the interest of younger developing scientists and persuade funding agencies to continue to support comparative immunology studies including those of amphibians.


Assuntos
Anfíbios , Animais , Anfíbios/imunologia , Alergia e Imunologia , Sistema Imunitário/imunologia , Xenopus laevis/imunologia
5.
Front Immunol ; 15: 1413485, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39144142

RESUMO

Millions of microorganisms make up the complex microbial ecosystem found in the human gut. The immune system's interaction with the gut microbiota is essential for preventing inflammation and maintaining intestinal homeostasis. Numerous metabolic products that can cross-talk between immune cells and the gut epithelium are metabolized by the gut microbiota. Traumatic injury elicits a great and multifaceted immune response in the minutes after the initial offense, containing simultaneous pro- and anti-inflammatory responses. The development of innovative therapies that improve patient outcomes depends on the gut microbiota and immunological responses to trauma. The altered makeup of gut microbes, or gut dysbiosis, can also dysregulate immunological responses, resulting in inflammation. Major human diseases may become more common as a result of chronic dysbiosis and the translocation of bacteria and the products of their metabolism beyond the mucosal barrier. In this review, we briefly summarize the interactions between the gut microbiota and the immune system and human disease and their therapeutic probiotic formulations. We also discuss the immune response to traumatic injury.


Assuntos
Disbiose , Microbioma Gastrointestinal , Ferimentos e Lesões , Humanos , Microbioma Gastrointestinal/imunologia , Disbiose/imunologia , Animais , Ferimentos e Lesões/imunologia , Ferimentos e Lesões/microbiologia , Probióticos/uso terapêutico , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Inflamação/imunologia , Inflamação/microbiologia
7.
Biochem Pharmacol ; 227: 116441, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39029632

RESUMO

T cell receptor (TCR) is a kind of surface marker that are specific to T cells. The TCR regulates T cell function and participates in the body's immunological response to prevent immune dysregulation and inflammatory reactions by identifying and binding exogenous antigens. Due to its brief intracellular segment, TCR requires intracellular molecules to assist with signaling. Among these, the CD3 molecule is one of the most important. The CD3 molecule involves in TCR structural stability as well as T cell activation signaling. A TCR-CD3 complex is created when TCR and CD3 form a non-covalent bond. Antigen recognition and T cell signaling are both facilitated by the TCR-CD3 complex. When a CD3 subunit is absent, a TCR-CD3 complex cannot form, and none of the subunits is transported to the cell surface. Thus, T cells cannot develop. Consequently, research on the physiological functions and potential pathogenicity of CD3 subunits can clarify the pathogenesis of immune system diseases and can offer fresh approaches to the treatment of it. In this review, the structure and function of the TCR-CD3 complex in the immune system was summarized, the pathogenicity of each CD3 subunit and therapeutic approaches to related diseases was explored and research directions for the development of new targeted drugs was provided.


Assuntos
Complexo Receptor-CD3 de Antígeno de Linfócitos T , Humanos , Animais , Complexo Receptor-CD3 de Antígeno de Linfócitos T/imunologia , Complexo Receptor-CD3 de Antígeno de Linfócitos T/metabolismo , Complexo CD3/imunologia , Complexo CD3/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Transdução de Sinais/fisiologia , Transdução de Sinais/imunologia , Doenças do Sistema Imunitário/imunologia , Doenças do Sistema Imunitário/metabolismo
8.
Exp Mol Med ; 56(7): 1667-1681, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39026032

RESUMO

Patients with chronic liver disease (CLD) often present with significant frailty, sarcopenia, and impaired immune function. However, the mechanisms driving the development of these age-related phenotypes are not fully understood. To determine whether accelerated biological aging may play a role in CLD, epigenetic, transcriptomic, and phenotypic assessments were performed on the skeletal muscle tissue and immune cells of CLD patients and age-matched healthy controls. Accelerated biological aging of the skeletal muscle tissue of CLD patients was detected, as evidenced by an increase in epigenetic age compared with chronological age (mean +2.2 ± 4.8 years compared with healthy controls at -3.0 ± 3.2 years, p = 0.0001). Considering disease etiology, age acceleration was significantly greater in both the alcohol-related (ArLD) (p = 0.01) and nonalcoholic fatty liver disease (NAFLD) (p = 0.0026) subgroups than in the healthy control subgroup, with no age acceleration observed in the immune-mediated subgroup or healthy control subgroup (p = 0.3). The skeletal muscle transcriptome was also enriched for genes associated with cellular senescence. Similarly, blood cell epigenetic age was significantly greater than that in control individuals, as calculated using the PhenoAge (p < 0.0001), DunedinPACE (p < 0.0001), or Hannum (p = 0.01) epigenetic clocks, with no difference using the Horvath clock. Analysis of the IMM-Age score indicated a prematurely aged immune phenotype in CLD patients that was 2-fold greater than that observed in age-matched healthy controls (p < 0.0001). These findings suggested that accelerated cellular aging may contribute to a phenotype associated with advanced age in CLD patients. Therefore, therapeutic interventions to reduce biological aging in CLD patients may improve health outcomes.


Assuntos
Envelhecimento , Epigênese Genética , Músculo Esquelético , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/imunologia , Músculo Esquelético/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Envelhecimento/imunologia , Sistema Imunitário/metabolismo , Sistema Imunitário/imunologia , Transcriptoma , Adulto , Idoso , Doença Crônica , Hepatopatias/imunologia , Hepatopatias/patologia , Estudos de Casos e Controles , Perfilação da Expressão Gênica
9.
DNA Cell Biol ; 43(8): 369-386, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38959180

RESUMO

Teeth are vulnerable to structural compromise, primarily attributed to carious lesions, in which microorganisms originating from the oral cavity deteriorate the mineralized structures of enamel and dentin, subsequently infiltrating the underlying soft connective tissue, known as the dental pulp. Nonetheless, dental pulp possesses the necessary capabilities to detect and defend against bacteria and their by-products, using a variety of intricate defense mechanisms. The pulp houses specialized cells known as odontoblasts, which encounter harmful substances produced by oral bacteria. These cells identify pathogens at an early stage and commence the immune system response. As bacteria approach the pulp, various cell types within the pulp, such as different immune cells, stem cells, fibroblasts, as well as neuronal and vascular networks, contribute a range of defense mechanisms. Therefore, the immune system is present in the healthy pulp to restrain the initial spread of pathogens, and then in the inflamed pulp, it prepares the conditions for necrosis or regeneration, so inflammatory response mechanisms play a critical role in maintaining tissue homeostasis. This review aims to consolidate the existing literature on the immune system in dental pulp, encompassing current knowledge on this topic that explains the diverse mechanisms of recognition and defense against pathogens exhibited by dental pulp cells, elucidates the mechanisms of innate and adaptive immunity in inflamed pulp, and highlights the difference between inflamed and normal pulp tissue.


Assuntos
Polpa Dentária , Polpa Dentária/imunologia , Polpa Dentária/patologia , Humanos , Sistema Imunitário/imunologia , Animais , Pulpite/imunologia , Pulpite/patologia , Imunidade Inata , Imunidade Adaptativa , Inflamação/imunologia , Inflamação/patologia
10.
Virulence ; 15(1): 2384563, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39072499

RESUMO

Phenuiviruses are a class of segmented negative-sense single-stranded RNA viruses, typically consisting of three RNA segments that encode four distinct proteins. The emergence of pathogenic phenuivirus strains, such as Rift Valley fever phlebovirus (RVFV) in sub-Saharan Africa, Severe Fever with Thrombocytopenia Syndrome Virus (SFTSV) in East and Southeast Asia, and Heartland Virus (HRTV) in the United States has presented considerable challenges to global public health in recent years. The innate immune system plays a crucial role as the initial defense mechanism of the host against invading pathogens. In addition to continued research aimed at elucidating the epidemiological characteristics of phenuivirus, significant advancements have been made in investigating its viral virulence factors (glycoprotein, non-structural protein, and nucleoprotein) and potential host-pathogen interactions. Specifically, efforts have focused on understanding mechanisms of viral immune evasion, viral assembly and egress, and host immune networks involving immune cells, programmed cell death, inflammation, nucleic acid receptors, etc. Furthermore, a plethora of technological advancements, including metagenomics, metabolomics, single-cell transcriptomics, proteomics, gene editing, monoclonal antibodies, and vaccines, have been utilized to further our understanding of phenuivirus pathogenesis and host immune responses. Hence, this review aims to provide a comprehensive overview of the current understanding of the mechanisms of host recognition, viral immune evasion, and potential therapeutic approaches during human pathogenic phenuivirus infections focusing particularly on RVFV and SFTSV.


Assuntos
Interações Hospedeiro-Patógeno , Imunidade Inata , Humanos , Interações Hospedeiro-Patógeno/imunologia , Phlebovirus/imunologia , Phlebovirus/genética , Phlebovirus/patogenicidade , Evasão da Resposta Imune , Fatores de Virulência/genética , Fatores de Virulência/imunologia , Vírus da Febre do Vale do Rift/imunologia , Vírus da Febre do Vale do Rift/genética , Vírus da Febre do Vale do Rift/patogenicidade , Sistema Imunitário/virologia , Sistema Imunitário/imunologia
11.
Int Immunopharmacol ; 138: 112611, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38976947

RESUMO

OBJECTIVE: Osteoporosis (OP) is a disease characterized by decreased bone mass, deteriorated microstructure, and increased fragility and fracture risk. The diagnosis and prevention of OP and its complications have become major public health challenges. Therefore, exploring the complex ecological connections between the immune and skeletal systems may provide new insights for clinical prevention and treatment strategies. METHODS: First, we performed single-cell RNA sequencing on human lumbar lamina tissue and conducted clustering and subgroup analysis of quality-controlled single-cell transcriptome data to identify target subgroups. Subsequently, enrichment analysis and pseudotime analysis were performed. In addition, we conducted in-depth studies on the gene regulatory network between different cell subgroups and the communication between bone immune cells. RESULTS: In this study, we identified several cell subgroups that may be involved in the progression of OP. For example, the CCL4+ NKT and CXCL8+ neutrophils subgroups promote OP progression by mediating an inflammatory environment that disrupts bone homeostasis, and the MNDA+ Mac subgroup promotes osteoclast differentiation to promote OP. Moreover, the TNFAIP6+ Obl, NR4A2+ B and HMGN2+ erythrocyte subgroups promoted the balance of bone metabolism and suppressed OP. In the cell communication network, Obl closely interacts with immune cell subgroups through the CXCR4-CXCL12, CTGF-ITGB2, and TNFSF14-TNFRSF14 axes. CONCLUSION: Our research revealed specific subgroups and intercellular interactions that play crucial roles in the pathogenesis of OP, providing potential new insights for more precise therapeutic interventions for OP.


Assuntos
Osteoporose , Análise de Célula Única , Humanos , Osteoporose/imunologia , Osteoporose/genética , Análise de Sequência de RNA , Sistema Imunitário/imunologia , Transcriptoma , Feminino , Osso e Ossos/metabolismo , Osso e Ossos/imunologia , Osso e Ossos/patologia , Redes Reguladoras de Genes , Osteoclastos/imunologia , Comunicação Celular , Masculino
12.
Int J Mol Sci ; 25(13)2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38999993

RESUMO

The process of thyroid autoimmunization develops against the background of genetic predispositions associated with class II human leukocyte antigens (HLA-DR), as well as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), protein tyrosine phosphatase non-receptor type 22 (PTPN22), and forkhead transcription box protein P3 (FOXP3). Environmental factors, such as vitamin D deficiency, Zn, Se, and Mg, as well as infections, chronic stress, pregnancy, smoking, alcohol, medications, intestinal dysbiosis, and malnutrition, also play an important role. The first stage of autoimmunization involves the accumulation of macrophages and dendritic cells, as well as plasma cells. In the second stage, the mutual interactions of individual cells in the immune system lead to a decrease in the level of CD8+ in favor of CD4+, which intensifies the synthesis of T lymphocyte derivatives, especially Th1, Th17, Tfh, and Tc, reducing the level of Treg. Consequently, the number of the anti-inflammatory cytokines IL10 and IL2 decreases, and the synthesis of the pro-inflammatory cytokines IL-2, Il-12, Il-17, IL-21, IL-22, IFN-γ, and TNF-α increases. The latter two especially trigger the pyroptosis process involving the inflammasome. Activation of the inflammasome by IL-ß and IL-18 produced by macrophages is one of the mechanisms of pyroptosis in the course of Hashimoto's thyroiditis, involving Gram-negative bacteria and NLRC4. In the next step, the apoptosis of thyroid cells is initiated by the intensification of perforin, granzyme, and proteoglycan synthesis by Tc and NK cells. The current findings raise many possibilities regarding interventions related to the inhibition of pro-inflammatory cytokines and the stimulation of anti-inflammatory cytokines produced by both T and B lymphocytes. Furthermore, since there is currently no effective method for treating thyroid autoimmunity, a summary of the review may provide answers regarding the treatment of not only Hashimoto's thyroiditis, but also other autoimmune diseases associated with autoimmunity.


Assuntos
Doença de Hashimoto , Humanos , Doença de Hashimoto/imunologia , Doença de Hashimoto/metabolismo , Sistema Imunitário/metabolismo , Sistema Imunitário/imunologia , Citocinas/metabolismo , Animais , Autoimunidade
13.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000211

RESUMO

Diabetes is associated with numerous comorbidities, one of which is increased vulnerability to infections. This review will focus on how diabetes mellitus (DM) affects the immune system and its various components, leading to the impaired proliferation of immune cells and the induction of senescence. We will explore how the pathology of diabetes-induced immune dysfunction may have similarities to the pathways of "inflammaging", a persistent low-grade inflammation common in the elderly. Inflammaging may increase the likelihood of conditions such as rheumatoid arthritis (RA) and periodontitis at a younger age. Diabetes affects bone marrow composition and cellular senescence, and in combination with advanced age also affects lymphopoiesis by increasing myeloid differentiation and reducing lymphoid differentiation. Consequently, this leads to a reduced immune system response in both the innate and adaptive phases, resulting in higher infection rates, reduced vaccine response, and increased immune cells' senescence in diabetics. We will also explore how some diabetes drugs induce immune senescence despite their benefits on glycemic control.


Assuntos
Diabetes Mellitus , Humanos , Diabetes Mellitus/imunologia , Diabetes Mellitus/patologia , Animais , Senescência Celular/imunologia , Inflamação/imunologia , Inflamação/patologia , Sistema Imunitário/imunologia
14.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000249

RESUMO

In recent years, there has been a growing realization of intricate interactions between the nervous and immune systems, characterized by shared humoral factors and receptors. This interplay forms the basis of the neuroimmune system, the understanding of which will provide insights into the pathogenesis of neurological diseases, in which the involvement of the immune system has been overlooked. Kynurenine and its derivatives derived from tryptophan have long been implicated in the pathogenesis of various neurological diseases. Recent studies have revealed their close association not only with neurological disorders but also with sepsis-related deaths. This review provides an overview of the biochemistry of kynurenine and its derivatives, followed by a discussion of their role via the modulation of the neuroimmune system in various diseases.


Assuntos
Cinurenina , Neuroimunomodulação , Humanos , Cinurenina/metabolismo , Animais , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/imunologia , Triptofano/metabolismo , Triptofano/química , Sistema Imunitário/metabolismo , Sistema Imunitário/imunologia , Sepse/imunologia , Sepse/metabolismo
15.
Front Immunol ; 15: 1385319, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962004

RESUMO

The immune system comprises a complex yet tightly regulated network of cells and molecules that play a critical role in protecting the body from infection and disease. The activity and development of each immune cell is regulated in a myriad of ways including through the cytokine milieu, the availability of key receptors, via tailored intracellular signalling cascades, dedicated transcription factors and even by directly modulating gene accessibility and expression; the latter is more commonly known as epigenetic regulation. In recent years, epigenetic regulators have begun to emerge as key players involved in modulating the immune system. Among these, the lysine methyltransferase DOT1L has gained significant attention for its involvement in orchestrating immune cell formation and function. In this review we provide an overview of the role of DOT1L across the immune system and the implications of this role on health and disease. We begin by elucidating the general mechanisms of DOT1L-mediated histone methylation and its impact on gene expression within immune cells. Subsequently, we provide a detailed and comprehensive overview of recent studies that identify DOT1L as a crucial regulator of immune cell development, differentiation, and activation. Next, we discuss the potential mechanisms of DOT1L-mediated regulation of immune cell function and shed light on how DOT1L might be contributing to immune cell homeostasis and dysfunction. We then provide food for thought by highlighting some of the current obstacles and technical limitations precluding a more in-depth elucidation of DOT1L's role. Finally, we explore the potential therapeutic implications of targeting DOT1L in the context of immune-related diseases and discuss ongoing research efforts to this end. Overall, this review consolidates the current paradigm regarding DOT1L's role across the immune network and emphasises its critical role in governing the healthy immune system and its potential as a novel therapeutic target for immune-related diseases. A deeper understanding of DOT1L's immunomodulatory functions could pave the way for innovative therapeutic approaches which fine-tune the immune response to enhance or restore human health.


Assuntos
Epigênese Genética , Histona-Lisina N-Metiltransferase , Sistema Imunitário , Humanos , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Animais , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Imunomodulação , Histonas/metabolismo , Histonas/imunologia
17.
Immunol Rev ; 325(1): 77-89, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38873851

RESUMO

Systemic lupus erythematosus is a complex autoimmune disease resulting from a dysregulation of the immune system that involves gut dysbiosis and an altered host cellular metabolism. This review highlights novel insights and expands on the interactions between the gut microbiome and the host immune metabolism in lupus. Pathobionts, invasive pathogens, and even commensal microbes, when in dysbiosis, can all trigger and modulate immune responses through metabolic reprogramming. Changes in the microbiota's global composition or individual taxa may trigger a cascade of metabolic changes in immune cells that may, in turn, reprogram their functions. Factors contributing to dysbiosis include changes in intestinal hypoxia, competition for glucose, and limited availability of essential nutrients, such as tryptophan and metal ions, all of which can be driven by host metabolism changes. Conversely, the accumulation of some host metabolites, such as itaconate, succinate, and free fatty acids, could further influence the microbial composition and immune responses. Overall, mounting evidence supports a bidirectional relationship between host immunometabolism and the microbiota in lupus pathogenesis.


Assuntos
Disbiose , Microbioma Gastrointestinal , Lúpus Eritematoso Sistêmico , Humanos , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/microbiologia , Microbioma Gastrointestinal/imunologia , Animais , Disbiose/imunologia , Sistema Imunitário/metabolismo , Sistema Imunitário/imunologia , Sistema Imunitário/microbiologia , Microbiota/imunologia
18.
Viruses ; 16(6)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38932265

RESUMO

Pathogenic adenovirus (Ad) infections are widespread but typically mild and transient, except in the immunocompromised. As vectors for gene therapy, vaccine, and oncology applications, Ad-based platforms offer advantages, including ease of genetic manipulation, scale of production, and well-established safety profiles, making them attractive tools for therapeutic development. However, the immune system often poses a significant challenge that must be overcome for adenovirus-based therapies to be truly efficacious. Both pre-existing anti-Ad immunity in the population as well as the rapid development of an immune response against engineered adenoviral vectors can have detrimental effects on the downstream impact of an adenovirus-based therapeutic. This review focuses on the different challenges posed, including pre-existing natural immunity and anti-vector immunity induced by a therapeutic, in the context of innate and adaptive immune responses. We summarise different approaches developed with the aim of tackling these problems, as well as their outcomes and potential future applications.


Assuntos
Imunidade Adaptativa , Adenoviridae , Terapia Genética , Vetores Genéticos , Imunidade Inata , Humanos , Adenoviridae/imunologia , Adenoviridae/genética , Vetores Genéticos/imunologia , Vetores Genéticos/genética , Terapia Genética/métodos , Animais , Sistema Imunitário/imunologia , Infecções por Adenoviridae/imunologia , Infecções por Adenoviridae/terapia
19.
Adv Neurobiol ; 35: 27-43, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38874717

RESUMO

The endogenous opioid system, which consists of opioid receptors and their ligands, is widely expressed in the nervous system and also found in the immune system. As a part of the body's defense machinery, the immune system is heavily regulated by endogenous opioid peptides. Many types of immune cells, including macrophages, dendritic cells, neutrophils, and lymphocytes are influenced by endogenous opioids, which affect cell activation, differentiation, proliferation, apoptosis, phagocytosis, and cytokine production. Additionally, immune cells also synthesize and secrete endogenous opioid peptides and participate peripheral analgesia. This chapter is structured into two sections. Part one focuses on immunoregulatory functions of central endogenous opioids; and part two describes how opioid peptide-containing immune cells participate in local analgesia.


Assuntos
Sistema Imunitário , Peptídeos Opioides , Receptores Opioides , Animais , Humanos , Sistema Imunitário/metabolismo , Sistema Imunitário/imunologia , Peptídeos Opioides/metabolismo , Receptores Opioides/metabolismo , Receptores Opioides/imunologia
20.
Immunol Lett ; 268: 106883, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38852888

RESUMO

The gut microbiota is a system of microorganisms in the human gastrointestinal (GI) system, consisting of trillions of microorganisms residing in epithelial surfaces of the body. Gut microbiota are exposed to various external and internal factors and form a unique gut-associated immunity maintained through a balancing act among diverse groups of microorganisms. The role of microbiota in dysbiosis of the gut in aiding prostate cancer development has created an urgency for extending research toward comprehension and preventative measures. The gut microbiota varies among persons based on diet, race, genetic background, and geographic location. Bacteriome, mainly, has been linked to GI complications, metabolism, weight gain, and high blood sugar. Studies have shown that manipulating the microbiome (bacteriome, virome, and mycobiome) through the dietary intake of phytochemicals positively influences physical and emotional health, preventing and delaying diseases caused by microbiota. In this review, we discuss the wealth of knowledge about the GI tract and factors associated with dysbiosis-mediated compromised gut immunity. This review also focuses on the relationship of dysbiosis to prostate cancer, the impact of microbial metabolites short-chain fatty acids (SCFAs) on host health, and the phytochemicals improving health while inhibiting prostate cancer.


Assuntos
Disbiose , Microbioma Gastrointestinal , Neoplasias da Próstata , Humanos , Disbiose/imunologia , Masculino , Microbioma Gastrointestinal/imunologia , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/etiologia , Animais , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Suscetibilidade a Doenças , Ácidos Graxos Voláteis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...