Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.004
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38891900

RESUMO

Toll-like receptors (TLRs) are among the main components of the innate immune system. They can detect conserved structures in microorganisms and molecules associated with stress and cellular damage. TLRs are expressed in resident immune cells and both neurons and glial cells of the nervous system. Increasing evidence is emerging on the participation of TLRs not only in the immune response but also in processes of the nervous system, such as neurogenesis and cognition. Below, we present a review of the literature that evaluates the expression and role of TLRs in processes such as neurodevelopment, behavior, cognition, infection, neuroinflammation, and neurodegeneration.


Assuntos
Sistema Nervoso , Neurogênese , Receptores Toll-Like , Humanos , Receptores Toll-Like/metabolismo , Animais , Sistema Nervoso/metabolismo , Sistema Nervoso/imunologia , Imunidade Inata , Neurônios/metabolismo , Neurônios/imunologia , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/imunologia , Transdução de Sinais
2.
Int J Mol Sci ; 25(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38892402

RESUMO

In day-to-day living, individuals are exposed to various environmentally hazardous substances that have been associated with diverse diseases. Exposure to air pollutants can occur during breathing, posing a considerable risk to those with environmental health vulnerabilities. Among vulnerable individuals, maternal exposure can negatively impact the mother and child in utero. The developing fetus is particularly vulnerable to environmentally hazardous substances, with potentially greater implications. Among air pollutants, toluene is neurotoxic, and its effects have been widely explored. However, the impact of low-level toluene exposure in daily life remains unclear. Herein, we evaluated 194 mothers and infants from the Growing children's health and Evaluation of Environment (GREEN) cohort to determine the possible effects of early-life toluene exposure on the nervous system. Using Omics experiments, the effects of toluene were confirmed based on epigenetic changes and altered mRNA expression. Various epigenetic changes were identified, with upregulated expression potentially contributing to diseases such as glioblastoma and Alzheimer's, and downregulated expression being associated with structural neuronal abnormalities. These findings were detected in both maternal and infant groups, suggesting that maternal exposure to environmental hazardous substances can negatively impact the fetus. Our findings will facilitate the establishment of environmental health policies, including the management of environmentally hazardous substances for vulnerable groups.


Assuntos
Exposição Materna , Tolueno , Humanos , Tolueno/toxicidade , Feminino , Lactente , Exposição Materna/efeitos adversos , Gravidez , Adulto , Sistema Nervoso/efeitos dos fármacos , Sistema Nervoso/embriologia , Sistema Nervoso/metabolismo , Sistema Nervoso/crescimento & desenvolvimento , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Epigênese Genética/efeitos dos fármacos , Masculino , Mães , Poluentes Atmosféricos/toxicidade , Recém-Nascido
3.
Development ; 151(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38819456

RESUMO

Drosophila nervous system development progresses through a series of well-characterized steps in which homeodomain transcription factors (HDTFs) play key roles during most, if not all, phases. Strikingly, although some HDTFs have only one role, many others are involved in multiple steps of the developmental process. Most Drosophila HDTFs engaged in nervous system development are conserved in vertebrates and often play similar roles during vertebrate development. In this Spotlight, we focus on the role of HDTFs during embryogenesis, where they were first characterized.


Assuntos
Proteínas de Drosophila , Proteínas de Homeodomínio , Sistema Nervoso , Fatores de Transcrição , Animais , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Sistema Nervoso/metabolismo , Sistema Nervoso/embriologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Drosophila/genética , Drosophila/metabolismo , Drosophila/embriologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo
4.
Cancer Lett ; 594: 216986, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38797233

RESUMO

Recent advancements in understanding the tumor microenvironment (TME) have highlighted the critical role of the nervous system in cancer progression. This review comprehensively examines how the nervous system influences various aspects of tumorigenesis, including growth, motility, immune response, angiogenesis, and the behavior of cancer-associated fibroblasts (CAFs). We delineate the neurodevelopmental mechanisms associated with cancer, such as the secretion of neurotrophins and exosomes by cancer cells. Furthermore, we explore the emerging therapeutic strategy of targeting nerves associated with tumors. Evidence supporting this approach includes studies demonstrating direct tumor growth inhibition, enhanced efficacy of immunotherapy when combined with nervous system-modulating drugs, and the suppression of tumor blood vessel formation through nerve targeting. Finally, we discuss the current challenges in this field and emphasize the need for further exploration within cancer neuroscience.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/patologia , Neoplasias/terapia , Neoplasias/metabolismo , Animais , Sistema Nervoso/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Neovascularização Patológica , Imunoterapia/métodos
5.
Eur J Neurosci ; 60(1): 3505-3543, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38747014

RESUMO

Copper is a critical trace element in biological systems due the vast number of essential enzymes that require the metal as a cofactor, including cytochrome c oxidase, superoxide dismutase and dopamine-ß-hydroxylase. Due its key role in oxidative metabolism, antioxidant defence and neurotransmitter synthesis, copper is particularly important for neuronal development and proper neuronal function. Moreover, increasing evidence suggests that copper also serves important functions in synaptic and network activity, the regulation of circadian rhythms, and arousal. However, it is important to note that because of copper's ability to redox cycle and generate reactive species, cellular levels of the metal must be tightly regulated to meet cellular needs while avoiding copper-induced oxidative stress. Therefore, it is essential that the intricate system of copper transporters, exporters, copper chaperones and copper trafficking proteins function properly and in coordinate fashion. Indeed, disorders of copper metabolism such as Menkes disease and Wilson disease, as well as diseases linked to dysfunction of copper-requiring enzymes, such as SOD1-linked amyotrophic lateral sclerosis, demonstrate the dramatic neurological consequences of altered copper homeostasis. In this review, we explore the physiological importance of copper in the nervous system as well as pathologies related to improper copper handling.


Assuntos
Cobre , Humanos , Cobre/metabolismo , Animais , Homeostase/fisiologia , Sistema Nervoso/metabolismo
6.
Aging Dis ; 15(3): 1006-1028, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38722788

RESUMO

While classical NOD-like receptor pyrin domain containing protein 1 (NLRP1) and NLRP3 inflammasomal proteins have been extensively investigated, the contribution of NLRP2 is still ill-defined in the nervous system. Given the putative significance of NLRP2 in orchestrating neuroinflammation, further inquiry is needed to gain a better understanding of its connectome, hence its specific targeting may hold a promising therapeutic implication. Therefore, bioinformatical approach for extracting information, specifically in the context of neuropathologies, is also undoubtedly preferred. To the best of our knowledge, there is no review study selectively targeting only NLRP2. Increasing, but still fragmentary evidence should encourage researchers to thoroughly investigate this inflammasome in various animal- and human models. Taken together, herein we aimed to review the current literature focusing on the role of NLRP2 inflammasome in the nervous system and more importantly, we provide an algorithm-based protein network of human NLRP2 for elucidating potentially valuable molecular partnerships that can be the beginning of a new discourse and future therapeutic considerations.


Assuntos
Proteínas Reguladoras de Apoptose , Inflamassomos , Humanos , Inflamassomos/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sistema Nervoso/metabolismo
7.
Sci Rep ; 14(1): 8922, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637565

RESUMO

The Bmp/Smad1 pathway plays a crucial role in developmental processes and tissue homeostasis. Mitogen-activated protein kinase (Mapk)/Erk mediated phosphorylation of Smad1 in the linker region leads to Smad1 degradation, cytoplasmic retention and inhibition of Bmp/Smad1 signaling. While Fgf/Erk pathway has been documented to inhibit Bmp/Smad1 signaling, several studies also suggests the cooperative interaction between these two pathways in different context. However, the precise role and molecular pathway of this collaborative interaction remain obscure. Here, we identified Xbra induced by Fgf/Erk signaling as a factor in a protective mechanism for Smad1. Xbra physically interacted with the linker region phosphorylated Smad1 to make Xbra/Smad1/Smad4 trimeric complex, leading to Smad1 nuclear localization and protecting it from ubiquitin-mediated proteasomal degradation. This interaction of Xbra/Smad1/Smad4 led to sustained nuclear localization of Smad1 and the upregulation of lateral mesoderm genes, while concurrently suppression of neural and blood forming genes. Taken together, the results suggests Xbra-dependent cooperative interplays between Fgf/Erk and Bmp/Smad1 signaling during lateral mesoderm specification in Xenopus embryos.


Assuntos
Proteínas Quinases Ativadas por Mitógeno , Transdução de Sinais , Animais , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Sistema Nervoso/metabolismo , Fosforilação , Proteína Smad1/genética , Proteína Smad1/metabolismo , Xenopus laevis/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
9.
Mol Biol Cell ; 35(6): ar83, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38656792

RESUMO

The KMN (Knl1/Mis12/Ndc80) network at the kinetochore, primarily known for its role in chromosome segregation, has been shown to be repurposed during neurodevelopment. Here, we investigate the underlying neuronal mechanism and show that the KMN network promotes the proper axonal organization within the C. elegans head nervous system. Postmitotic degradation of KNL-1, which acts as a scaffold for signaling and has microtubule-binding activities at the kinetochore, led to disorganized ganglia and aberrant placement and organization of axons in the nerve ring - an interconnected axonal network. Through gene-replacement approaches, we demonstrate that the signaling motifs within KNL-1, responsible for recruiting protein phosphatase 1, and activating the spindle assembly checkpoint are required for neurodevelopment. Interestingly, while the microtubule-binding activity is crucial to KMN's neuronal function, microtubule dynamics and organization were unaffected in the absence of KNL-1. Instead, the NDC-80 microtubule-binding mutant displayed notable defects in axon bundling during nerve ring formation, indicating its role in facilitating axon-axon contacts. Overall, these findings provide evidence for a noncanonical role for the KMN network in shaping the structure and connectivity of the nervous system in C. elegans during brain development.


Assuntos
Axônios , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Cinetocoros , Proteínas Associadas aos Microtúbulos , Microtúbulos , Neurônios , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Axônios/metabolismo , Axônios/fisiologia , Cinetocoros/metabolismo , Neurônios/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Sistema Nervoso/metabolismo , Fuso Acromático/metabolismo , Proteínas do Citoesqueleto/metabolismo , Segregação de Cromossomos , Transdução de Sinais
10.
PLoS One ; 19(3): e0298105, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38551921

RESUMO

The nematode Caenorhabditis elegans is a widely used model organism for neuroscience. Although its nervous system has been fully reconstructed, the physiological bases of single-neuron functioning are still poorly explored. Recently, many efforts have been dedicated to measuring signals from C. elegans neurons, revealing a rich repertoire of dynamics, including bistable responses, graded responses, and action potentials. Still, biophysical models able to reproduce such a broad range of electrical responses lack. Realistic electrophysiological descriptions started to be developed only recently, merging gene expression data with electrophysiological recordings, but with a large variety of cells yet to be modeled. In this work, we contribute to filling this gap by providing biophysically accurate models of six classes of C. elegans neurons, the AIY, RIM, and AVA interneurons, and the VA, VB, and VD motor neurons. We test our models by comparing computational and experimental time series and simulate knockout neurons, to identify the biophysical mechanisms at the basis of inter and motor neuron functioning. Our models represent a step forward toward the modeling of C. elegans neuronal networks and virtual experiments on the nematode nervous system.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Humanos , Animais , Caenorhabditis elegans/metabolismo , Interneurônios/metabolismo , Neurônios Motores/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Sistema Nervoso/metabolismo
11.
BMB Rep ; 57(4): 167-175, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38523371

RESUMO

Cancer progression is driven by genetic mutations, environmental factors, and intricate interactions within the tumor microenvironment (TME). The TME comprises of diverse cell types, such as cancer cells, immune cells, stromal cells, and neuronal cells. These cells mutually influence each other through various factors, including cytokines, vascular perfusion, and matrix stiffness. In the initial or developmental stage of cancer, neurotrophic factors such as nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor are associated with poor prognosis of various cancers by communicating with cancer cells, immune cells, and peripheral nerves within the TME. Over the past decade, research has been conducted to prevent cancer growth by controlling the activation of neurotrophic factors within tumors, exhibiting a novel attemt in cancer treatment with promising results. More recently, research focusing on controlling cancer growth through regulation of the autonomic nervous system, including the sympathetic and parasympathetic nervous systems, has gained significant attention. Sympathetic signaling predominantly promotes tumor progression, while the role of parasympathetic signaling varies among different cancer types. Neurotransmitters released from these signalings can directly or indirectly affect tumor cells or immune cells within the TME. Additionally, sensory nerve significantly promotes cancer progression. In the advanced stage of cancer, cancer-associated cachexia occurs, characterized by tissue wasting and reduced quality of life. This process involves the pathways via brainstem growth and differentiation factor 15-glial cell line-derived neurotrophic factor receptor alpha-like signaling and hypothalamic proopiomelanocortin neurons. Our review highlights the critical role of neurotrophic factors as well as central nervous system on the progression of cancer, offering promising avenues for targeted therapeutic strategies. [BMB Reports 2024; 57(4): 167-175].


Assuntos
Progressão da Doença , Neoplasias , Sistema Nervoso , Animais , Humanos , Neoplasias/patologia , Neoplasias/metabolismo , Sistema Nervoso/metabolismo , Sistema Nervoso/patologia , Transdução de Sinais , Microambiente Tumoral
12.
Artigo em Inglês | MEDLINE | ID: mdl-38366688

RESUMO

Procyanidins are gaining attention due to their potential health benefits. We found that cacao liquor procyanidin (CLPr) from Theobroma cacao seeds increased the lifespan of Caenorhabditis elegans, a representative model organism for aging studies. The genetic dependence of the lifespan-extending effect of CLPr was consistent with that of blueberry procyanidin, which is dependent on unc-43, osr-1, sek-1, and mev-1, but not on daf-16, sir-2.1, or skn-1. The lifespan-extending effect of CLPr was inhibited by neuron-specific RNA interference (RNAi) targeting unc-43 and pmk-1, and in worms with loss-of-function mutations in the odr-3, odr-1, or tax-4 genes, which are essential in sensory neurons, including AWC neurons. It was also inhibited in worms in which AWC neurons or AIB interneurons had been eliminated, and in worms with loss-of-function mutations in eat-4 or glr-1, which are responsible for glutamatergic synaptic transmission. These results suggest that the lifespan-extending effect of CLPr is dependent on the nervous system. In addition, it also requires unc-43 and pmk-1 expression in nonneuronal cells, as demonstrated by the experiments with RNAi in wild-type worms, the neuronal cells of which are not affected by systemic RNAi. The osr-1 gene is expressed in hypodermal and intestinal cells and regulates the response to osmotic stress along with unc-43/calcium/calmodulin-dependent protein kinase II and the p38 mitogen-activated protein kinase pathway. Consistent with this, CLPr improved osmotic stress tolerance in an unc-43- and pmk-1-dependent manner, and it was also dependent on AWC neurons. The lifespan-extending and osmotic-tolerance-improving activities were attributed to procyanidins with a tetrameric or higher-order oligomeric structure.


Assuntos
Biflavonoides , Cacau , Proteínas de Caenorhabditis elegans , Catequina , Proantocianidinas , Animais , Caenorhabditis elegans/fisiologia , Longevidade/fisiologia , Proantocianidinas/farmacologia , Proantocianidinas/metabolismo , Cacau/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/farmacologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Sistema Nervoso/metabolismo
13.
Arch Insect Biochem Physiol ; 115(2): e22089, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38409869

RESUMO

Insecticide mode of action studies provide insights into how new insecticidal actives function and contribute to assessing safety to humans and nontarget organisms. Insect cell lines that express potential target sites can serve as valuable tools in this effort. In this paper, we report on the influence of two signaling molecules on protein expression in a nervous system cell line established from Spodoptera frugiperda (Bayer/BCIRL-SfNS2-0714-TR). We selected this line because we established it in our laboratory and we are experienced in using it. Cells were exposed to the insect developmental hormone (1 µg/mL 20-hydroxyecdysone, 20E) and/or a cyclooxygenase (COX) inhibitor (25 µM indomethacin, INDO; inhibits prostaglandin [PG] biosynthesis) for 24 h (Day 2), 72 h (Day 4), or 120 h (Day 6). We selected a PG biosynthesis inhibitor because PGs act in many aspects of insect biology, such as embryonic development, immunity, and protein phosphorylation. We selected the developmental hormone, 20E, because it also acts in fundamental aspects of insect biology. We identified specific proteins via in silico analysis. Changes in protein expression levels were determined using liquid chromatography-mass spectrometry (MS) + MS-MS. The largest number of changes in protein expression occurred on Day 2. The combination of 20E plus INDO led to 222 differentially expressed proteins, which documents the deep significance of PGs and 20E in insect biology. 20E and, separately, INDO led to changes in 30 proteins each (p value < 0.01; >2X or <0.5X-fold changes). We recorded changes in the expression of 9 or 12 proteins (20E), 10 or 6 proteins (INDO), and 21 or 20 proteins (20E + INDO) on D4 and D6, respectively. While the cell line was established from neuronal tissue, the differentially expressed proteins act in a variety of fundamental cell processes. In this paper, we moved beyond a list of proteins by providing detailed, Gene Ontology term analyses and enrichment, which offers an in-depth understanding of the influence of these treatments on the SfNS2 cells. Because proteins are active components of cell physiology in their roles as enzymes, receptors, elements of signaling transduction pathways, and cellular structures, changes in their expression levels under the influence of signaling molecules provide insights into their function in insect cell physiology.


Assuntos
Ecdisterona , Indometacina , Humanos , Animais , Ecdisterona/farmacologia , Ecdisterona/metabolismo , Spodoptera/metabolismo , Insetos/metabolismo , Linhagem Celular , Hormônios , Sistema Nervoso/metabolismo , Proteínas de Insetos/metabolismo
14.
Mol Brain ; 17(1): 13, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413970

RESUMO

The AP-2 transcription factors are crucial for regulating sleep in both vertebrate and invertebrate animals. In mice, loss of function of the transcription factor AP-2ß (TFAP2B) reduces non-rapid eye movement (NREM) sleep. When and where TFAP2B functions, however, is unclear. Here, we used the Cre-loxP system to generate mice in which Tfap2b was specifically deleted in the nervous system during development and mice in which neuronal Tfap2b was specifically deleted postnatally. Both types of mice exhibited reduced NREM sleep, but the nervous system-specific deletion of Tfap2b resulted in more severe sleep phenotypes accompanied by defective light entrainment of the circadian clock and stereotypic jumping behavior. These findings indicate that TFAP2B in postnatal neurons functions at least partly in sleep regulation and imply that TFAP2B also functions either at earlier stages or in additional cell types within the nervous system.


Assuntos
Fator de Transcrição AP-2 , Fatores de Transcrição , Animais , Camundongos , Sistema Nervoso/metabolismo , Sono , Fator de Transcrição AP-2/genética , Fator de Transcrição AP-2/metabolismo
15.
Elife ; 122024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411140

RESUMO

Eukaryotes respond to secreted metabolites from the microbiome. However, little is known about the effects of exposure to volatiles emitted by microbes or in the environment that we are exposed to over longer durations. Using Drosophila melanogaster, we evaluated a yeast-emitted volatile, diacetyl, found at high levels around fermenting fruits where they spend long periods of time. Exposure to the diacetyl molecules in headspace alters gene expression in the antenna. In vitro experiments demonstrated that diacetyl and structurally related volatiles inhibited conserved histone deacetylases (HDACs), increased histone-H3K9 acetylation in human cells, and caused changes in gene expression in both Drosophila and mice. Diacetyl crosses the blood-brain barrier and exposure caused modulation of gene expression in the mouse brain, therefore showing potential as a neuro-therapeutic. Using two separate disease models previously known to be responsive to HDAC inhibitors, we evaluated the physiological effects of volatile exposure. Diacetyl exposure halted proliferation of a neuroblastoma cell line in culture. Exposure to diacetyl vapors slowed progression of neurodegeneration in a Drosophila model for Huntington's disease. These changes strongly suggest that certain volatiles in the surroundings can have profound effects on histone acetylation, gene expression, and physiology in animals.


Assuntos
Drosophila melanogaster , Histona Desacetilases , Humanos , Camundongos , Animais , Histona Desacetilases/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Histonas/metabolismo , Odorantes , Diacetil , Inibidores de Histona Desacetilases/farmacologia , Drosophila/genética , Sistema Nervoso/metabolismo , Expressão Gênica , Acetilação
16.
Development ; 151(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38358799

RESUMO

The Wnt/ß-catenin signaling governs anterior-posterior neural patterning during development. Current human pluripotent stem cell (hPSC) differentiation protocols use a GSK3 inhibitor to activate Wnt signaling to promote posterior neural fate specification. However, GSK3 is a pleiotropic kinase involved in multiple signaling pathways and, as GSK3 inhibition occurs downstream in the signaling cascade, it bypasses potential opportunities for achieving specificity or regulation at the receptor level. Additionally, the specific roles of individual FZD receptors in anterior-posterior patterning are poorly understood. Here, we have characterized the cell surface expression of FZD receptors in neural progenitor cells with different regional identity. Our data reveal unique upregulation of FZD5 expression in anterior neural progenitors, and this expression is downregulated as cells adopt a posterior fate. This spatial regulation of FZD expression constitutes a previously unreported regulatory mechanism that adjusts the levels of ß-catenin signaling along the anterior-posterior axis and possibly contributes to midbrain-hindbrain boundary formation. Stimulation of Wnt/ß-catenin signaling in hPSCs, using a tetravalent antibody that selectively triggers FZD5 and LRP6 clustering, leads to midbrain progenitor differentiation and gives rise to functional dopaminergic neurons in vitro and in vivo.


Assuntos
Receptores Frizzled , Quinase 3 da Glicogênio Sintase , beta Catenina , Humanos , beta Catenina/metabolismo , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Mesencéfalo , Sistema Nervoso/metabolismo , Via de Sinalização Wnt , Animais , Ratos
17.
Neural Dev ; 19(1): 3, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383501

RESUMO

BACKGROUND: The evolutionary origins of animal nervous systems remain contentious because we still have a limited understanding of neural development in most major animal clades. Annelids - a species-rich group with centralised nervous systems - have played central roles in hypotheses about the origins of animal nervous systems. However, most studies have focused on adults of deeply nested species in the annelid tree. Recently, Owenia fusiformis has emerged as an informative species to reconstruct ancestral traits in Annelida, given its phylogenetic position within the sister clade to all remaining annelids. METHODS: Combining immunohistochemistry of the conserved neuropeptides FVamide-lir, RYamide-lir, RGWamide-lir and MIP-lir with gene expression, we comprehensively characterise neural development from larva to adulthood in Owenia fusiformis. RESULTS: The early larval nervous system comprises a neuropeptide-rich apical organ connected through peripheral nerves to a prototroch ring and the chaetal sac. There are seven sensory neurons in the prototroch. A bilobed brain forms below the apical organ and connects to the ventral nerve cord of the developing juvenile. During metamorphosis, the brain compresses, becoming ring-shaped, and the trunk nervous system develops several longitudinal cords and segmented lateral nerves. CONCLUSIONS: Our findings reveal the formation and reorganisation of the nervous system during the life cycle of O. fusiformis, an early-branching annelid. Despite its apparent neuroanatomical simplicity, this species has a diverse peptidergic nervous system, exhibiting morphological similarities with other annelids, particularly at the larval stages. Our work supports the importance of neuropeptides in animal nervous systems and highlights how neuropeptides are differentially used throughout development.


Assuntos
Anelídeos , Neuropeptídeos , Poliquetos , Animais , Filogenia , Anelídeos/anatomia & histologia , Anelídeos/genética , Sistema Nervoso/metabolismo , Poliquetos/anatomia & histologia , Poliquetos/genética , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Larva
18.
Sci Rep ; 14(1): 3805, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360907

RESUMO

Secreted proteins of the Noggin family serve as pivotal regulators of early development and cell differentiation in all multicellular animals, including vertebrates. Noggin1 was identified first among all Noggins. Moreover, it was described as the first known embryonic inducer specifically secreted by the Spemann organizer and capable of inducing a secondary body axis when expressed ectopically. In the classical default model of neural induction, Noggin1 is presented as an antagonist of BMP signalling, playing a role as a neural inducer. Additionally, Noggin1 is involved in the dorsalization of embryonic mesoderm and later controls the differentiation of various tissues, including muscles, bones, and neural crest derivatives. Hitherto, noggin1 was found in all studied vertebrates. Here, we report the loss of noggin1 in elasmobranchs (sharks, rays and skates), which is a unique case among vertebrates. noggin2 and noggin4 retained in this group and studied in the embryos of the grey bamboo shark Chiloscyllium griseum revealed similarities in expression patterns and functional properties with their orthologues described in other vertebrates. The loss of noggin1 in elasmobranchs may be associated with histological features of the formation of their unique internal cartilaginous skeleton, although additional research is required to establish functional connections between these events.


Assuntos
Sistema Nervoso , Tubarões , Animais , Sistema Nervoso/metabolismo , Proteínas/metabolismo , Desenvolvimento Embrionário/genética , Diferenciação Celular
19.
Curr Osteoporos Rep ; 22(1): 205-216, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38236509

RESUMO

PURPOSE OF REVIEW: Despite advances in orthopedics, there remains a need for therapeutics to hasten fracture healing. However, little focus is given to the role the nervous system plays in regulating fracture healing. This paucity of information has led to an incomplete understanding of fracture healing and has limited the development of fracture therapies that integrate the importance of the nervous system. This review seeks to illuminate the integral roles that the nervous system plays in fracture healing. RECENT FINDINGS: Preclinical studies explored several methodologies for ablating peripheral nerves to demonstrate ablation-induced deficits in fracture healing. Conversely, activation of peripheral nerves via the use of dorsal root ganglion electrical stimulation enhanced fracture healing via calcitonin gene related peptide (CGRP). Investigations into TLR-4, TrkB agonists, and nerve growth factor (NGF) expression provide valuable insights into molecular pathways influencing bone mesenchymal stem cells and fracture repair. Finally, there is continued research into the connections between pain and fracture healing with findings suggesting that anti-NGF may be able to block pain without affecting healing. This review underscores the critical roles of the central nervous system (CNS), peripheral nervous system (PNS), and autonomic nervous system (ANS) in fracture healing, emphasizing their influence on bone cells, neuropeptide release, and endochondral ossification. The use of TBI models contributes to understanding neural regulation, though the complex influence of TBI on fracture healing requires further exploration. The review concludes by addressing the neural connection to fracture pain. This review article is part of a series of multiple manuscripts designed to determine the utility of using artificial intelligence for writing scientific reviews.


Assuntos
Inteligência Artificial , Consolidação da Fratura , Humanos , Consolidação da Fratura/fisiologia , Peptídeo Relacionado com Gene de Calcitonina , Dor , Sistema Nervoso/metabolismo
20.
Mol Neurobiol ; 61(3): 1271-1281, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37697221

RESUMO

Autophagy is a conservative self-degradation system, which includes the two major processes of enveloping abnormal proteins, organelles and other macromolecules, and transferring them into lysosomes for the subsequent degradation. It holds the stability of the intracellular environment under stress. So far, three types of autophagy have been found: microautophagy, chaperone-mediated autophagy and macroautophagy. Many diseases have the pathological process of autophagy dysfunction, such as nervous system diseases. Pyroptosis is one kind of programmed cell death mediated by gasdermin (GSDM). In this process of pyroptosis, the activated caspase-3, caspase-4/5/11, or caspase-1 cleaves GSDM into the N-terminal pore-forming domain (PFD). The oligomer of PFD combines with the cell membrane to form membrane holes, thus leading to pyroptosis. Pyroptosis plays a key role in multiple tissues and organs. Many studies have revealed that autophagy and pyroptosis participate in the nervous system, but the mechanisms need to be fully clarified. Here, we focused on the recent articles on the role and mechanism of pyroptosis and autophagy in the pathological processes of the nervous system.


Assuntos
Inflamassomos , Piroptose , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Autofagia , Sistema Nervoso/metabolismo , Caspases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...