Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 967
Filtrar
1.
Mol Med ; 30(1): 113, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095693

RESUMO

BACKGROUND: To explore whether nobiletin has a protective effect on high-fat diet (HFD)-induced enteric nerve injury and its underlying mechanism. METHODS: An obesity model was induced by a HFD. Nobiletin (100 mg/kg and 200 mg/kg) and vehicle were administered by gastric gavage for 4 weeks. Lee's index, body weight, OGTT and intestinal propulsion assays were performed before sacrifice. After sampling, lipids were detected using Bodipy 493/503; lipid peroxidation was detected using MDA and SOD kits and the expression of PGP 9.5, Trem2, GFAP, ß-tubulin 3, Bax, Bcl2, Nestin, P75 NTR, SOX10 and EDU was detected using immunofluorescence. The GDNF, p-AKT, AKT, p-FOXO3a, FOXO3a and P21 proteins were detected using western blotting. The relative mRNA expression levels of NOS2 were detected via qPCR. Primary enteric neural stem cells (ENSCs) were cultured. After ENSCs were treated with palmitic acid (PA) and nobiletin, CCK-8 and caspase-3/7 activity assays were performed to evaluate proliferation and apoptosis. RESULTS: HFD consumption caused colon lipid accumulation and peroxidation, induced enteric nerve damage and caused intestinal motor dysfunction. However, nobiletin reduced lipid accumulation and peroxidation in the colon; promoted Trem2, ß-tubulin 3, Nestin, P75NTR, SOX10 and Bcl2 expression; inhibited Bax and GFAP expression; reduced NOS2 mRNA transcription; and regulated the GDNF/AKT/FOXO3a/P21 pathway. Nobiletin also promoted PA-induced impairment of ENSCs. CONCLUSIONS: Nobiletin restored HFD-induced enteric nerve injury, which may be associated with inhibiting enteric nerve apoptosis, promoting enteric nerve survival and regulating the GDNF/AKT/FOXO3a/P21 pathway.


Assuntos
Dieta Hiperlipídica , Sistema Nervoso Entérico , Flavonas , Proteína Forkhead Box O3 , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Proteína Forkhead Box O3/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Dieta Hiperlipídica/efeitos adversos , Transdução de Sinais/efeitos dos fármacos , Masculino , Flavonas/farmacologia , Flavonas/uso terapêutico , Sistema Nervoso Entérico/metabolismo , Sistema Nervoso Entérico/efeitos dos fármacos , Neuroglia/metabolismo , Neuroglia/efeitos dos fármacos , Camundongos , Modelos Animais de Doenças , Ratos , Obesidade/metabolismo , Obesidade/tratamento farmacológico , Apoptose/efeitos dos fármacos
2.
Front Immunol ; 15: 1401751, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39119341

RESUMO

Introduction: Enteric glial cells are important players in the control of motility, intestinal barrier integrity and inflammation. During inflammation, they switch into a reactive phenotype enabling them to release inflammatory mediators, thereby shaping the inflammatory environment. While a plethora of well-established in vivo models exist, cell culture models necessary to decipher the mechanistic pathways of enteric glial reactivity are less well standardized. In particular, the composition of extracellular matrices (ECM) can massively affect the experimental outcome. Considering the growing number of studies involving primary enteric glial cells, a better understanding of their homeostatic and inflammatory in vitro culture conditions is needed. Methods: We examined the impact of different ECMs on enteric glial culture purity, network morphology and immune responsiveness. Therefore, we used immunofluorescence and brightfield microscopy, as well as 3' bulk mRNA sequencing. Additionally, we compared cultured cells with in vivo enteric glial transcriptomes isolated from Sox10iCreERT2Rpl22HA/+ mice. Results: We identified Matrigel and laminin as superior over other coatings, including poly-L-ornithine, different lysines, collagens, and fibronectin, gaining the highest enteric glial purity and most extended glial networks expressing connexin-43 hemichannels allowing intercellular communication. Transcriptional analysis revealed strong similarities between enteric glia on Matrigel and laminin with enrichment of gene sets supporting neuronal differentiation, while cells on poly-L-ornithine showed enrichment related to cell proliferation. Comparing cultured and in vivo enteric glial transcriptomes revealed a 50% overlap independent of the used coating substrates. Inflammatory activation of enteric glia by IL-1ß treatment showed distinct coating-dependent gene expression signatures, with an enrichment of genes related to myeloid and epithelial cell differentiation on Matrigel and laminin coatings, while poly-L-ornithine induced more gene sets related to lymphocyte differentiation. Discussion: Together, changes in morphology, differentiation and immune activation of primary enteric glial cells proved a strong effect of the ECM. We identified Matrigel and laminin as pre-eminent substrates for murine enteric glial cultures. These new insights will help to standardize and improve enteric glial culture quality and reproducibility between in vitro studies in the future, allowing a better comparison of their functional role in enteric neuroinflammation.


Assuntos
Matriz Extracelular , Homeostase , Laminina , Neuroglia , Animais , Matriz Extracelular/metabolismo , Neuroglia/metabolismo , Neuroglia/imunologia , Camundongos , Laminina/metabolismo , Sistema Nervoso Entérico/metabolismo , Sistema Nervoso Entérico/imunologia , Células Cultivadas , Combinação de Medicamentos , Colágeno/metabolismo , Camundongos Endogâmicos C57BL , Proteoglicanas/metabolismo
3.
BMC Vet Res ; 20(1): 283, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38956647

RESUMO

BACKGROUND: The neuroimmune network plays a crucial role in regulating mucosal immune homeostasis within the digestive tract. Synaptosome-associated protein 25 (SNAP-25) is a presynaptic membrane-binding protein that activates ILC2s, initiating the host's anti-parasitic immune response. METHODS: To investigate the effect of Moniezia benedeni (M. benedeni) infection on the distribution of SNAP-25 in the sheep's small intestine, the recombinant plasmid pET-28a-SNAP-25 was constructed and expressed in BL21, yielding the recombinant protein. Then, the rabbit anti-sheep SNAP-25 polyclonal antibody was prepared and immunofluorescence staining was performed with it. The expression levels of SNAP-25 in the intestines of normal and M. benedeni-infected sheep were detected by ELISA. RESULTS: The results showed that the SNAP-25 recombinant protein was 29.3 KDa, the titer of the prepared immune serum reached 1:128,000. It was demonstrated that the rabbit anti-sheep SNAP-25 polyclonal antibody could bind to the natural protein of sheep SNAP-25 specifically. The expression levels of SNAP-25 in the sheep's small intestine revealed its primary presence in the muscular layer and lamina propria, particularly around nerve fibers surrounding the intestinal glands. Average expression levels in the duodenum, jejunum, and ileum were 130.32 pg/mg, 185.71 pg/mg, and 172.68 pg/mg, respectively. Under conditions of M. benedeni infection, the spatial distribution of SNAP-25-expressing nerve fibers remained consistent, but its expression level in each intestine segment was increased significantly (P < 0.05), up to 262.02 pg/mg, 276.84 pg/mg, and 326.65 pg/mg in the duodenum, jejunum, and ileum, and it was increased by 101.06%, 49.07%, and 89.16% respectively. CONCLUSIONS: These findings suggest that M. benedeni could induce the SNAP-25 expression levels in sheep's intestinal nerves significantly. The results lay a foundation for further exploration of the molecular mechanism by which the gastrointestinal nerve-mucosal immune network perceives parasites in sheep.


Assuntos
Intestino Delgado , Doenças dos Ovinos , Proteína 25 Associada a Sinaptossoma , Animais , Ovinos , Doenças dos Ovinos/metabolismo , Doenças dos Ovinos/parasitologia , Intestino Delgado/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Proteína 25 Associada a Sinaptossoma/genética , Sistema Nervoso Entérico/metabolismo , Coelhos
4.
Nutrients ; 16(14)2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39064711

RESUMO

Plastics are present in almost every aspect of our lives. Polyethylene terephthalate (PET) is commonly used in the food industry. Microparticles can contaminate food and drinks, posing a threat to consumers. The presented study aims to determine the effect of microparticles of PET on the population of neurons positive for selected neurotransmitters in the enteric nervous system of the jejunum and histological structure. An amount of 15 pigs were divided into three groups (control, receiving 0.1 g, and 1 g/day/animal orally). After 28 days, fragments of the jejunum were collected for immunofluorescence and histological examination. The obtained results show that histological changes (injury of the apical parts of the villi, accumulations of cellular debris and mucus, eosinophil infiltration, and hyperaemia) were more pronounced in pigs receiving a higher dose of microparticles. The effect on neuronal nitric oxide synthase-, and substance P-positive neurons, depends on the examined plexus and the dose of microparticles. An increase in the percentage of galanin-positive neurons and a decrease in cocaine and amphetamine-regulated transcript-, vesicular acetylcholine transporter-, and vasoactive intestinal peptide-positive neurons do not show such relationships. The present study shows that microparticles can potentially have neurotoxic and pro-inflammatory effects, but there is a need for further research to determine the mechanism of this process and possible further effects.


Assuntos
Jejuno , Microplásticos , Neurônios , Animais , Jejuno/efeitos dos fármacos , Jejuno/metabolismo , Suínos , Microplásticos/toxicidade , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Sistema Nervoso Entérico/efeitos dos fármacos , Sistema Nervoso Entérico/metabolismo , Substância P/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Polietilenotereftalatos , Óxido Nítrico Sintase Tipo I/metabolismo , Galanina/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Administração Oral , Neurotransmissores/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo , Masculino , Proteínas do Tecido Nervoso
5.
Int J Mol Sci ; 25(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39000048

RESUMO

Bisphenols are dangerous endocrine disruptors that pollute the environment. Due to their chemical properties, they are globally used to produce plastics. Structural similarities to oestrogen allow bisphenols to bind to oestrogen receptors and affect internal body systems. Most commonly used in the plastic industry is bisphenol A (BPA), which also has negative effects on the nervous, immune, endocrine, and cardiovascular systems. A popular analogue of BPA-bisphenol S (BPS) also seems to have harmful effects similar to BPA on living organisms. Therefore, with the use of double immunofluorescence labelling, this study aimed to compare the effect of BPA and BPS on the enteric nervous system (ENS) in mouse jejunum. The study showed that both studied toxins impact the number of nerve cells immunoreactive to substance P (SP), galanin (GAL), vasoactive intestinal polypeptide (VIP), the neuronal isoform of nitric oxide synthase (nNOS), and vesicular acetylcholine transporter (VAChT). The observed changes were similar in the case of both tested bisphenols. However, the influence of BPA showed stronger changes in neurochemical coding. The results also showed that long-term exposure to BPS significantly affects the ENS.


Assuntos
Compostos Benzidrílicos , Sistema Nervoso Entérico , Jejuno , Fenóis , Sulfonas , Animais , Fenóis/toxicidade , Compostos Benzidrílicos/toxicidade , Camundongos , Jejuno/efeitos dos fármacos , Jejuno/metabolismo , Sistema Nervoso Entérico/efeitos dos fármacos , Sistema Nervoso Entérico/metabolismo , Sulfonas/farmacologia , Sulfonas/toxicidade , Substância P/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo , Masculino , Galanina/metabolismo , Disruptores Endócrinos/toxicidade , Disruptores Endócrinos/farmacologia , Óxido Nítrico Sintase Tipo I/metabolismo
6.
Neurochem Int ; 178: 105789, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38852824

RESUMO

Ulcerative colitis (UC) is a common inflammatory bowel disease with a complex origin in clinical settings. It is frequently accompanied by negative emotional responses, including anxiety and depression. Enteric glial cells (EGCs) are important components of the gut-brain axis and are involved in the development of the enteric nervous system (ENS), intestinal neuroimmune, and regulation of intestinal motor functions. Since there is limited research encompassing the regulatory function of EGCs in anxiety- and depression-like behaviors induced by UC, this study aims to reveal their regulatory role in such behaviors and associated intestinal inflammation. This study applied morphological, molecular biological, and behavioral methods to observe the morphological and functional changes of EGCs in UC mice. The results indicated a significant activation of EGCs in the ENS of dextran sodium sulfate -induced UC mice. This activation was evidenced by morphological alterations, such as elongation or terminal swelling of processes. Besides EGCs activation, UC mice exhibited significantly elevated expression levels of pro-inflammatory cytokines in the peripheral blood, accompanied by anxiety- and depression-like behaviors. The inhibition of EGCs activity within the ENS can ameliorate the anxiety- and depression-like behaviors caused by UC. Our data suggest that UC and its resulting behaviors may be related to the activation of EGCs within the ENS. Moreover, the modulation of intestinal inflammation through inhibition of EGCs activation emerges as a promising clinical approach for alleviating UC-induced anxiety- and depression-like behaviors.


Assuntos
Ansiedade , Colite Ulcerativa , Depressão , Neuroglia , Animais , Colite Ulcerativa/psicologia , Colite Ulcerativa/patologia , Colite Ulcerativa/metabolismo , Ansiedade/psicologia , Ansiedade/metabolismo , Depressão/metabolismo , Depressão/psicologia , Neuroglia/metabolismo , Neuroglia/patologia , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Sulfato de Dextrana/toxicidade , Sistema Nervoso Entérico/metabolismo , Sistema Nervoso Entérico/patologia , Inflamação/metabolismo , Inflamação/patologia , Comportamento Animal
7.
Annu Rev Immunol ; 42(1): 489-519, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38941607

RESUMO

Recent advances have contributed to a mechanistic understanding of neuroimmune interactions in the intestine and revealed an essential role of this cross talk for gut homeostasis and modulation of inflammatory and infectious intestinal diseases. In this review, we describe the innervation of the intestine by intrinsic and extrinsic neurons and then focus on the bidirectional communication between neurons and immune cells. First, we highlight the contribution of neuronal subtypes to the development of colitis and discuss the different immune and epithelial cell types that are regulated by neurons via the release of neuropeptides and neurotransmitters. Next, we review the role of intestinal inflammation in the development of visceral hypersensitivity and summarize how inflammatory mediators induce peripheral and central sensitization of gut-innervating sensory neurons. Finally, we outline the importance of immune cells and gut microbiota for the survival and function of different neuronal populations at homeostasis and during bacterial and helminth infection.


Assuntos
Neuroimunomodulação , Humanos , Animais , Intestinos/imunologia , Homeostase , Microbioma Gastrointestinal/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Neurônios/metabolismo , Neurônios/imunologia , Neuropeptídeos/metabolismo , Sistema Nervoso Entérico/imunologia , Sistema Nervoso Entérico/metabolismo
8.
J Clin Invest ; 134(9)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38690732

RESUMO

Epigenetic regulatory mechanisms are underappreciated, yet are critical for enteric nervous system (ENS) development and maintenance. We discovered that fetal loss of the epigenetic regulator Bap1 in the ENS lineage caused severe postnatal bowel dysfunction and early death in Tyrosinase-Cre Bap1fl/fl mice. Bap1-depleted ENS appeared normal in neonates; however, by P15, Bap1-deficient enteric neurons were largely absent from the small and large intestine of Tyrosinase-Cre Bap1fl/fl mice. Bowel motility became markedly abnormal with disproportionate loss of cholinergic neurons. Single-cell RNA sequencing at P5 showed that fetal Bap1 loss in Tyrosinase-Cre Bap1fl/fl mice markedly altered the composition and relative proportions of enteric neuron subtypes. In contrast, postnatal deletion of Bap1 did not cause enteric neuron loss or impaired bowel motility. These findings suggest that BAP1 is critical for postnatal enteric neuron differentiation and for early enteric neuron survival, a finding that may be relevant to the recently described human BAP1-associated neurodevelopmental disorder.


Assuntos
Diferenciação Celular , Sistema Nervoso Entérico , Proteínas Supressoras de Tumor , Ubiquitina Tiolesterase , Animais , Sistema Nervoso Entérico/metabolismo , Sistema Nervoso Entérico/patologia , Camundongos , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Camundongos Knockout , Feminino , Motilidade Gastrointestinal/genética , Humanos
9.
PLoS One ; 19(5): e0303914, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38809858

RESUMO

The vertebrate enteric nervous system (ENS) is a crucial network of enteric neurons and glia resident within the entire gastrointestinal tract (GI). Overseeing essential GI functions such as gut motility and water balance, the ENS serves as a pivotal bidirectional link in the gut-brain axis. During early development, the ENS is primarily derived from enteric neural crest cells (ENCCs). Disruptions to ENCC development, as seen in conditions like Hirschsprung disease (HSCR), lead to the absence of ENS in the GI, particularly in the colon. In this study, using zebrafish, we devised an in vivo F0 CRISPR-based screen employing a robust, rapid pipeline integrating single-cell RNA sequencing, CRISPR reverse genetics, and high-content imaging. Our findings unveil various genes, including those encoding opioid receptors, as possible regulators of ENS establishment. In addition, we present evidence that suggests opioid receptor involvement in the neurochemical coding of the larval ENS. In summary, our work presents a novel, efficient CRISPR screen targeting ENS development, facilitating the discovery of previously unknown genes, and increasing knowledge of nervous system construction.


Assuntos
Sistemas CRISPR-Cas , Sistema Nervoso Entérico , Peixe-Zebra , Animais , Sistema Nervoso Entérico/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Crista Neural/metabolismo , Doença de Hirschsprung/genética
10.
Brain Behav Immun ; 119: 867-877, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38750700

RESUMO

The gastrointestinal tract is one of the main organs affected during systemic inflammation and disrupted gastrointestinal motility is a major clinical manifestation. Many studies have investigated the involvement of neuroimmune interactions in regulating colonic motility during localized colonic inflammation, i.e., colitis. However, little is known about how the enteric nervous system and intestinal macrophages contribute to dysregulated motility during systemic inflammation. Given that systemic inflammation commonly results from the innate immune response against bacterial infection, we mimicked bacterial infection by administering lipopolysaccharide (LPS) to rats and assessed colonic motility using ex vivo video imaging techniques. We utilized the Cx3cr1-Dtr rat model of transient depletion of macrophages to investigate the role of intestinal macrophages in regulating colonic motility during LPS infection. To investigate the role of inhibitory enteric neurotransmission on colonic motility following LPS, we applied the nitric oxide synthase inhibitor, Nω-nitro-L-arginine (NOLA). Our results confirmed an increase in colonic contraction frequency during LPS-induced systemic inflammation. However, neither the depletion of intestinal macrophages, nor the suppression of inhibitory enteric nervous system activity impacted colonic motility disruption during inflammation. This implies that the interplay between the enteric nervous system and intestinal macrophages is nuanced, and complex, and further investigation is needed to clarify their joint roles in colonic motility.


Assuntos
Sistema Nervoso Entérico , Motilidade Gastrointestinal , Inflamação , Lipopolissacarídeos , Macrófagos , Animais , Lipopolissacarídeos/farmacologia , Ratos , Motilidade Gastrointestinal/fisiologia , Macrófagos/metabolismo , Inflamação/metabolismo , Inflamação/fisiopatologia , Sistema Nervoso Entérico/fisiopatologia , Sistema Nervoso Entérico/metabolismo , Masculino , Eixo Encéfalo-Intestino/fisiologia , Colo/metabolismo , Trato Gastrointestinal/metabolismo , Colite/fisiopatologia , Colite/metabolismo , Colite/induzido quimicamente , Encéfalo/metabolismo , Ratos Sprague-Dawley , Gastroenteropatias/fisiopatologia , Gastroenteropatias/metabolismo
12.
Dev Cell ; 59(13): 1689-1706.e8, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38636517

RESUMO

During enteric nervous system (ENS) development, pioneering wavefront enteric neural crest cells (ENCCs) initiate gut colonization. However, the molecular mechanisms guiding their specification and niche interaction are not fully understood. We used single-cell RNA sequencing and spatial transcriptomics to map the spatiotemporal dynamics and molecular landscape of wavefront ENCCs in mouse embryos. Our analysis shows a progressive decline in wavefront ENCC potency during migration and identifies transcription factors governing their specification and differentiation. We further delineate key signaling pathways (ephrin-Eph, Wnt-Frizzled, and Sema3a-Nrp1) utilized by wavefront ENCCs to interact with their surrounding cells. Disruptions in these pathways are observed in human Hirschsprung's disease gut tissue, linking them to ENS malformations. Additionally, we observed region-specific and cell-type-specific transcriptional changes in surrounding gut tissues upon wavefront ENCC arrival, suggesting their role in shaping the gut microenvironment. This work offers a roadmap of ENS development, with implications for understanding ENS disorders.


Assuntos
Movimento Celular , Sistema Nervoso Entérico , Crista Neural , Transdução de Sinais , Animais , Crista Neural/metabolismo , Crista Neural/citologia , Camundongos , Sistema Nervoso Entérico/metabolismo , Sistema Nervoso Entérico/embriologia , Sistema Nervoso Entérico/citologia , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/citologia , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Doença de Hirschsprung/genética , Doença de Hirschsprung/metabolismo , Doença de Hirschsprung/patologia , Humanos
13.
Nat Metab ; 6(5): 837-846, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38570627

RESUMO

Sodium is essential for all living organisms1. Animals including insects and mammals detect sodium primarily through peripheral taste cells2-7. It is not known, however, whether animals can detect this essential micronutrient independently of the taste system. Here, we report that Drosophila Ir76b mutants that were unable to detect sodium2 became capable of responding to sodium following a period of salt deprivation. From a screen for cells required for the deprivation-induced sodium preference, we identified a population of anterior enteric neurons, which we named internal sodium-sensing (INSO) neurons, that are essential for directing a behavioural preference for sodium. Enteric INSO neurons innervate the gut epithelia mainly through their dendritic processes and send their axonal projections along the oesophagus to the brain and to the crop duct. Through calcium imaging and CaLexA experiments, we found that INSO neurons respond immediately and specifically to sodium ions. Notably, the sodium-evoked responses were observed only after a period of sodium deprivation. Taken together, we have identified a taste-independent sodium sensor that is essential for the maintenance of sodium homeostasis.


Assuntos
Proteínas de Drosophila , Neurônios , Sódio , Animais , Sódio/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Neurônios/metabolismo , Período Pós-Prandial , Drosophila melanogaster , Sistema Nervoso Entérico/metabolismo , Paladar/fisiologia , Mutação , Drosophila , Canais de Sódio , Receptores Ionotrópicos de Glutamato
14.
Cell Mol Gastroenterol Hepatol ; 18(1): 89-104, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556049

RESUMO

BACKGROUND & AIMS: Mounting evidence suggests the gastrointestinal microbiome is a determinant of peripheral immunity and central neurodegeneration, but the local disease mechanisms remain unknown. Given its potential relevance for early diagnosis and therapeutic intervention, we set out to map the pathogenic changes induced by bacterial amyloids in the gastrointestinal tract and its enteric nervous system. METHODS: To examine the early response, we challenged primary murine myenteric networks with curli, the prototypical bacterial amyloid, and performed shotgun RNA sequencing and multiplex enzyme-linked immunosorbent assay. Using enteric neurosphere-derived glial and neuronal cell cultures, as well as in vivo curli injections into the colon wall, we further scrutinized curli-induced pathogenic pathways. RESULTS: Curli induced a proinflammatory response, with strong up-regulation of Saa3 and the secretion of several cytokines. This proinflammatory state was induced primarily in enteric glia, was accompanied by increased levels of DNA damage and replication, and triggered the influx of immune cells in vivo. The addition of recombinant Serum Amyloid A3 (SAA3) was sufficient to recapitulate this specific proinflammatory phenotype while Saa3 knock-out attenuated curli-induced DNA damage and replication. Similar to curli, recombinant SAA3 caused a strong up-regulation of Saa3 transcripts, illustrating its self-amplifying potential . Since colonization of curli-producing Salmonella and dextran sulfate sodium-induced colitis triggered a significant increase in Saa3 transcripts as well, we assume SAA3plays a central role in enteric dysfunction. Inhibition of dual leucine zipper kinase, an upstream regulator of the c-Jun N-terminal kinase pathway responsible for SAA3 production, attenuated curli- and recombinant SAA3-induced Saa3 up-regulation, DNA damage, and replication in enteric glia. CONCLUSIONS: Our results position SAA3 as an important mediator of gastrointestinal vulnerability to bacterial-derived amyloids and demonstrate the potential of dual leucine zipper kinase inhibition to dampen enteric pathology.


Assuntos
Sistema Nervoso Entérico , Proteína Amiloide A Sérica , Animais , Sistema Nervoso Entérico/metabolismo , Sistema Nervoso Entérico/patologia , Sistema Nervoso Entérico/imunologia , Proteína Amiloide A Sérica/metabolismo , Proteína Amiloide A Sérica/genética , Camundongos , Proteínas de Bactérias/metabolismo , Inflamação/imunologia , Inflamação/patologia , Inflamação/metabolismo , Neuroglia/metabolismo , Neuroglia/imunologia , Neuroglia/patologia , Camundongos Endogâmicos C57BL , Citocinas/metabolismo , Microbioma Gastrointestinal/imunologia , Camundongos Knockout , Colite/imunologia , Colite/microbiologia , Colite/patologia , Neurônios/metabolismo , Neurônios/patologia
15.
Eur J Neurosci ; 59(10): 2465-2482, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38487941

RESUMO

The enteric nervous system (ENS) comprises a complex network of neurons whereby a subset appears to be dopaminergic although the characteristics, roles, and implications in disease are less understood. Most investigations relating to enteric dopamine (DA) neurons rely on immunoreactivity to tyrosine hydroxylase (TH)-the rate-limiting enzyme in the production of DA. However, TH immunoreactivity is likely to provide an incomplete picture. This study herein provides a comprehensive characterization of DA neurons in the gut using a reporter mouse line, expressing a fluorescent protein (tdTomato) under control of the DA transporter (DAT) promoter. Our findings confirm a unique localization of DA neurons in the gut and unveil the discrete subtypes of DA neurons in this organ, which we characterized using both immunofluorescence and single-cell transcriptomics, as well as validated using in situ hybridization. We observed distinct subtypes of DAT-tdTomato neurons expressing co-transmitters and modulators across both plexuses; some of them likely co-releasing acetylcholine, while others were positive for a slew of canonical DAergic markers (TH, VMAT2 and GIRK2). Interestingly, we uncovered a seemingly novel population of DA neurons unique to the ENS which was ChAT/DAT-tdTomato-immunoreactive and expressed Grp, Calcb, and Sst. Given the clear heterogeneity of DAergic gut neurons, further investigation is warranted to define their functional signatures and decipher their implication in disease.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina , Neurônios Dopaminérgicos , Sistema Nervoso Entérico , Animais , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Neurônios Dopaminérgicos/metabolismo , Camundongos , Sistema Nervoso Entérico/metabolismo , Sistema Nervoso Entérico/citologia , Camundongos Transgênicos , Tirosina 3-Mono-Oxigenase/metabolismo , Dopamina/metabolismo , Masculino , Proteínas Luminescentes/metabolismo , Proteínas Luminescentes/genética , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/genética
16.
Biomolecules ; 14(3)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38540765

RESUMO

Phosphatase and tensin homolog (Pten) is a key regulator of cell proliferation and a potential target to stimulate postnatal enteric neuro- and/or gliogenesis. To investigate this, we generated two tamoxifen-inducible Cre recombinase murine models in which Pten was conditionally ablated, (1) in glia (Plp1-expressing cells) and (2) in neurons (Calb2-expressing cells). Tamoxifen-treated adult (7-12 weeks of age; n = 4-15) mice were given DSS to induce colitis, EdU to monitor cell proliferation, and were evaluated at two timepoints: (1) early (3-4 days post-DSS) and (2) late (3-4 weeks post-DSS). We investigated gut motility and evaluated the enteric nervous system. Pten inhibition in Plp1-expressing cells elicited gliogenesis at baseline and post-DSS (early and late) in the colon, and neurogenesis post-DSS late in the proximal colon. They also exhibited an increased frequency of colonic migrating motor complexes (CMMC) and slower whole gut transit times. Pten inhibition in Calb2-expressing cells did not induce enteric neuro- or gliogenesis, and no alterations were detected in CMMC or whole gut transit times when compared to the control at baseline or post-DSS (early and late). Our results merit further research into Pten modulation where increased glia and/or slower intestinal transit times are desired (e.g., short-bowel syndrome and rapid-transit disorders).


Assuntos
Sistema Nervoso Entérico , Animais , Camundongos , Sistema Nervoso Entérico/metabolismo , Neurogênese/fisiologia , Proteolipídeos/metabolismo , Tamoxifeno/farmacologia , Tensinas/metabolismo
17.
Histol Histopathol ; 39(9): 1089-1099, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38407437

RESUMO

Neuregulin 1 (NRG1) belonging to the transmembrane growth factors family is widespread in living organisms. It acts through ErbB family receptors and first of all takes part in embryogenesis, as well as in developmental, regenerative and adaptive processes occurring in various internal organs and systems. It is known that NRG1 and its receptors are present in various parts of the gastrointestinal (GI) tract. First of all NRG1 and ErbB receptors have been detected in the enteric nervous system (ENS) localized in the wall of the esophagus, stomach and intestine and regulating the majority of the GI tract functions, but also in the mucosal and muscular layers of the GI tract. The NRG1/ErbB pathway is involved in the development and differentiation of the ENS and regulation of the intestinal epithelium functions. Moreover, dysregulation of this pathway results in a wide range of gastrointestinal diseases. However, till now there are no summarizations of previous studies concerning distribution and functions of NRG1 and its receptors in the GI tract. The present review fills this gap.


Assuntos
Sistema Nervoso Entérico , Trato Gastrointestinal , Neuregulina-1 , Neuregulina-1/metabolismo , Sistema Nervoso Entérico/metabolismo , Humanos , Animais , Trato Gastrointestinal/inervação , Trato Gastrointestinal/metabolismo , Receptores ErbB/metabolismo , Transdução de Sinais
18.
Stem Cells Transl Med ; 13(5): 490-504, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38387006

RESUMO

Regenerative cell therapy to replenish the missing neurons and glia in the aganglionic segment of Hirschsprung disease represents a promising treatment option. However, the success of cell therapies for this condition are hindered by poor migration of the transplanted cells. This limitation is in part due to a markedly less permissive extracellular environment in the postnatal gut than that of the embryo. Coordinated interactions between enteric neural crest-derived cells (ENCDCs) and their local environment drive migration along the embryonic gut during development of the enteric nervous system. Modifying transplanted cells, or the postnatal extracellular environment, to better recapitulate embryonic ENCDC migration could be leveraged to improve the engraftment and coverage of stem cell transplants. We compared the transcriptomes of ENCDCs from the embryonic intestine to that of postnatal-derived neurospheres and identified 89 extracellular matrix (ECM)-associated genes that are differentially expressed. Agrin, a heparin sulfate proteoglycan with a known inhibitory effect on ENCDC migration, was highly over-expressed by postnatal-derived neurospheres. Using a function-blocking antibody and a shRNA-expressing lentivirus, we show that inhibiting agrin promotes ENCDC migration in vitro and following cell transplantation ex vivo and in vivo. This enhanced migration is associated with an increased proportion of GFAP + cells, whose migration is especially enhanced.


Assuntos
Agrina , Movimento Celular , Células-Tronco Neurais , Animais , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/transplante , Camundongos , Agrina/metabolismo , Sistema Nervoso Entérico/metabolismo , Sistema Nervoso Entérico/citologia , Colo/metabolismo , Colo/citologia , Crista Neural/metabolismo , Crista Neural/citologia , Doença de Hirschsprung/metabolismo , Doença de Hirschsprung/terapia , Transplante de Células-Tronco/métodos
19.
Sci Rep ; 14(1): 3686, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355947

RESUMO

The enteric nervous system (ENS) is a large and complex part of the peripheral nervous system, and it is vital for gut homeostasis. To study the ENS, different hyper- and hypo-innervated model systems have been developed. The NSE-Noggin mouse model was described as one of the few models with a higher enteric neuronal density in the colon. However, in our hands NSE-Noggin mice did not present with a hyperganglionic phenotype. NSE-Noggin mice were phenotyped based on fur appearance, genotyped and DNA sequenced to demonstrate transgene and intact NSE-Noggin-IRES-EGFP construct presence, and RNA expression of Noggin was shown to be upregulated. Positive EGFP staining in the plexus of NSE-Noggin mice also confirmed Noggin protein expression. Myenteric plexus preparations of the colon were examined to quantify both the overall density of enteric neurons and the proportions of enteric neurons expressing specific subtype markers. The total number of enteric neurons in the colonic myenteric plexus of transgenic mice did not differ significantly from wild types, nor did the proportion of calbindin, calretinin, or serotonin immunoreactive myenteric neurons. Possible reasons as to why the hyperinnervated phenotype could not be observed in contrast with original studies using this mouse model are discussed, including study design, influence of microbiota, and other environmental variables.


Assuntos
Sistema Nervoso Entérico , Neurônios , Camundongos , Animais , Neurônios/metabolismo , Sistema Nervoso Entérico/metabolismo , Proteínas de Transporte/metabolismo , Plexo Mientérico , Camundongos Transgênicos , Colo
20.
J Am Heart Assoc ; 13(3): e033279, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38258657

RESUMO

BACKGROUND: Gut dysmotility is common after ischemic stroke, but the mechanism underlying this response is unknown. Under homeostasis, gut motility is regulated by the neurons of the enteric nervous system that control contractile/relaxation activity of muscle cells in the gut wall. More recently, studies of gut inflammation revealed interactions of macrophages with enteric neurons are also involved in modulating gut motility. However, whether poststroke gut dysmotility is mediated by direct signaling to the enteric nervous system or indirectly via inflammatory macrophages is unknown. METHODS AND RESULTS: We examined these hypotheses by using a clinically relevant permanent intraluminal midcerebral artery occlusion experimental model of stroke. At 24 hours after stroke, we performed in vivo and ex vivo gut motility assays, flow cytometry, immunofluorescence, and transcriptomic analysis. Stroke-induced gut dysmotility was associated with recruitment of muscularis macrophages into the gastrointestinal tract and redistribution of muscularis macrophages away from myenteric ganglia. The permanent intraluminal midcerebral artery occlusion model caused changes in gene expression in muscularis macrophages consistent with an altered phenotype. While the size of myenteric ganglia after stroke was not altered, myenteric neurons from post-permanent intraluminal midcerebral artery occlusion mice showed a reduction in neuronal nitric oxide synthase expression, and this response was associated with enhanced intestinal smooth muscle contraction ex vivo. Finally, chemical sympathectomy with 6-hydroxydopamine prevented the loss of myenteric neuronal nitric oxide synthase expression and stroke-induced slowed gut transit. CONCLUSIONS: Our findings demonstrate that activation of the sympathetic nervous system after stroke is associated with reduced neuronal nitric oxide synthase expression in myenteric neurons, resulting in impaired smooth muscle relaxation and dysregulation of gut transit.


Assuntos
Sistema Nervoso Entérico , Acidente Vascular Cerebral , Camundongos , Animais , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Sistema Nervoso Entérico/metabolismo , Neurônios/fisiologia , Relaxamento Muscular , Acidente Vascular Cerebral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...