RESUMO
BACKGROUND: Alterations in upper respiratory microbiomes have been implicated in shaping host health trajectories, including by limiting mucosal pathogen colonization. However, limited comparative studies of respiratory microbiome development and functioning across age groups have been performed. Herein, we perform shotgun metagenomic sequencing paired with pathogen inhibition assays to elucidate differences in nasal and oral microbiome composition and intermicrobial interactions across healthy 24-month-old infant (n = 229) and adult (n = 100) populations. RESULTS: We find that beta diversity of nasal and oral microbiomes varies with age, with nasal microbiomes showing greater population-level variation compared to oral microbiomes. Infant microbiome alpha diversity was significantly lower across nasal samples and higher in oral samples, relative to adults. Accordingly, we demonstrate significant differences in genus- and species-level composition of microbiomes between sites and age groups. Antimicrobial resistome patterns likewise varied across body sites, with oral microbiomes showing higher resistance gene abundance compared to nasal microbiomes. Biosynthetic gene clusters encoding specialized metabolite production were found in higher abundance across infant oral microbiomes, relative to adults. Investigation of pathogen inhibition revealed greater inhibition of gram-negative and gram-positive bacteria by oral commensals, while nasal isolates had higher antifungal activity. CONCLUSIONS: In summary, we identify significant differences in the microbial communities inhabiting nasal and oral cavities of healthy infants relative to adults. These findings inform our understanding of the interactions impacting respiratory microbiome composition and functions related to colonization resistance, with important implications for host health across the lifespan. Video Abstract.
Assuntos
Bactérias , Microbiota , Boca , Humanos , Boca/microbiologia , Adulto , Lactente , Feminino , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Masculino , Fatores Etários , Pré-Escolar , Voluntários Saudáveis , Metagenômica/métodos , Sistema Respiratório/microbiologia , MetagenomaRESUMO
Cystic fibrosis (CF) is a genetic disorder characterized by chronic microbial colonization and inflammation of the respiratory tract (RT), leading to pulmonary exacerbation (PEx) and lung damage. Although the lung bacterial microbiota has been extensively studied, the mycobiome remains understudied. However, its importance as a contributor to CF pathophysiology has been highlighted. The objective of this review is to provide an overview of the current state of knowledge regarding the mycobiome, as described through NGS-based studies, in patients with CF (pwCF).Several studies have demonstrated that the mycobiome in CF lungs is a dynamic entity, exhibiting a lower diversity and abundance than the bacterial microbiome. Nevertheless, the progression of lung damage is associated with a decrease in fungal and bacterial diversity. The core mycobiome of the RT in pwCFs is mainly composed of yeasts (Candida spp., Malassezia spp.) and molds with lower abundance. Some fungi (Aspergillus, Scedosporium/Pseudallescheria) have been demonstrated to play a role in PEx, while the involvement of others (Candida, Pneumocystis) remains uncertain. The "climax attack" ecological model has been proposed to explain the complexity and interplay of microbial populations in the RT, leading to PEx and lung damage. NGS-based studies also enable the detection of intra- and interkingdom correlations between fungi and bacteria. Further studies are required to ascertain the biological and pathophysiological relevance of these correlations. Finally, with the recent advent of CFTR modulators, our understanding of the pulmonary microbiome and mycobiome in pwCFs is about to change.
Assuntos
Fibrose Cística , Metagenômica , Micobioma , Fibrose Cística/microbiologia , Fibrose Cística/complicações , Humanos , Metagenômica/métodos , Fungos/genética , Fungos/classificação , Fungos/isolamento & purificação , Sistema Respiratório/microbiologia , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Pulmão/microbiologia , MicrobiotaRESUMO
The importance of the complex interplay between the microbiome and mucosal immunity, particularly within the respiratory tract, has gained significant attention due to its potential implications for the severity and progression of lung diseases. Therefore, this review summarizes the specific interactions through which the respiratory tract-specific microbiome influences mucosal immunity and ultimately impacts respiratory health. Furthermore, we discuss how the microbiome affects mucosal immunity, considering tissue-specific variations, and its capacity in respiratory diseases containing asthma, chronic obstructive pulmonary disease, and lung cancer. Additionally, we investigate the external factors which affect the relationship between respiratory microbiome and mucosal immune responses. By exploring these intricate interactions, this review provides valuable insights into the potential for microbiome-based interventions to modulate mucosal immunity and alleviate the severity of respiratory diseases.
Assuntos
Progressão da Doença , Imunidade nas Mucosas , Microbiota , Humanos , Microbiota/imunologia , Asma/imunologia , Asma/microbiologia , Sistema Respiratório/microbiologia , Sistema Respiratório/imunologia , Animais , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/microbiologia , Doenças Respiratórias/imunologia , Doenças Respiratórias/microbiologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/microbiologiaRESUMO
The lower respiratory tract (LRT) microbiome impacts human health, especially among critically ill patients. However, comprehensive characterizations of the LRT microbiome remain challenging due to low microbial mass and host contamination. We develop a chelex100-based low-biomass microbial-enrichment method (CMEM) that enables deep metagenomic profiling of LRT samples to recover near-complete microbial genomes. We apply the method to 453 longitudinal LRT samples from 157 intensive care unit (ICU) patients in three geographically distant hospitals. We recover 120 high-quality metagenome-assembled genomes (MAGs) and associated plasmids without culturing. We detect divergent longitudinal microbiome dynamics and hospital-specific dominant opportunistic pathogens and resistomes in pneumonia patients. Diagnosed pneumonia and the ICU stay duration were associated with the abundance of specific antibiotic-resistance genes (ARGs). Moreover, CMEM can serve as a robust tool for genome-resolved analyses. MAG-based analyses reveal strain-specific resistome and virulome among opportunistic pathogen strains. Evolutionary analyses discover increased mobilome in prevailing opportunistic pathogens, highly conserved plasmids, and new recombination hotspots associated with conjugative elements and prophages. Integrative analysis with epidemiological data reveals frequent putative inter-patient strain transmissions in ICUs. In summary, we present a genome-resolved functional, transmission, and evolutionary landscape of the LRT microbiota in critically ill patients.
Assuntos
Estado Terminal , Unidades de Terapia Intensiva , Metagenoma , Microbiota , Humanos , Microbiota/genética , Metagenoma/genética , Metagenômica/métodos , Estudos Longitudinais , Masculino , Feminino , Plasmídeos/genética , Genoma Bacteriano/genética , Sistema Respiratório/microbiologia , Idoso , Pessoa de Meia-Idade , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Pneumonia/microbiologia , Evolução MolecularRESUMO
Particulate matter with a diameter ≤2.5â µm (PM2.5) poses a substantial global challenge, with a growing recognition of pathogens contributing to diseases associated with exposure to PM2.5 Recent studies have focused on PM2.5, which impairs the immune cells in response to microbial infections and potentially contributes to the development of severe diseases in the respiratory tract. Accordingly, changes in the respiratory immune function and microecology mediated by PM2.5 are important factors that enhance the risk of microbial pathogenesis. These factors have garnered significant interest. In this review, we summarise recent studies on the potential mechanisms involved in PM2.5-mediated immune system disruption and exacerbation of microbial pathogenesis in the respiratory tract. We also discuss crucial areas for future research to address the gaps in our understanding and develop effective strategies to combat the adverse health effects of PM2.5.
Assuntos
Interações Hospedeiro-Patógeno , Material Particulado , Infecções Respiratórias , Material Particulado/efeitos adversos , Material Particulado/imunologia , Humanos , Infecções Respiratórias/imunologia , Infecções Respiratórias/microbiologia , Animais , Exposição por Inalação/efeitos adversos , Poluentes Atmosféricos/efeitos adversos , Tamanho da Partícula , Fatores de Risco , Sistema Respiratório/microbiologia , Sistema Respiratório/imunologia , Medição de RiscoRESUMO
Our study was designed to investigate the original spectrum of feline respiratory tract infection and to provide a scientific basis for the clinical diagnosis and treatment of feline respiratory infections and for precise prevention and control measures. A total of 400 cats with upper respiratory tract infections from animal hospitals in 12 provinces in China were examined from November 2022 to October 2023 to investigate the epidemiology of feline calicivirus (FCV), feline herpes virus type 1 (FHV-1), influenza A virus (IAV), Mycoplasma felis, Chlamydia felis, and Bordetella bronchiseptica through loop-mediated isothermal amplification (LAMP) with microfluidic chip detection. The results showed that 396 of the 400 samples tested were positive for at least one of these pathogens, with an overall detection rate of 99.00%. The detection rates were as follows: FCV, 36.00% (144/400); M. felis, 34.00% (136/400); FHV-1, 21.50% (86/400); C. felis, 15.75% (63/400); B. b, 13.00% (52/400); IAV, 4.50% (18/400). There were no statistically significant differences in the detection rates of respiratory pathogens between different sexes, ages, seasons, breeds, or regions (P > 0.05). There were 88 mixed infections, giving a total mixed infection rate of 22.00% (88/400). It is worth noting that the detection rate of FCV at different ages and of FHV-1 in different sexes showed significant differences (P < 0.05). The highest rate of FCV infection was found in animals that were 1 to 2 years old, and the rate of FHV-1 infection in male cats was higher than that in female cats. The results showed that the spectrum of feline respiratory pathogens is complex, with diverse epidemiological characteristics and mixed infections, and some differences among different respiratory pathogens were found with regard to the sex, age, and breed of the cat. Studies should be continued to provide a scientific basis for precise prevention and control of feline respiratory diseases.
Assuntos
Doenças do Gato , Técnicas de Amplificação de Ácido Nucleico , Infecções Respiratórias , Animais , Gatos , Infecções Respiratórias/veterinária , Infecções Respiratórias/virologia , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/microbiologia , Infecções Respiratórias/diagnóstico , Doenças do Gato/virologia , Doenças do Gato/epidemiologia , Doenças do Gato/microbiologia , Feminino , Masculino , China/epidemiologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Calicivirus Felino/isolamento & purificação , Calicivirus Felino/genética , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/genética , Vírus da Influenza A/classificação , Chlamydia/genética , Chlamydia/isolamento & purificação , Chlamydia/classificação , Bordetella bronchiseptica/isolamento & purificação , Bordetella bronchiseptica/genética , Mycoplasma/isolamento & purificação , Mycoplasma/genética , Mycoplasma/classificação , Técnicas de Diagnóstico Molecular/métodos , Varicellovirus/genética , Varicellovirus/isolamento & purificação , Varicellovirus/classificação , Sistema Respiratório/virologia , Sistema Respiratório/microbiologiaRESUMO
SUMMARYThis guidance presents recommendations for clinical microbiology laboratories for processing respiratory samples from people with cystic fibrosis (pwCF). Appropriate processing of respiratory samples is crucial to detect bacterial and fungal pathogens, guide treatment, monitor the epidemiology of cystic fibrosis (CF) pathogens, and assess therapeutic interventions. Thanks to CF transmembrane conductance regulator modulator therapy, the health of pwCF has improved, but as a result, fewer pwCF spontaneously expectorate sputum. Thus, the collection of sputum samples has decreased, while the collection of other types of respiratory samples such as oropharyngeal and bronchoalveolar lavage samples has increased. To optimize the detection of microorganisms, including Pseudomonas aeruginosa, Staphylococcus aureus, Haemophilus influenzae, and Burkholderia cepacia complex; other less common non-lactose fermenting Gram-negative bacilli, e.g., Stenotrophomonas maltophilia, Inquilinus, Achromobacter, Ralstonia, and Pandoraea species; and yeasts and filamentous fungi, non-selective and selective culture media are recommended for all types of respiratory samples, including samples obtained from pwCF after lung transplantation. There are no consensus recommendations for laboratory practices to detect, characterize, and report small colony variants (SCVs) of S. aureus, although studies are ongoing to address the potential clinical impact of SCVs. Accurate identification of less common Gram-negative bacilli, e.g., S. maltophilia, Inquilinus, Achromobacter, Ralstonia, and Pandoraea species, as well as yeasts and filamentous fungi, is recommended to understand their epidemiology and clinical importance in pwCF. However, conventional biochemical tests and automated platforms may not accurately identify CF pathogens. MALDI-TOF MS provides excellent genus-level identification, but databases may lack representation of CF pathogens to the species-level. Thus, DNA sequence analysis should be routinely available to laboratories for selected clinical circumstances. Antimicrobial susceptibility testing (AST) is not recommended for every routine surveillance culture obtained from pwCF, although selective AST may be helpful, e.g., for unusual pathogens or exacerbations unresponsive to initial therapy. While this guidance reflects current care paradigms for pwCF, recommendations will continue to evolve as CF research expands the evidence base for laboratory practices.
Assuntos
Fibrose Cística , Infecções Respiratórias , Manejo de Espécimes , Humanos , Fibrose Cística/microbiologia , Fibrose Cística/complicações , Infecções Respiratórias/microbiologia , Infecções Respiratórias/diagnóstico , Manejo de Espécimes/métodos , Manejo de Espécimes/normas , Técnicas Microbiológicas/métodos , Técnicas Microbiológicas/normas , Bactérias/isolamento & purificação , Bactérias/classificação , Sistema Respiratório/microbiologia , Fungos/isolamento & purificação , Fungos/classificaçãoRESUMO
Although gastroesophageal reflux has been recognized as one of the risk factors of nontuberculous mycobacterial pulmonary disease (NTM-PD) progression, the effect of reflux on the lower respiratory tract microbiota has not been studied in detail. We investigated the composition of the lower respiratory tract microbiota in patients with clinically suspected NTM-PD, comparing them based on the presence of reflux. Forty-seven patients suspected of having NTM-PD were enrolled and assigned according to presence of reflux (n = 22) and non- reflux (n = 25). We performed a pepsin ELISA assay to identify the presence of reflux and 16S ribosomal RNA gene amplicon sequencing to evaluate the microbiota in bronchoalveolar lavage fluid. There were no significant differences in the diversity or composition of the lower respiratory microbiota between the NTM-PD and non-NTM-PD groups. Bacterial richness was observed in the non-reflux group than in the reflux group [P = 0.03] and a cluster in the reflux group was observed. The reflux group showed a predominance for Pseudomonas aeruginosa or Staphylococcus aureus among the NTM-PD group and for P. aeruginosa, Haemophilus influenzae, Klebsiella pneumoniae, or Eikenella species among the non-NTM-PD group. The non-reflux groups presented diverse patterns. A linear discriminant analysis and volcano plot demonstrated that P. aeruginosa, H. haemolyticus, Selenomonas artemidis, and Dolosigranulum pigrum were specifically associated with the NTM-PD reflux group, while P. aeruginosa was specifically associated with the non-NTM-PD reflux group. These observations confirm that the lower respiratory microbiota is consistently altered by reflux but not in NTM-PD.
Assuntos
Refluxo Gastroesofágico , Microbiota , Infecções por Mycobacterium não Tuberculosas , RNA Ribossômico 16S , Humanos , Refluxo Gastroesofágico/microbiologia , Masculino , Feminino , Idoso , Infecções por Mycobacterium não Tuberculosas/microbiologia , Infecções por Mycobacterium não Tuberculosas/complicações , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Líquido da Lavagem Broncoalveolar/microbiologia , Micobactérias não Tuberculosas/isolamento & purificação , Sistema Respiratório/microbiologia , Pneumopatias/microbiologiaRESUMO
Objective: In clinical practice, imaging manifestations of diffuse lung parenchymal lesions are common and indicative of various diseases, making differential diagnosis difficult. Some of these lesions are eventually diagnosed as lung cancer. Methods: Because respiratory microorganisms play an important role in lung cancer development, we searched for microbial markers that could predict the risk of lung cancer by retrospectively analyzing the lower respiratory tract (LRT) microbiome of 158 patients who were hospitalized in the First Affiliated Hospital of Guangzhou Medical University (March 2021-March 2023) with diffuse lung parenchymal lesions. The final diagnosis was lung cancer in 21 cases, lung infection in 93 cases, and other conditions (other than malignancy and infections) in 44 cases. The patient's clinical characteristics and the results of metagenomic next-generation sequencing of bronchoalveolar lavage fluid (BALF) were analyzed. Results: Body mass index (BMI) and LRT microbial diversity (Shannon, Simpson, species richness, and Choa1 index) were significantly lower (P< 0.001, respectively) and Lactobacillus acidophilus relative abundance in the LRT was significantly higher (P< 0.001) in patients with lung cancer. The relative abundance of L. acidophilus in BALF combined with BMI was a good predictor of lung cancer risk (area under the curve = 0.985, accuracy = 98.46%, sensitivity = 95.24%, and specificity = 100.00%; P< 0.001). Conclusion: Our study showed that an imbalance in the component ratio of the microbial community, diminished microbial diversity, and the presence of specific microbial markers in the LRT predicted lung cancer risk in patients with imaging manifestations of diffuse lung parenchymal lesions.
Assuntos
Líquido da Lavagem Broncoalveolar , Neoplasias Pulmonares , Microbiota , Humanos , Neoplasias Pulmonares/microbiologia , Neoplasias Pulmonares/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Líquido da Lavagem Broncoalveolar/microbiologia , Estudos Retrospectivos , Idoso , Pulmão/microbiologia , Pulmão/patologia , Pulmão/diagnóstico por imagem , Sequenciamento de Nucleotídeos em Larga Escala , Adulto , Sistema Respiratório/microbiologia , Metagenômica/métodos , Fatores de RiscoRESUMO
Lumpy skin disease virus (LSDV), a double-stranded DNA virus from the Capripoxvirus genus, primarily affects Bos indicus, Bos taurus breeds, and water buffalo. Arthropod vectors, including mosquitoes and biting flies, are the main LSDV transmitters. Although LSDV is not zoonotic, this study unexpectedly detected LSDV reads in the upper respiratory tract microbiome of humans from rural and urban areas in Maharashtra, India. Nasopharyngeal and oropharyngeal swab samples collected for SARS-CoV-2 surveillance underwent whole-genome metagenomics sequencing, revealing LSDV reads in 25% of samples. Split kmer analysis provided insights into sample relatedness despite the low coverage of LSDV reads with the reference genome. Our findings, which include the detection of LSDV contigs aligning to specific locations on the reference genome, suggest a common source for LSDV reads, potentially shared water sources, or milk/milk products. Further investigation is needed to ascertain the mode of transmission and reason for the detection of LSDV reads in human upper respiratory tract.
Assuntos
Vírus da Doença Nodular Cutânea , Metagenômica , Microbiota , Humanos , Microbiota/genética , Metagenômica/métodos , Vírus da Doença Nodular Cutânea/isolamento & purificação , Vírus da Doença Nodular Cutânea/genética , Vírus da Doença Nodular Cutânea/classificação , Orofaringe/virologia , Orofaringe/microbiologia , Animais , Índia , Genoma Viral/genética , Nasofaringe/virologia , Nasofaringe/microbiologia , Sistema Respiratório/microbiologia , Sistema Respiratório/virologia , Masculino , Sequenciamento Completo do Genoma , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/classificação , Feminino , Adulto , COVID-19/diagnóstico , COVID-19/virologia , Doença Nodular Cutânea/virologiaRESUMO
Our understanding of the normal variation in the upper respiratory tract (URT) microbiota across the human lifespan and how these relate to host, environment, and health is limited. We studied the microbiota of 3,104 saliva (<10 year-olds)/oropharynx (≥10 year-olds) and 2,485 nasopharynx samples of 3,160 Dutch individuals 0-87 years of age, participating in a cross-sectional population-wide study (PIENTER-3) using 16S-rRNA sequencing. The microbiota composition was strongly related to age, especially in the nasopharynx, with maturation occurring throughout childhood and adolescence. Clear niche- and age-specific associations were found between the microbiota composition and host/environmental factors and health outcomes. Among others, social interaction, sex, and season were associated with the nasopharyngeal microbial community. By contrast, the oral microbiota was more related to antibiotics, tobacco, and alcohol use. We present an atlas of the URT microbiota across the lifespan in association with environment and health, establishing a baseline for future research.
Assuntos
Microbiota , Humanos , Idoso , Pré-Escolar , Adulto , Criança , Pessoa de Meia-Idade , Adolescente , Idoso de 80 Anos ou mais , Masculino , Feminino , Lactente , Adulto Jovem , RNA Ribossômico 16S/genética , Estudos Transversais , Recém-Nascido , Sistema Respiratório/microbiologia , Longevidade , Nasofaringe/microbiologia , Saliva/microbiologia , Meio AmbienteRESUMO
Recent evidence has pinpointed a key role of the microbiome in human respiratory health and disease. However, significant knowledge gaps still exist regarding the connection between bacterial communities and adverse effects caused by particulate matters (PMs). Here, we characterized the bacterial microbiome along different airway sites in occupational pneumoconiosis (OP) patients. The sequencing data revealed that OP patients exhibited distinct dysbiosis in the composition and function of the respiratory microbiota. To different extents, there was an overall increase in the colonization of microbiota, such as Streptococcus, implying a possible intrusion pathway provided by exogenous PMs. Compared to those of healthy subjects, unhealthy living habits (i.e., smoking) had a greater impact on microbiome changes in OP patients. Importantly, the associations between the bacterial community and disease indicators indicated that specific bacterial species, including Prevotella, Actinobacillus, and Leptotrichia, might be surrogate markers of OP disease progression. Collectively, our results highlighted the potential participation of the bacterial microbiota in the pathogenesis of respiratory diseases and helped in the discovery of microbiome-based diagnostics for PM-induced disorders.
Assuntos
Progressão da Doença , Microbiota , Humanos , Masculino , Pessoa de Meia-Idade , Material Particulado , Pneumoconiose/microbiologia , Bactérias/classificação , Bactérias/isolamento & purificação , Sistema Respiratório/microbiologia , Doenças Profissionais/microbiologia , Disbiose , Exposição Ocupacional/efeitos adversosRESUMO
Scientific research confirms the harmful effects of airborne cyanobacteria and microalgae. However, determining human exposure to these microorganisms remains a challenge. The six-stage Tisch impactor was used to collect bioaerosols from April to September 2020 in the coastal zone of the southern Baltic. The MPPD model was used for estimation of regional, lobar, and generation deposition of microorganisms in human respiratory tract. The mass deposition fraction of cyanobacteria and microalgae in the head region gradually increased with the aerosol size. The maximum deposition fractions in the trachea, bronchial, and the pulmonary region were found for particles between 2.1 and 3.3 µm. The contribution of cyanobacteria and microalgae was the highest in the head region. The majority of microorganisms found in pulmonary region dominated in particles smaller than 2.1 µm. Exposure to the ambient bioaerosols may have an adverse impact on the human health in the region of southern Baltic Sea.
Assuntos
Aerossóis , Cianobactérias , Microalgas , Polônia , Humanos , Aerossóis/análise , Monitoramento Ambiental , Sistema Respiratório/microbiologia , Poluentes Atmosféricos/análise , Microbiologia do ArRESUMO
The shape of environmental aerosols contributes to the discrepancy in their dynamic behavior compared to spherical particles, which have received inadequate consideration. We reported deposition patterns of aerosols and aerosol-transmissible pathogens in real human respiratory systems, taking into account their actual shape, using a validated computational-based model. We found that the shape of the aerosols significantly influenced its deposits and accessibility within the respiratory system, significantly in the tracheobronchial region. As an example, we estimated that over 180 % of differences in deposits in the trachea and bronchi were attributable to pathogens shape, inferring the underlying pathogenicity difference of these regions. These findings, capturing the spatial heterogeneity of pathogens and aerosols deposition in human respiratory system, have major implication for understanding the evolution of aerosol-related disease.
Assuntos
Aerossóis , Humanos , Sistema Respiratório/microbiologia , Traqueia/microbiologia , Brônquios/microbiologia , Brônquios/patologia , Microbiologia do ArRESUMO
BACKGROUND: The etiology of allergic rhinitis (AR) is not fully understood. Studies have shown that the maturation of children's immune systems is closely related to microecology. However, few studies have focused simultaneously on changes in respiratory and gut microbiota in AR and their correlation between microecological changes and Th1/Th2/Treg. OBJECTIVE: The aim is to investigate the pathogenesis of AR based on respiratory microecology, gut microecology, and Th1/Th2/Treg levels by applying microbiome techniques and correlation analysis. METHODS: Standardized OVA-induced AR mice were established. Serum OVA-sIgE, IL-4, IFN-γ, IL-10 were measured by ELISA, Tregs in lymph nodes were determined by flow cytometry, and the histological characteristics of nasal tissues were evaluated by Hematoxylin & Eosin (H&E). Nasal symptoms were observed to determine the reliability of the AR mouse model. Nasal lavage fluid (NALF) and fecal samples were collected after the last OVA challenge. The composition of respiratory microbiota in NALF and gut microbial in feces samples via 16S rRNA gene sequencing between the two groups, further explored the relationship between microbiota and Th1/Th2/Treg levels. RESULTS: In the AR group, the incidence of nose rubbing and sneezing in each mouse was significantly increased compared with the control group (all P < 0.001) and the inflammatory cell infiltration of NALF shows a significant increase in eosinophilic and neutrophilic infiltrates upon the AR group; H&E showed that the nasal mucosa of AR mice infiltration of massive eosinophils cells and neutrophils cells. OVA-sIgE and IL-4 in the AR group were increased (P < 0.01, P < 0.05) and IFN-γ, IL-10 were significantly decreased (P < 0.01, P < 0.05). Tregs showed a downward trend in the AR group, but there was no statistical difference. Compared with the control group, the respiratory microbiota of AR mice did not change significantly, while the gut microbiota changed significantly. In gut microbiota, compared to the control group, Shannon index in the AR group revealed a significant decrease at the genus level (P < 0.01), and Simpson index was significantly increased at all levels (all P < 0.05). PCoA also showed significant differences in beta diversity between the two groups (all P < 0.05). Compared to the control group, Deferribacteres at phylum level, Roseburia, Ruminiclostridium, Anaerotruncus at genus level were significantly decreased in the AR group (all P < 0.05). Spearman's rank correlation showed that OVA-sIgE was positively correlated with Bacteroidetes, Muribaculaceae and Erysipelotrichaceae (all P < 0.05); IL-4 was significantly negatively correlated with Epsilonbacteraeota and Deferribacteres (all P < 0.05). Treg was significantly positively correlated with Patescibacteria, Lachnospiraceae, and Saccharimonadaceae in gut microecology. CONCLUSION: Our results showed that the respiratory microbiota of AR mice was not significantly altered, but the gut microbiota varied significantly and there was a correlation between gut microbiota and Th1/Th2/Treg.
Assuntos
Modelos Animais de Doenças , Microbioma Gastrointestinal , Ovalbumina , RNA Ribossômico 16S , Sistema Respiratório , Rinite Alérgica , Linfócitos T Reguladores , Células Th1 , Células Th2 , Animais , Camundongos , Microbioma Gastrointestinal/imunologia , Linfócitos T Reguladores/imunologia , Células Th2/imunologia , Rinite Alérgica/imunologia , Rinite Alérgica/microbiologia , Células Th1/imunologia , Ovalbumina/imunologia , RNA Ribossômico 16S/genética , Sistema Respiratório/microbiologia , Sistema Respiratório/imunologia , Feminino , Camundongos Endogâmicos BALB C , Citocinas/metabolismo , Interleucina-10/genética , Imunoglobulina E/sangue , Fezes/microbiologia , Líquido da Lavagem Nasal/imunologia , Líquido da Lavagem Nasal/microbiologia , Interferon gama/genética , Interleucina-4RESUMO
BACKGROUND: Extensive research has explored the role of gut microbiota in multiple sclerosis (MS). However, the impact of microbial communities in the oral cavity and respiratory tract on MS is an emerging area of investigation. PURPOSE: We aimed to review the current literature related to the nasal, oral, and lung microbiota in people with MS (PwMS). METHODS: We conducted a narrative review of clinical and preclinical original studies on PubMed that explored the relationship between the bacterial or viral composition of the nasal, lung, and oral microbiota and MS. Additionally, to find relevant studies not retrieved initially, we also searched for references in related review papers, as well as the references cited within the included studies. RESULTS AND CONCLUSIONS: Thirteen studies were meticulously reviewed in three sections; oral microbiota (n = 8), nasal microbiota (n = 3), and lung microbiota (n = 2), highlighting considerable alterations in the oral and respiratory microbiome of PwMS compared to healthy controls (HCs). Genera like Aggregatibacter and Streptococcus were less abundant in the oral microbiota of PwMS compared to HCs, while Staphylococcus, Leptotrichia, Fusobacterium, and Bacteroides showed increased abundance in PwMS. Additionally, the presence of specific bacteria, including Streptococcus sanguinis, within the oral microbiota was suggested to influence Epstein-Barr virus reactivation, a well-established risk factor for MS. Studies related to the nasal microbiome indicated elevated levels of specific Staphylococcus aureus toxins, as well as nasal glial cell infection with human herpes virus (HHV)-6 in PwMS. Emerging research on lung microbiome in animal models demonstrated that manipulating the lung microbiome towards lipopolysaccharide-producing bacteria might suppress MS symptoms. These findings open avenues for potential therapeutic strategies. However, further research is crucial to fully understand the complex interactions between the microbiome and MS. This will help identify the most effective timing, bacterial strains, and modulation techniques.
Assuntos
Microbiota , Boca , Esclerose Múltipla , Humanos , Esclerose Múltipla/microbiologia , Microbiota/fisiologia , Boca/microbiologia , Pulmão/microbiologia , Animais , Sistema Respiratório/microbiologiaRESUMO
Little is known about oxygen utilization during infection by bacterial respiratory pathogens. The classical Bordetella species, including B. pertussis, the causal agent of human whooping cough, and B. bronchiseptica, which infects nearly all mammals, are obligate aerobes that use only oxygen as the terminal electron acceptor for electron transport-coupled oxidative phosphorylation. B. bronchiseptica, which occupies many niches, has eight distinct cytochrome oxidase-encoding loci, while B. pertussis, which evolved from a B. bronchiseptica-like ancestor but now survives exclusively in and between human respiratory tracts, has only three functional cytochrome oxidase-encoding loci: cydAB1, ctaCDFGE1, and cyoABCD1. To test the hypothesis that the three cytochrome oxidases encoded within the B. pertussis genome represent the minimum number and class of cytochrome oxidase required for respiratory infection, we compared B. bronchiseptica strains lacking one or more of the eight possible cytochrome oxidases in vitro and in vivo. No individual cytochrome oxidase was required for growth in ambient air, and all three of the cytochrome oxidases conserved in B. pertussis were sufficient for growth in ambient air and low oxygen. Using a high-dose, large-volume persistence model and a low-dose, small-volume establishment of infection model, we found that B. bronchiseptica producing only the three B. pertussis-conserved cytochrome oxidases was indistinguishable from the wild-type strain for infection. We also determined that CyoABCD1 is sufficient to cause the same level of bacterial burden in mice as the wild-type strain and is thus the primary cytochrome oxidase required for murine infection, and that CydAB1 and CtaCDFGE1 fulfill auxiliary roles or are important for aspects of infection we have not assessed, such as transmission. Our results shed light on the environment at the surface of the ciliated epithelium, respiration requirements for bacteria that colonize the respiratory tract, and the evolution of virulence in bacterial pathogens.
Assuntos
Infecções por Bordetella , Complexo IV da Cadeia de Transporte de Elétrons , Animais , Camundongos , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Infecções por Bordetella/microbiologia , Infecções Respiratórias/microbiologia , Bordetella bronchiseptica/genética , Bordetella bronchiseptica/metabolismo , Bordetella bronchiseptica/enzimologia , Humanos , Sistema Respiratório/microbiologia , Sistema Respiratório/metabolismo , Evolução Biológica , Bordetella/genética , Bordetella/enzimologia , Bordetella pertussis/genética , Bordetella pertussis/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genéticaRESUMO
INTRODUCTION: Recent discoveries in the field of lung microbiota have enabled the investigation of new therapeutic interventions involving the use of inhaled probiotics. AREAS COVERED: This review provides an overview of what is known about the correlation between airway dysbiosis and the development of local and systemic diseases, and how this knowledge can be exploited for therapeutic interventions. In particular, the review focused on attempts to formulate probiotics that can be deposited directly on the airways. EXPERT OPINION: Despite considerable progress since the emergence of respiratory microbiota restoration as a new research field, numerous clinical implications and benefits remain to be determined. In the case of local diseases, once the pathophysiology is understood, manipulating the lung microbiota through probiotic administration is an approach that can be exploited. In contrast, the effect of pulmonary dysbiosis on systemic diseases remains to be clarified; however, this approach could represent a turning point in their treatment.