Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
1.
Cytokine ; 182: 156711, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39094437

RESUMO

BACKGROUND: Brucellosis is an economically important infectious caused by most commonly by Brucella. Detection of infected animals at the early stage is important for controlling the disease. The diagnostic antigens, usually protein antigens, have attracted much interest. However, the accurate mechanism of immune response is still unknown. The secretory effectors (BPE005, BPE275, and BPE123) of the type IV secretion system (T4SS) were involved in the intracellular circulation process of Brucella and the immune responses of the host. METHODS: Genes encoding three B. abortus effector proteins (BPE005, BPE275, and BPE123) of T4SS were cloned and the recombinant proteins were expressed and purified. The purified recombinant proteins were named rBPE005, rBPE275 and rBPE123. Then, the expressions of Th1- and Th2-related cytokine genes were analyzed in mice bone marrow-derived macrophages (BMDMs) after stimulation with rBPE005, rBPE275, and rBPE123. Furthermore, four apoptosis-associated genes (Caspase-3, Caspase-8, Bax, and Bcl-2) were also detected to explore the damage of the proteins to the cells. RESULTS: Expressions of all Th1- and Th2-related cytokine genes were induced with three proteins, and different cytokine expression patterns induced by each protein depend on the stimulation time and dose of protein. However, expressions of apoptosis-related genes did not change. CONCLUSION: These results showed that the secreted antigens of Brucella induced an immune reaction via the production of Th1- and Th2-type cytokines in BMDMs without exerting any damage on the cells.


Assuntos
Apoptose , Proteínas de Bactérias , Citocinas , Macrófagos , Proteínas Recombinantes , Sistemas de Secreção Tipo IV , Animais , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Citocinas/metabolismo , Sistemas de Secreção Tipo IV/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Camundongos Endogâmicos BALB C , Brucella abortus/imunologia , Brucelose/imunologia , Brucelose/genética , Feminino , Brucella/imunologia , Células Th1/imunologia
2.
Life Sci Alliance ; 7(11)2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39191487

RESUMO

Helicobacter pylori infection predisposes carriers to a high risk of developing gastric cancer. The cell-of-origin of antral gastric cancer is the Lgr5+ stem cell. Here, we show that infection of antrum-derived gastric organoid cells with H. pylori increases the expression of the stem cell marker Lgr5 as determined by immunofluorescence microscopy, qRT-PCR, and Western blotting, both when cells are grown and infected as monolayers and when cells are exposed to H. pylori in 3D structures. H. pylori exposure increases stemness properties as determined by spheroid formation assay. Lgr5 expression and the acquisition of stemness depend on a functional type IV secretion system (T4SS) and at least partly on the T4SS effector CagA. The pharmacological inhibition or genetic ablation of NF-κB reverses the increase in Lgr5 and spheroid formation. Constitutively active Wnt/ß-catenin signaling because of Apc inactivation exacerbates H. pylori-induced Lgr5 expression and stemness, both of which persist even after eradication of the infection. The combined data indicate that H. pylori has stemness-inducing properties that depend on its ability to activate NF-κB signaling.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , NF-kappa B , Receptores Acoplados a Proteínas G , Neoplasias Gástricas , Via de Sinalização Wnt , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Humanos , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/microbiologia , Via de Sinalização Wnt/genética , NF-kappa B/metabolismo , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiologia , Organoides/metabolismo , Organoides/microbiologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Células-Tronco/metabolismo , Antígenos de Bactérias/metabolismo , Antígenos de Bactérias/genética , Sistemas de Secreção Tipo IV/metabolismo , Sistemas de Secreção Tipo IV/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/microbiologia , Estômago/microbiologia , Estômago/patologia
3.
Proc Natl Acad Sci U S A ; 121(33): e2405209121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39106308

RESUMO

The obligatory intracellular bacterium Anaplasma phagocytophilum causes human granulocytic anaplasmosis, an emerging zoonosis. Anaplasma has limited biosynthetic and metabolic capacities, yet it effectively replicates inside of inclusions/vacuoles of eukaryotic host cells. Here, we describe a unique Type IV secretion system (T4SS) effector, ER-Golgi exit site protein of Anaplasma (EgeA). In cells infected by Anaplasma, secreted native EgeA, EgeA-GFP, and the C-terminal half of EgeA (EgeA-C)-GFP localized to Anaplasma-containing inclusions. In uninfected cells, EgeA-C-GFP localized to cis-Golgi, whereas the N-terminal half of EgeA-GFP localized to the ER. Pull-down assays identified EgeA-GFP binding to a transmembrane protein in the ER, Transport and Golgi organization protein 1 (TANGO1). By yeast two-hybrid analysis, EgeA-C directly bound Sec1 family domain-containing protein 1 (SCFD1), a host protein of the cis-Golgi network that binds TANGO1 at ER-Golgi exit sites (ERES). Both TANGO1 and SCFD1 localized to the Anaplasma inclusion surface. Furthermore, knockdown of Anaplasma EgeA or either host TANGO1 or SCFD1 significantly reduced Anaplasma infection. TANGO1 and SCFD1 prevent ER congestion and stress by facilitating transport of bulky or unfolded proteins at ERES. A bulky cargo collagen and the ER-resident chaperon BiP were transported into Anaplasma inclusions, and several ER stress marker genes were not up-regulated in Anaplasma-infected cells. Furthermore, EgeA transfection reduced collagen overexpression-induced BiP upregulation. These results suggest that by binding to the two ERES proteins, EgeA redirects the cargo-adapted ERES to pathogen-occupied inclusions and reduces ERES congestion, which facilitates Anaplasma nutrient acquisition and reduces ER stress for Anaplasma survival and proliferation.


Assuntos
Anaplasma phagocytophilum , Proteínas de Bactérias , Retículo Endoplasmático , Complexo de Golgi , Anaplasma phagocytophilum/metabolismo , Anaplasma phagocytophilum/patogenicidade , Retículo Endoplasmático/metabolismo , Humanos , Complexo de Golgi/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Corpos de Inclusão/metabolismo , Corpos de Inclusão/microbiologia , Animais , Sistemas de Secreção Tipo IV/metabolismo , Sistemas de Secreção Tipo IV/genética , Interações Hospedeiro-Patógeno
4.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38959853

RESUMO

Effector proteins secreted by bacteria that infect mammalian and plant cells often subdue eukaryotic host cell defenses by simultaneously affecting multiple targets. However, instances when a bacterial effector injected in the competing bacteria sabotage more than a single target have not been reported. Here, we demonstrate that the effector protein, LtaE, translocated by the type IV secretion system from the soil bacterium Lysobacter enzymogenes into the competing bacterium, Pseudomonas protegens, affects several targets, thus disabling the antibacterial defenses of the competitor. One LtaE target is the transcription factor, LuxR1, that regulates biosynthesis of the antimicrobial compound, orfamide A. Another target is the sigma factor, PvdS, required for biosynthesis of another antimicrobial compound, pyoverdine. Deletion of the genes involved in orfamide A and pyoverdine biosynthesis disabled the antibacterial activity of P. protegens, whereas expression of LtaE in P. protegens resulted in the near-complete loss of the antibacterial activity against L. enzymogenes. Mechanistically, LtaE inhibits the assembly of the RNA polymerase complexes with each of these proteins. The ability of LtaE to bind to LuxR1 and PvdS homologs from several Pseudomonas species suggests that it can sabotage defenses of various competitors present in the soil or on plant matter. Our study thus reveals that the multi-target effectors have evolved to subdue cell defenses not only in eukaryotic hosts but also in bacterial competitors.


Assuntos
Proteínas de Bactérias , Lysobacter , Pseudomonas , Sistemas de Secreção Tipo IV , Pseudomonas/genética , Pseudomonas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Lysobacter/genética , Lysobacter/metabolismo , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/metabolismo , Regulação Bacteriana da Expressão Gênica , Oligopeptídeos/metabolismo , Oligopeptídeos/genética , Transativadores/genética , Transativadores/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fator sigma/genética , Fator sigma/metabolismo
5.
J Infect Dis ; 230(1): 188-197, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39052722

RESUMO

The subtilisin-like protease-1 (SspA-1) plays an important role in the pathogenesis of a highly virulent strain of Streptococcus suis 2. However, the mechanism of SspA-1-triggered excessive inflammatory response is still unknown. In this study, we demonstrated that activation of type I IFN signaling is required for SspA-1-induced excessive proinflammatory cytokine production. Further experiments showed that the TLR2 endosomal pathway mediates SspA-1-induced type I IFN signaling and the inflammatory response. Finally, we mapped the major signaling components of the related pathway and found that the TIR adaptor proteins Mal, TRAM, and MyD88 and the downstream activation of IRF1 and IRF7 were involved in this pathway. These results explain the molecular mechanism by which SspA-1 triggers an excessive inflammatory response and reveal a novel effect of type I IFN in S. suis 2 infection, possibly providing further insights into the pathogenesis of this highly virulent S. suis 2 strain.


Assuntos
Citocinas , Endossomos , Interferon Tipo I , Transdução de Sinais , Streptococcus suis , Receptor 2 Toll-Like , Streptococcus suis/imunologia , Streptococcus suis/patogenicidade , Streptococcus suis/metabolismo , Interferon Tipo I/metabolismo , Receptor 2 Toll-Like/metabolismo , Citocinas/metabolismo , Animais , Endossomos/metabolismo , Camundongos , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/metabolismo , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Tipo IV/metabolismo , Sistemas de Secreção Tipo IV/genética , Humanos , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Camundongos Endogâmicos C57BL
6.
mBio ; 15(7): e0072624, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38847540

RESUMO

The modulation of actin polymerization is a common theme among microbial pathogens. Even though microorganisms show a wide repertoire of strategies to subvert the activity of actin, most of them converge in the ones that activate nucleating factors, such as the Arp2/3 complex. Brucella spp. are intracellular pathogens capable of establishing chronic infections in their hosts. The ability to subvert the host cell response is dependent on the capacity of the bacterium to attach, invade, avoid degradation in the phagocytic compartment, replicate in an endoplasmic reticulum-derived compartment and egress. Even though a significant number of mechanisms deployed by Brucella in these different phases have been identified and characterized, none of them have been described to target actin as a cellular component. In this manuscript, we describe the identification of a novel virulence factor (NpeA) that promotes niche formation. NpeA harbors a short linear motif (SLiM) present within an amphipathic alpha helix that has been described to bind the GTPase-binding domain (GBD) of N-WASP and stabilizes the autoinhibited state. Our results show that NpeA is secreted in a Type IV secretion system-dependent manner and that deletion of the gene diminishes the intracellular replication capacity of the bacterium. In vitro and ex vivo experiments demonstrate that NpeA binds N-WASP and that the short linear motif is required for the biological activity of the protein.IMPORTANCEThe modulation of actin-binding effectors that regulate the activity of this fundamental cellular protein is a common theme among bacterial pathogens. The neural Wiskott-Aldrich syndrome protein (N-WASP) is a protein that several pathogens target to hijack actin dynamics. The highly adapted intracellular bacterium Brucella has evolved a wide repertoire of virulence factors that modulate many activities of the host cell to establish successful intracellular replication niches, but, to date, no effector proteins have been implicated in the modulation of actin dynamics. We present here the identification of a virulence factor that harbors a short linear motif (SLiM) present within an amphipathic alpha helix that has been described to bind the GTPase-binding domain (GBD) of N-WASP stabilizing its autoinhibited state. We demonstrate that this protein is a Type IV secretion effector that targets N-WASP-promoting intracellular survival and niche formation.


Assuntos
Proteínas de Bactérias , Fatores de Virulência , Proteína Neuronal da Síndrome de Wiskott-Aldrich , Fatores de Virulência/metabolismo , Fatores de Virulência/genética , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Humanos , Sistemas de Secreção Tipo IV/metabolismo , Sistemas de Secreção Tipo IV/genética , Animais , Camundongos , Ligação Proteica , Brucella/metabolismo , Brucella/genética , Brucella/patogenicidade , Motivos de Aminoácidos , Actinas/metabolismo , Brucelose/microbiologia , Macrófagos/microbiologia , Interações Hospedeiro-Patógeno
7.
Curr Opin Microbiol ; 80: 102495, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908045

RESUMO

Legionella species are Gram-negative intracellular bacteria that evolved in soil and freshwater environments, where they infect and replicate within various unicellular protozoa. The primary virulence factor of Legionella is the expression of a type IV secretion system (T4SS), which contributes to the translocation of effector proteins that subvert biological processes of the host cells. Because of its evolution in unicellular organisms, T4SS effector proteins are not adapted to subvert specific mammalian signaling pathways and immunity. Consequently, Legionella pneumophila has emerged as an interesting infection model for investigating immune responses against pathogenic bacteria in multicellular organisms. This review highlights recent advances in our understanding of mammalian innate immunity derived from studies involving L. pneumophila. This includes recent insights into inflammasome-mediated mechanisms restricting bacterial replication in macrophages, mechanisms inducing cell death in response to infection, induction of effector-triggered immunity, activation of specific pulmonary cell types in mammalian lungs, and the protective role of recruiting monocyte-derived cells to infected lungs.


Assuntos
Imunidade Inata , Legionella pneumophila , Doença dos Legionários , Legionella pneumophila/imunologia , Legionella pneumophila/patogenicidade , Humanos , Animais , Doença dos Legionários/imunologia , Doença dos Legionários/microbiologia , Fagócitos/imunologia , Fagócitos/microbiologia , Sistemas de Secreção Tipo IV/imunologia , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/metabolismo , Inflamassomos/imunologia , Inflamassomos/metabolismo , Monócitos/imunologia , Monócitos/microbiologia , Fatores de Virulência/imunologia , Fatores de Virulência/metabolismo , Macrófagos/imunologia , Macrófagos/microbiologia , Interações Hospedeiro-Patógeno/imunologia
8.
mBio ; 15(8): e0048824, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38940556

RESUMO

Conjugative type 4 secretion systems (T4SSs) are the main driver for the spread of antibiotic resistance genes and virulence factors in bacteria. To deliver the DNA substrate to recipient cells, it must cross the cell envelopes of both donor and recipient bacteria. In the T4SS from the enterococcal conjugative plasmid pCF10, PrgK is known to be the active cell wall degrading enzyme. It has three predicted extracellular hydrolase domains: metallo-peptidase (LytM), soluble lytic transglycosylase (SLT), and cysteine, histidine-dependent amidohydrolases/peptidases (CHAP). Here, we report the structure of the LytM domain and show that its active site is degenerate and lacks the active site metal. Furthermore, we show that only the predicted SLT domain is functional in vitro and that it unexpectedly has a muramidase instead of a lytic transglycosylase activity. While we did not observe any peptidoglycan hydrolytic activity for the LytM or CHAP domain, we found that these domains downregulated the SLT muramidase activity. The CHAP domain was also found to be involved in PrgK dimer formation. Furthermore, we show that PrgK interacts with PrgL, which likely targets PrgK to the rest of the T4SS. The presented data provides important information for understanding the function of Gram-positive T4SSs.IMPORTANCEAntibiotic resistance is a large threat to human health and is getting more prevalent. One of the major contributors to the spread of antibiotic resistance among different bacteria is type 4 secretion systems (T4SS). However, mainly T4SSs from Gram-negative bacteria have been studied in detail. T4SSs from Gram-positive bacteria, which stand for more than half of all hospital-acquired infections, are much less understood. The significance of our research is in identifying the function and regulation of a cell wall hydrolase, a key component of the pCF10 T4SS from Enterococcus faecalis. This system is one of the best-studied Gram-positive T4SSs, and this added knowledge aids in our understanding of horizontal gene transfer in E. faecalis as well as other medically relevant Gram-positive bacteria.


Assuntos
Parede Celular , Enterococcus faecalis , Muramidase , Sistemas de Secreção Tipo IV , Parede Celular/metabolismo , Sistemas de Secreção Tipo IV/metabolismo , Sistemas de Secreção Tipo IV/genética , Enterococcus faecalis/genética , Enterococcus faecalis/enzimologia , Enterococcus faecalis/metabolismo , Muramidase/metabolismo , Muramidase/genética , Plasmídeos/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Conjugação Genética , Domínio Catalítico
9.
EMBO J ; 43(15): 3287-3306, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38886579

RESUMO

Conjugative type IV secretion systems (T4SS) mediate bacterial conjugation, a process that enables the unidirectional exchange of genetic materials between a donor and a recipient bacterial cell. Bacterial conjugation is the primary means by which antibiotic resistance genes spread among bacterial populations (Barlow 2009; Virolle et al, 2020). Conjugative T4SSs form pili: long extracellular filaments that connect with recipient cells. Previously, we solved the cryo-electron microscopy (cryo-EM) structure of a conjugative T4SS. In this article, based on additional data, we present a more complete T4SS cryo-EM structure than that published earlier. Novel structural features include details of the mismatch symmetry within the OMCC, the presence of a fourth VirB8 subunit in the asymmetric unit of both the arches and the inner membrane complex (IMC), and a hydrophobic VirB5 tip in the distal end of the stalk. Additionally, we provide previously undescribed structural insights into the protein VirB10 and identify a novel regulation mechanism of T4SS-mediated pilus biogenesis by this protein, that we believe is a key checkpoint for this process.


Assuntos
Microscopia Crioeletrônica , Fímbrias Bacterianas , Sistemas de Secreção Tipo IV , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/ultraestrutura , Fímbrias Bacterianas/genética , Sistemas de Secreção Tipo IV/metabolismo , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/química , Modelos Moleculares , Conjugação Genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Escherichia coli/metabolismo , Escherichia coli/genética , Conformação Proteica
10.
mBio ; 15(7): e0119824, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38832773

RESUMO

Stenotrophomonas maltophilia expresses a type IV protein secretion system (T4SS) that promotes contact-dependent killing of other bacteria and does so partly by secreting the effector TfcB. Here, we report the structure of TfcB, comprising an N-terminal domain similar to the catalytic domain of glycosyl hydrolase (GH-19) chitinases and a C-terminal domain for recognition and translocation by the T4SS. Utilizing a two-hybrid assay to measure effector interactions with the T4SS coupling protein VirD4, we documented the existence of five more T4SS substrates. One of these was protein 20845, an annotated nuclease. A S. maltophilia mutant lacking the gene for 20845 was impaired for killing Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Moreover, the cloned 20845 gene conferred robust toxicity, with the recombinant E. coli being rescued when 20845 was co-expressed with its cognate immunity protein. The 20845 effector was an 899 amino-acid protein, comprised of a GHH-nuclease domain in its N-terminus, a large central region of indeterminant function, and a C-terminus for secretion. Engineered variants of the 20845 gene that had mutations in the predicted catalytic site did not impede E. coli, indicating that the antibacterial effect of 20845 involves its nuclease activity. Using flow cytometry with DNA staining, we determined that 20845, but not its mutant variants, confers a loss in DNA content of target bacteria. Database searches revealed that uncharacterized homologs of 20845 occur within a range of bacteria. These data indicate that the S. maltophilia T4SS promotes interbacterial competition through the action of multiple toxic effectors, including a potent, novel DNase.IMPORTANCEStenotrophomonas maltophilia is a multi-drug-resistant, Gram-negative bacterium that is an emerging pathogen of humans. Patients with cystic fibrosis are particularly susceptible to S. maltophilia infection. In hospital water systems and various types of infections, S. maltophilia co-exists with other bacteria, including other pathogens such as Pseudomonas aeruginosa. We previously demonstrated that S. maltophilia has a functional VirB/D4 type VI protein secretion system (T4SS) that promotes contact-dependent killing of other bacteria. Since most work on antibacterial systems involves the type VI secretion system, this observation remains noteworthy. Moreover, S. maltophilia currently stands alone as a model for a human pathogen expressing an antibacterial T4SS. Using biochemical, genetic, and cell biological approaches, we now report both the discovery of a novel antibacterial nuclease (TfdA) and the first structural determination of a bactericidal T4SS effector (TfcB).


Assuntos
Proteínas de Bactérias , Stenotrophomonas maltophilia , Sistemas de Secreção Tipo IV , Stenotrophomonas maltophilia/genética , Stenotrophomonas maltophilia/enzimologia , Stenotrophomonas maltophilia/metabolismo , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/metabolismo , Sistemas de Secreção Tipo IV/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Conformação Proteica
11.
Nat Commun ; 15(1): 5498, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38944647

RESUMO

IncX3 plasmids carrying the New Delhi metallo-ß-lactamase-encoding gene, blaNDM-5, are rapidly spreading globally in both humans and animals. Given that carbapenems are listed on the WHO AWaRe watch group and are prohibited for use in animals, the drivers for the successful dissemination of Carbapenem-Resistant Enterobacterales (CRE) carrying blaNDM-5-IncX3 plasmids still remain unknown. We observe that E. coli carrying blaNDM-5-IncX3 can persist in chicken intestines either under the administration of amoxicillin, one of the largest veterinary ß-lactams used in livestock, or without any antibiotic pressure. We therefore characterise the blaNDM-5-IncX3 plasmid and identify a transcription regulator, VirBR, that binds to the promoter of the regulator gene actX enhancing the transcription of Type IV secretion systems (T4SS); thereby, promoting conjugation of IncX3 plasmids, increasing pili adhesion capacity and enhancing the colonisation of blaNDM-5-IncX3 transconjugants in animal digestive tracts. Our mechanistic and in-vivo studies identify VirBR as a major factor in the successful spread of blaNDM-5-IncX3 across one-health AMR sectors. Furthermore, VirBR enhances the plasmid conjugation and T4SS expression by the presence of copper and zinc ions, thereby having profound ramifications on the use of universal animal feeds.


Assuntos
Antibacterianos , Galinhas , Conjugação Genética , Escherichia coli , Plasmídeos , beta-Lactamases , Animais , Plasmídeos/genética , beta-Lactamases/genética , beta-Lactamases/metabolismo , Galinhas/microbiologia , Humanos , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Amoxicilina/farmacologia , Regiões Promotoras Genéticas/genética , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/transmissão , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Intestinos/microbiologia
12.
mSphere ; 9(7): e0035424, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38940509

RESUMO

Bacterial conjugation systems pose a major threat to human health through their widespread dissemination of mobile genetic elements (MGEs) carrying cargoes of antibiotic resistance genes. Using the Cre Recombinase Assay for Translocation (CRAfT), we recently reported that the IncFV pED208 conjugation system also translocates at least 16 plasmid-encoded proteins to recipient bacteria. Here, we deployed a high-throughput CRAfT screen to identify the repertoire of chromosomally encoded protein substrates of the pED208 system. We identified 32 substrates encoded by the Escherichia coli W3110 genome with functions associated with (i) DNA/nucleotide metabolism, (ii) stress tolerance/physiology, (iii) transcriptional regulation, or (iv) toxin inhibition. The respective gene deletions did not impact pED208 transfer proficiencies, nor did Group 1 (DNA/nucleotide metabolism) mutations detectably alter the SOS response elicited in new transconjugants upon acquisition of pED208. However, MC4100(pED208) donor cells intrinsically exhibit significantly higher SOS activation than plasmid-free MC4100 cells, and this plasmid carriage-induced stress response is further elevated in donor cells deleted of several Group 1 genes. Among 10 characterized substrates, we gained evidence of C-terminal or internal translocation signals that could function independently or synergistically for optimal protein transfer. Remarkably, nearly all tested proteins were also translocated through the IncN pKM101 and IncP RP4 conjugation systems. This repertoire of E. coli protein substrates, here termed the F plasmid "conjutome," is thus characterized by functions of potential benefit to new transconjugants, diverse TSs, and the capacity for promiscuous transfer through heterologous conjugation systems. IMPORTANCE: Conjugation systems comprise a major subfamily of the type IV secretion systems (T4SSs) and are the progenitors of a second large T4SS subfamily dedicated to translocation of protein effectors. This study examined the capacity of conjugation machines to function as protein translocators. Using a high-throughput reporter screen, we determined that 32 chromosomally encoded proteins are delivered through an F plasmid conjugation system. The translocated proteins potentially enhance the establishment of the co-transferred F plasmid or mitigate mating-induced stresses. Translocation signals located C-terminally or internally conferred substrate recognition by the F system and, remarkably, many substrates also were translocated through heterologous conjugation systems. Our findings highlight the plasticity of conjugation systems in their capacities to co-translocate DNA and many protein substrates.


Assuntos
Conjugação Genética , Proteínas de Escherichia coli , Escherichia coli , Sistemas de Secreção Tipo IV , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/metabolismo , Transporte Proteico , Fator F/genética , Fator F/metabolismo
13.
Life Sci Alliance ; 7(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38811160

RESUMO

A major pathway for horizontal gene transfer is the transmission of DNA from donor to recipient cells via plasmid-encoded type IV secretion systems (T4SSs). Many conjugative plasmids encode for a single-stranded DNA-binding protein (SSB) together with their T4SS. Some of these SSBs have been suggested to aid in establishing the plasmid in the recipient cell, but for many, their function remains unclear. Here, we characterize PrgE, a proposed SSB from the Enterococcus faecalis plasmid pCF10. We show that PrgE is not essential for conjugation. Structurally, it has the characteristic OB-fold of SSBs, but it has very unusual DNA-binding properties. Our DNA-bound structure shows that PrgE binds ssDNA like beads on a string supported by its N-terminal tail. In vitro studies highlight the plasticity of PrgE oligomerization and confirm the importance of the N-terminus. Unlike other SSBs, PrgE binds both double- and single-stranded DNA equally well. This shows that PrgE has a quaternary assembly and DNA-binding properties that are very different from the prototypical bacterial SSB, but also different from eukaryotic SSBs.


Assuntos
Proteínas de Bactérias , DNA de Cadeia Simples , Proteínas de Ligação a DNA , Enterococcus faecalis , Plasmídeos , Plasmídeos/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/genética , Ligação Proteica , Conjugação Genética/genética , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/metabolismo , Modelos Moleculares , Transferência Genética Horizontal , DNA Bacteriano/genética , DNA Bacteriano/metabolismo
14.
Phytopathology ; 114(8): 1926-1939, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38749069

RESUMO

Previous studies revealed that the type VI secretion system (T6SS) has an essential role in bacterial competition and virulence in many gram-negative bacteria. However, the role of T6SS in virulence in Pectobacterium atrosepticum remains controversial. We examined a closely related strain, PccS1, and discovered that its T6SS comprises a single-copy cluster of 17 core genes with a higher identity to homologs from P. atrosepticum. Through extensive phenotypic and functional analyses of over 220 derivatives of PccS1, we found that three of the five VgrGs could be classified into group I VgrGs. These VgrGs interacted with corresponding DUF4123 domain proteins, which were secreted outside of the membrane and were dependent on either the T6SS or type IV secretion system (T4SS). This interaction directly governed virulence and competition. Meanwhile, supernatant proteomic analyses with strains defective in the T6SS and/or T4SS confirmed that effectors, such as FhaB, were secreted redundantly to control the virulence and suppress host callose deposition in the course of infection. Notably, this redundant secretion mechanism between the T6SS and T4SS is believed to be the first of its kind in bacteria.


Assuntos
Proteínas de Bactérias , Pectobacterium , Doenças das Plantas , Sistemas de Secreção Tipo VI , Pectobacterium/patogenicidade , Pectobacterium/genética , Virulência , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Glucanos/metabolismo
15.
Proc Natl Acad Sci U S A ; 121(20): e2310348121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38709922

RESUMO

The evolutionary conserved YopJ family comprises numerous type-III-secretion system (T3SS) effectors of diverse mammalian and plant pathogens that acetylate host proteins to dampen immune responses. Acetylation is mediated by a central acetyltransferase domain that is flanked by conserved regulatory sequences, while a nonconserved N-terminal extension encodes the T3SS-specific translocation signal. Bartonella spp. are facultative-intracellular pathogens causing intraerythrocytic bacteremia in their mammalian reservoirs and diverse disease manifestations in incidentally infected humans. Bartonellae do not encode a T3SS, but most species possess a type-IV-secretion system (T4SS) to translocate Bartonella effector proteins (Beps) into host cells. Here we report that the YopJ homologs present in Bartonellae species represent genuine T4SS effectors. Like YopJ family T3SS effectors of mammalian pathogens, the "Bartonella YopJ-like effector A" (ByeA) of Bartonella taylorii also targets MAP kinase signaling to dampen proinflammatory responses, however, translocation depends on a functional T4SS. A split NanoLuc luciferase-based translocation assay identified sequences required for T4SS-dependent translocation in conserved regulatory regions at the C-terminus and proximal to the N-terminus of ByeA. The T3SS effectors YopP from Yersinia enterocolitica and AvrA from Salmonella Typhimurium were also translocated via the Bartonella T4SS, while ByeA was not translocated via the Yersinia T3SS. Our data suggest that YopJ family T3SS effectors may have evolved from an ancestral T4SS effector, such as ByeA of Bartonella. In this evolutionary scenario, the signal for T4SS-dependent translocation encoded by N- and C-terminal sequences remained functional in the derived T3SS effectors due to the essential role these sequences coincidentally play in regulating acetyltransferase activity.


Assuntos
Proteínas de Bactérias , Bartonella , Sistemas de Secreção Tipo IV , Bartonella/metabolismo , Bartonella/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Humanos , Sistemas de Secreção Tipo IV/metabolismo , Sistemas de Secreção Tipo IV/genética , Transporte Proteico , Animais
16.
mBio ; 15(5): e0075923, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38564675

RESUMO

Recent metagenome-assembled genome (MAG) analyses have profoundly impacted Rickettsiology systematics. The discovery of basal lineages (novel families Mitibacteraceae and Athabascaceae) with predicted extracellular lifestyles exposed an evolutionary timepoint for the transition to host dependency, which seemingly occurred independent of mitochondrial evolution. Notably, these basal rickettsiae carry the Rickettsiales vir homolog (rvh) type IV secretion system and purportedly use rvh to kill congener microbes rather than parasitize host cells as described for later-evolving rickettsial pathogens. MAG analysis also substantially increased diversity for the genus Rickettsia and delineated a sister lineage (the novel genus Tisiphia) that stands to inform on the emergence of human pathogens from protist and invertebrate endosymbionts. Herein, we probed Rickettsiales MAG and genomic diversity for the distribution of Rickettsia rvh effectors to ascertain their origins. A sparse distribution of most Rickettsia rvh effectors outside of Rickettsiaceae lineages illuminates unique rvh evolution from basal extracellular species and other rickettsial families. Remarkably, nearly every effector was found in multiple divergent forms with variable architectures, indicating profound roles for gene duplication and recombination in shaping effector repertoires in Rickettsia pathogens. Lateral gene transfer plays a prominent role in shaping the rvh effector landscape, as evinced by the discovery of many effectors on plasmids and conjugative transposons, as well as pervasive effector gene exchange between Rickettsia and Legionella species. Our study exemplifies how MAGs can yield insight into pathogen effector origins, particularly how effector architectures might become tailored to the discrete host cell functions of different eukaryotic hosts.IMPORTANCEWhile rickettsioses are deadly vector-borne human diseases, factors distinguishing Rickettsia pathogens from the innumerable bevy of environmental rickettsial endosymbionts remain lacking. Recent metagenome-assembled genome (MAG) studies revealed evolutionary timepoints for rickettsial transitions to host dependency. The rvh type IV secretion system was likely repurposed from congener killing in basal extracellular species to parasitizing host cells in later-evolving pathogens. Our analysis of MAG diversity for over two dozen rvh effectors unearthed their presence in some non-pathogens. However, most effectors were found in multiple divergent forms with variable architectures, indicating gene duplication and recombination-fashioned effector repertoires of Rickettsia pathogens. Lateral gene transfer substantially shaped pathogen effector arsenals, evinced by the discovery of effectors on plasmids and conjugative transposons, as well as pervasive effector gene exchanges between Rickettsia and Legionella species. Our study exemplifies how MAGs yield insight into pathogen effector origins and evolutionary processes tailoring effectors to eukaryotic host cell biology.


Assuntos
Genoma Bacteriano , Metagenoma , Filogenia , Rickettsia , Rickettsia/genética , Rickettsia/classificação , Evolução Molecular , Rickettsiales/genética , Rickettsiales/classificação , Variação Genética , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/metabolismo , Transferência Genética Horizontal , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
17.
Commun Biol ; 7(1): 499, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664513

RESUMO

Bacterial cooperation and antagonism mediated by secretion systems are among the ways in which bacteria interact with one another. Here we report the discovery of an antagonistic property of a type IV secretion system (T4SS) sourced from a conjugative plasmid, RP4, using engineering approaches. We scrutinized the genetic determinants and suggested that this antagonistic activity is independent of molecular cargos, while we also elucidated the resistance genes. We further showed that a range of Gram-negative bacteria and a mixed bacterial population can be eliminated by this T4SS-dependent antagonism. Finally, we showed that such an antagonistic property is not limited to T4SS sourced from RP4, rather it can also be observed in a T4SS originated from another conjugative plasmid, namely R388. Our results are the first demonstration of conjugative T4SS-dependent antagonism between Gram-negative bacteria on the genetic level and provide the foundation for future mechanistic studies.


Assuntos
Conjugação Genética , Plasmídeos , Sistemas de Secreção Tipo IV , Plasmídeos/genética , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/metabolismo , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
18.
PLoS Genet ; 20(3): e1011088, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38437248

RESUMO

Bacterial type IV secretion systems (T4SSs) are a versatile family of macromolecular translocators, collectively able to recruit diverse DNA and protein substrates and deliver them to a wide range of cell types. Presently, there is little understanding of how T4SSs recognize substrate repertoires and form productive contacts with specific target cells. Although T4SSs are composed of a number of conserved subunits and adopt certain conserved structural features, they also display considerable compositional and structural diversity. Here, we explored the structural bases underlying the functional versatility of T4SSs through systematic deletion and subunit swapping between two conjugation systems encoded by the distantly-related IncF plasmids, pED208 and F. We identified several regions of intrinsic flexibility among the encoded T4SSs, as evidenced by partial or complete functionality of chimeric machines. Swapping of VirD4-like TraD type IV coupling proteins (T4CPs) yielded functional chimeras, indicative of relaxed specificity at the substrate-TraD and TraD-T4SS interfaces. Through mutational analyses, we further delineated domains of the TraD T4CPs contributing to recruitment of cognate vs heterologous DNA substrates. Remarkably, swaps of components comprising the outer membrane core complexes, a few F-specific subunits, or the TraA pilins supported DNA transfer in the absence of detectable pilus production. Among sequenced enterobacterial species in the NCBI database, we identified many strains that harbor two or more F-like plasmids and many F plasmids lacking one or more T4SS components required for self-transfer. We confirmed that host cells carrying co-resident, non-selftransmissible variants of pED208 and F elaborate chimeric T4SSs, as evidenced by transmission of both plasmids. We propose that T4SS plasticity enables the facile assembly of functional chimeras, and this intrinsic flexibility at the structural level can account for functional diversification of this superfamily over evolutionary time and, on a more immediate time-scale, to proliferation of transfer-defective MGEs in nature.


Assuntos
Fator F , Sistemas de Secreção Tipo IV , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/química , Sistemas de Secreção Tipo IV/metabolismo , Proteínas de Fímbrias/genética , Plasmídeos/genética , DNA Bacteriano , Proteínas de Bactérias/metabolismo
19.
Can J Microbiol ; 70(4): 119-127, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38176008

RESUMO

Helicobacter pylori resistance to antibiotics is a growing problem and it increasingly leads to treatment failure. While the bacterium is present worldwide, the severity of clinical outcomes is highly dependent on the geographical origin and genetic characteristics of the strains. One of the major virulence factors identified in H. pylori is the cag pathogenicity island (cagPAI), which encodes a type IV secretion system (T4SS) used to translocate effectors into human cells. Here, we investigated the genetic variability of the cagPAI among 13 antibiotic-resistant H. pylori strains that were isolated from patient biopsies in Québec. Seven of the clinical strains carried the cagPAI, but only four could be readily cultivated under laboratory conditions. We observed variability of the sequences of CagA and CagL proteins that are encoded by the cagPAI. All clinical isolates induce interleukin-8 secretion and morphological changes upon co-incubation with gastric cancer cells and two of them produce extracellular T4SS pili. Finally, we demonstrate that molecule 1G2, a small molecule inhibitor of the Cagα protein from the model strain H. pylori 26695, reduces interleukin-8 secretion in one of the clinical isolates. Co-incubation with 1G2 also inhibits the assembly of T4SS pili, suggesting a mechanism for its action on T4SS function.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Antígenos de Bactérias/genética , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/metabolismo , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Interleucina-8/metabolismo , Infecções por Helicobacter/microbiologia
20.
Nat Rev Microbiol ; 22(3): 170-185, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37814112

RESUMO

Considerable progress has been made in recent years in the structural and molecular biology of type IV secretion systems in Gram-negative bacteria. The latest advances have substantially improved our understanding of the mechanisms underlying the recruitment and delivery of DNA and protein substrates to the extracellular environment or target cells. In this Review, we aim to summarize these exciting structural and molecular biology findings and to discuss their functional implications for substrate recognition, recruitment and translocation, as well as the biogenesis of extracellular pili. We also describe adaptations necessary for deploying a breadth of processes, such as bacterial survival, host-pathogen interactions and biotic and abiotic adhesion. We highlight the functional and structural diversity that allows this extremely versatile secretion superfamily to function under different environmental conditions and in different bacterial species. Additionally, we emphasize the importance of further understanding the mechanism of type IV secretion, which will support us in combating antimicrobial resistance and treating type IV secretion system-related infections.


Assuntos
Fímbrias Bacterianas , Sistemas de Secreção Tipo IV , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/química , Fímbrias Bacterianas/metabolismo , Bactérias/genética , Bactérias/metabolismo , Bactérias Gram-Negativas/metabolismo , DNA , Proteínas de Bactérias/genética , Proteínas de Bactérias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...