Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 728
Filtrar
1.
Pestic Biochem Physiol ; 204: 106082, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277395

RESUMO

Bemisia tabaci poses a severe threat to plants, and the control of B. tabaci mainly relies on pesticides, which causes more and more rapidly increasing resistance. ß-Caryophyllene is a promising ingredient for agricultural pest control, but its feature of poor water solubility need to be improved in practical applications. Nanotechnology can enhance the effectiveness and dispersion of volatile organic compounds (VOCs). In this study, a nanoliposome carrier was constructed by ethanol injection and ultrasonic dispersion method, and ß-caryophyllene was wrapped inside it, thus solving the defect of poor solubility of ß-caryophyllene. The size of the ß-caryophyllene nanoliposomes (C-BT-NPs) was around 200 nm, with the absolute value of the zeta potential exceeding 30 mV and a PDI below 0.5. The stability was also maintained over a 14-d storage period. C-BT-NPs showed effective insecticidal activity against B. tabaci, with an LC50 of 1.51 g/L, outperforming thiamethoxam and offering efficient agricultural pest control. Furthermore, C-BT-NPs had minimal short-term impact on the growth of tomato plants, indicating that they are safety on plants. Therefore, the VOCs using nanoliposome preparation technology show promise in reducing reliance on conventional pesticides and present new approaches to managing agricultural pests.


Assuntos
Hemípteros , Inseticidas , Lipossomos , Sesquiterpenos Policíclicos , Animais , Hemípteros/efeitos dos fármacos , Sesquiterpenos Policíclicos/farmacologia , Sesquiterpenos Policíclicos/química , Inseticidas/farmacologia , Inseticidas/química , Nanopartículas/química , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Solanum lycopersicum/parasitologia , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/farmacologia
2.
J Agric Food Chem ; 72(37): 20483-20495, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39248366

RESUMO

Mechanical stimuli can affect plant growth, development, and defenses. The role of water spray stimulation, as a prevalent mechanical stimulus in the environment, in crop growth and defense cannot be overlooked. In this study, the effects of water spray on tomato plant growth and defense against the chewing herbivore Helicoverpa armigera and necrotrophic fungus Botrytis cinerea were investigated. Suprathreshold water spray stimulus (LS) was found to enhance tomato plant defenses against pests and pathogens while concurrently modifying plant architecture. The results of the phytohormone and chemical metabolite analysis revealed that LS improved the plant defense response via jasmonic acid (JA) signaling. LS significantly elevated the level of a pivotal defensive metabolite, chlorogenic acid, and reduced the emissions of volatile organic compounds (VOCs) from tomato plants, thereby defending against pest and pathogen attacks. The most obvious finding to emerge from this study is that LS enhances tomato plant defenses against biotic stresses, which will pave the way for further work on the application of mechanical stimuli for pest management.


Assuntos
Botrytis , Ciclopentanos , Oxilipinas , Doenças das Plantas , Solanum lycopersicum , Compostos Orgânicos Voláteis , Água , Solanum lycopersicum/microbiologia , Solanum lycopersicum/parasitologia , Solanum lycopersicum/imunologia , Solanum lycopersicum/química , Solanum lycopersicum/metabolismo , Água/metabolismo , Animais , Botrytis/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo , Mariposas/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Estresse Fisiológico , Herbivoria , Defesa das Plantas contra Herbivoria
3.
Pestic Biochem Physiol ; 204: 106089, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277402

RESUMO

The tomato leafminer, Tuta absoluta (Meyrick), one of the most economically destructive pests of tomato, causes severe yields losses of tomato production globally. Rapid evolution of insecticide resistance requires the development of alternative control strategy for this pest. RNA interference (RNAi) represents a promising, innovative control strategy against key agricultural insect pests, which has recently been licensed for Colorado Potato Beetle control. Here two essential genes, voltage-gated sodium channel (Nav) and NADPH-cytochrome P450 reductase (CPR) were evaluated as targets for RNAi using an ex vivo tomato leaf delivery system. Developmental stage-dependent expression profiles showed TaNav was most abundant in adult stages, whereas TaCPR was highly expressed in larval and adult stages. T. absoluta larvae feeding on tomato leaflets treated with dsRNA targeting TaNav and TaCPR showed significant knockdown of gene expression, leading to reduction in adult emergence. Additionally, tomato leaves treated with dsRNA targeting these two genes were significantly less damaged by larval feeding and mining. Furthermore, bioassay with LC30 doses of λ-cyholthin showed that silencing TaNav and TaCPR increased T. absoluta mortality about 32.2 and 17.4%, respectively, thus indicating that RNAi targeting TaNav and TaCPR could increase the susceptibility to λ-cyholthin in T. absoluta. This study demonstrates the potential of using RNAi targeting key genes, like TaNav and TaCPR, as an alternative technology for the control of this most destructive tomato pests in the future.


Assuntos
Inseticidas , Larva , Folhas de Planta , Interferência de RNA , Solanum lycopersicum , Animais , Solanum lycopersicum/parasitologia , Solanum lycopersicum/genética , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Larva/genética , Mariposas/efeitos dos fármacos , Mariposas/genética , Mariposas/crescimento & desenvolvimento , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Canais de Sódio Disparados por Voltagem/genética , Canais de Sódio Disparados por Voltagem/metabolismo , Resistência a Inseticidas/genética , Piretrinas
4.
Microb Ecol ; 87(1): 120, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39340684

RESUMO

The root-knot nematode (RKN) causes significant yield loss in tomatoes. Understanding the interaction of biocontrol agents (BCAs)-nematicides-soil microbiomes and RKNs is essential for enhancing the efficacy of biocontrol agents and nematicides to curb RKN damage to crops. The present study aimed to evaluate the in vitro effectiveness of BACa and nematicide against RKN and to apply the amplicon sequencing to assess the interaction of Bacillus velezensis (VB7) and Trichoderma koningiopsis (TK) against RKNs. Metagenomic analysis revealed the relative abundance of three phyla such as Proteobacteria (42.16%), Firmicutes (19.57%), and Actinobacteria (17.69%) in tomato rhizospheres. Those tomato rhizospheres treated with the combined application of B. velezensis VB7 + T. koningiopsis TK and RKN had a greater frequency of diversity and richness than the control. RKN-infested tomato rhizosphere drenched with bacterial and fungal antagonists had the maximum diversity index of bacterial communities. A strong correlation with a maximum number of interconnection edges in the phyla Proteobacteria, Firmicutes, and Actinobacteria was evident in soils treated with both B. velezensis VB7 and T. koningiopsis TK challenged against RKN in infected soil. The present study determined a much greater diversity of bacterial taxa observed in tomato rhizosphere soils treated with B. velezensis VB7 and T. koningiopsis TK than in untreated soil. It is suggested that the increased diversity and abundance of bacterial communities might be responsible for increased nematicidal properties in tomato plants. Hence, the combined applications of B. velezensis VB7 and T. koningiopsis TK can enhance the nematicidal action to curb RKN infecting tomatoes.


Assuntos
Bacillus , Controle Biológico de Vetores , Raízes de Plantas , Rizosfera , Microbiologia do Solo , Solanum lycopersicum , Animais , Solanum lycopersicum/microbiologia , Solanum lycopersicum/parasitologia , Bacillus/genética , Bacillus/fisiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/parasitologia , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Trichoderma/fisiologia , Trichoderma/genética , Tylenchoidea/fisiologia , Microbiota , Antinematódeos/farmacologia , Agentes de Controle Biológico/farmacologia , Bactérias/genética , Bactérias/classificação
5.
J Invertebr Pathol ; 206: 108181, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39178983

RESUMO

The use of biocontrol agents, such as predators and entomopathogenic nematodes, is a promising approach for the effective control of the tomato leafminer Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidaean), an oligophagous insect feeding mainly on Solanaceae species and a major pest of field- and greenhouse-grown tomatoes globally. In this context, the effects of two entomopathogenic nematode species Steinernema carpocapsae (Weiser) (Rhabditida: Steinernematidae) and Heterorhabditis bacteriophora (Poinar) (Rhabditida: Heterorhabditidae), as well as their respective bacterial symbionts, Xenorhabdus nematophila and Photorhabdus luminescens (Enterobacterales: Morganelaceae), which were applied as bacterial cell suspensions and as crude cell-free liquid filtrates on T. absoluta larvae, were investigated. The results showed that of all treatments, the nematodes S. carpocapsae and H. bacteriophora were the most effective, causing up to 98 % mortality of T. absoluta larvae. Regarding bacteria and their filtrates, the bacterium X. nematophila was the most effective (69 % mortality in young larvae), while P. luminescens and both bacterial filtrates showed similar potency (ca. 48-55 % mortality in young larvae). To achieve a holistic approach of controlling this important pest, the impact of these factors on the beneficial predator Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae) was also studied. The results demonstrated that although nematodes and especially S. carpocapsae, caused significant mortality on N. tenuis (87 %), the bacterial cell suspensions of X. nematophila and P. luminescens and crude cell-free liquid filtrates had minimum impact on this beneficial predator (∼11-30 % mortality).


Assuntos
Controle Biológico de Vetores , Rabditídios , Simbiose , Xenorhabdus , Animais , Rabditídios/fisiologia , Rabditídios/microbiologia , Xenorhabdus/fisiologia , Photorhabdus/fisiologia , Mariposas/parasitologia , Mariposas/microbiologia , Solanum lycopersicum/parasitologia , Solanum lycopersicum/microbiologia , Larva/microbiologia , Larva/parasitologia , Heterópteros/microbiologia , Heterópteros/parasitologia
6.
J Appl Microbiol ; 135(9)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39169468

RESUMO

AIMS: The objective of this study was to elucidate the role and mechanism of changes in the rhizosphere microbiome following Arthrobotrys oligospora treatment in the biological control of root-knot nematodes and identify the key fungal and bacterial species that collaborate with A. oligospora to biocontrol root-knot nematodes. METHODS AND RESULTS: We conducted a pot experiment to investigate the impact of A. oligospora treatment on the biocontrol efficiency of A. oligospora against Meloidogyne incognita infecting tomatoes. We analyzed the rhizosphere bacteria and fungi communities of tomato by high-throughput sequencing of the 16S rRNA gene fragment and the internal transcribed spacer (ITS). The results indicated that the application of A. oligospora resulted in a 53.6% reduction in the disease index of M. incognita infecting tomato plants. The bacterial diversity of rhizosphere soil declined in the A. oligospora-treated group, while fungal diversity increased. The A. oligospora treatment enriched the tomato rhizosphere with Acidobacteriota, Firmicutes, Bradyrhizobium, Sphingomonadales, Glomeromycota, and Purpureocillium. These organisms are involved in the utilization of rhizosphere organic matter, nitrogen, and glycerolipids, or play the role of ectomycorrhiza or directly kill nematodes. The networks of bacterial and fungal co-occurrence exhibited a greater degree of stability and complexity in the A. oligospora treatment group. CONCLUSIONS: This study demonstrated the key fungal and bacterial species that collaborate with the A. oligospora in controlling the root-knot nematode and elaborated the potential mechanisms involved. The findings offer valuable insights and inspiration for the advancement of bionematicide based on nematode-trapping fungi.


Assuntos
Doenças das Plantas , Raízes de Plantas , Rizosfera , Microbiologia do Solo , Solanum lycopersicum , Tylenchoidea , Solanum lycopersicum/microbiologia , Solanum lycopersicum/parasitologia , Animais , Tylenchoidea/fisiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/parasitologia , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Controle Biológico de Vetores , Microbiota , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Ascomicetos/fisiologia , Ascomicetos/genética , Fungos/fisiologia , Fungos/genética
7.
Int J Mol Sci ; 25(16)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39201582

RESUMO

WRKY transcription factors (TFs) can participate in plant biological stress responses and play important roles. SlWRKY80 was found to be differentially expressed in the Mi-1- and Mi-3-resistant tomato lines by RNA-seq and may serve as a key node for disease resistance regulation. This study used RNAi to determine whether SlWRKY80 silencing could influence the sensitivity of 'M82' (mi-1/mi-1)-susceptible lines to M. incognita. Further overexpression of this gene revealed a significant increase in tomato disease resistance, ranging from highly susceptible to susceptible, combined with the identification of growth (plant height, stem diameter, and leaf area) and physiological (soluble sugars and proteins; root activity) indicators, clarifying the role of SlWRKY80 as a positive regulatory factor in tomato defense against M. incognita. Based on this phenomenon, a preliminary exploration of its metabolic signals revealed that SlWRKY80 stimulates different degrees of signaling, such as salicylic acid (SA), jasmonic acid (JA), and ethylene (ETH), and may synergistically regulate reactive oxygen species (ROS) accumulation and scavenging enzyme activity, hindering the formation of feeding sites and ultimately leading to the reduction of root gall growth. To our knowledge, SlWRKY80 has an extremely high utilization value for improving tomato resistance to root-knot nematodes and breeding.


Assuntos
Resistência à Doença , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Proteínas de Plantas , Solanum lycopersicum , Fatores de Transcrição , Tylenchoidea , Solanum lycopersicum/parasitologia , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Tylenchoidea/fisiologia , Tylenchoidea/patogenicidade , Animais , Doenças das Plantas/parasitologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resistência à Doença/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/metabolismo , Raízes de Plantas/parasitologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
8.
Sci Rep ; 14(1): 17774, 2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090171

RESUMO

This study investigates the efficacy of Trichoderma spp. and Bacillus spp., as well as their gamma radiation-induced mutants, as potential biological control agents against Meloidogyne javanica (Mj) in tomato plants. The research encompasses in vitro assays, greenhouse trials, and molecular identification methodologies to comprehensively evaluate the biocontrol potential of these agents. In vitro assessments reveal significant nematicidal activity, with Bacillus spp. demonstrating notable effectiveness in inhibiting nematode egg hatching (16-45%) and inducing second-stage juvenile (J2) mortality (30-46%). Greenhouse trials further confirm the efficacy of mutant isolates, particularly when combined with chitosan, in reducing nematode-induced damage to tomato plants. The combination of mutant isolates with chitosan reduces the reproduction factor (RF) of root-knot nematodes by 94%. By optimizing soil infection conditions with nematodes and modifying the application of the effective compound, the RF of nematodes decreases by 65-76%. Molecular identification identifies B. velezensis and T. harzianum as promising candidates, exhibiting significant nematicidal activity. Overall, the study underscores the potential of combined biocontrol approaches for nematode management in agricultural settings. However, further research is essential to evaluate practical applications and long-term efficacy. These findings contribute to the development of sustainable alternatives to chemical nematicides, with potential implications for agricultural practices and crop protection strategies.


Assuntos
Bacillus , Raios gama , Controle Biológico de Vetores , Doenças das Plantas , Solanum lycopersicum , Tylenchoidea , Animais , Tylenchoidea/fisiologia , Bacillus/genética , Bacillus/fisiologia , Solanum lycopersicum/parasitologia , Solanum lycopersicum/microbiologia , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Controle Biológico de Vetores/métodos , Mutação , Hypocreales/genética , Antinematódeos/farmacologia , Agentes de Controle Biológico/farmacologia , Quitosana/farmacologia
9.
Plant Physiol Biochem ; 215: 108983, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39094484

RESUMO

Southern root-knot nematode (Meloidogyne incognita) and Fusarium wilt fungus (Fusarium oxysporum) are one of the most predominant pathogens responsible for substantial agricultural yield reduction of tomato. The current study planned to assess the effects of M. incognita (Mi) and F. oxysporum (Fo) and their co-infection on two tomato cultivars, Zhongza 09 (ZZ09) and Gailing Maofen 802 (GLM802). The present study examined the effects of co-infection on leaf morphology, chlorophyll content, leaf area, and histopathology. The present study used metabolomics to evaluate plant-pathogen interactions. The outcomes of the current study revealed that chlorophyll content and leaf area decreased more in GLM802 during co-infection. In co-infection (Fo + Mi), the chlorophyll content reduction in ZZ09 was 11%, while in GLM802 the reduction reached up to 31% as compared to control. Moreover, the reduction in leaf are in ZZ09 was 31%, however, in the GLM802 reduction was observed 54% as compared to control plants. Similarly, GLM802 stems exhibited larger brown patches on their vascular bundles than ZZ09 stems. The rate of browning of GLM802 stems was 247% more than ZZ09, during co-infection. Moreover, GLM802 roots exhibited a higher abundance of hyphae and larger galls than ZZ09 roots. In metabolic studies, glutathione, succinic acid, and 2-isopropylmalic acid decreased, whereas spermine and fumaric acid increased in GLM802 co-infected stems. It indicates that GLM802 is weakly resistant; therefore, F. oxysporum and other pathogens readily damage tissue. In the co-infected stem of ZZ09, L-asparagine and shikimic acid increased, but pipecolic acid, L-saccharine, and 2-isopropylmalic acid declined. L-asparagine was crucial in preserving the stability of nitrogen metabolism, chlorophyll synthesis, and leaf growth in ZZ09. Shikimic acid's substantial accumulation could explain the limited extent of browning observed in the vascular bundles of ZZ09. Thus, the present study provides insight into M. incognita and F. oxysporum co-infection in two tomato cultivars, which may aid breeding efforts to generate commercially viable resistant cultivars. However, further research on the relationship between M. incognita and F. oxysporum in different host plants is required in the future.


Assuntos
Fusarium , Metabolômica , Doenças das Plantas , Solanum lycopersicum , Tylenchoidea , Fusarium/patogenicidade , Solanum lycopersicum/parasitologia , Solanum lycopersicum/microbiologia , Solanum lycopersicum/metabolismo , Animais , Doenças das Plantas/parasitologia , Doenças das Plantas/microbiologia , Tylenchoidea/patogenicidade , Tylenchoidea/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/parasitologia , Folhas de Planta/microbiologia , Clorofila/metabolismo , Raízes de Plantas/parasitologia , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Coinfecção/metabolismo , Coinfecção/parasitologia , Microbiologia do Solo
10.
F1000Res ; 13: 800, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39193509

RESUMO

Background: The tomato, Solanum lycopersicum L., is one of the most important horticultural crops that can be consumed fresh or after being processed worldwide. The tomato leaf miner (Tuta absoluta) is one of the most devastating pest to tomato plants due to its mine-feeding nature in the mesophyll tissue of the plant. Fungal entomopathogens can exist naturally in plants as an asymptote. This study aimed to detect the endophytic colonization of Beauveria bassiana and Metarhizium robertsii within tomato plants via artificial inoculation and their virulence effects on Tuta absoluta. Methods: Isolates with the highest percent germination and virulence against T. absoluta were selected for endophytic evaluation within tomato plants by different artificial inoculation techniques. Results: This study revealed that, isolates with the highest percent germination and virulent to Tuta absoluta had the potential to colonize tomato plants. The result showed that, the maximum mortality rate (97.5%) of Tuta absoluta larvae was achieved by Metarhizium robertsii isolate K-61 at a concentration of 1x10 8conidial/ml at 7 days post inoculated. However, the highest cumulative mortality (100%) was recorded by Beauveria bassiana isolate APPRC-27 at 10 days post inoculated through the direct contact method. The highest endophytic colonization was registered by isolate APPRC-27 (76.67%) at 7 days post-inoculated using the leaf spray technique, but it declined to 11.67% after 28 days of inoculated. In the case of the seedling inoculation technique, the highest endophytic colonization was obtained in the root tissues of tomatoes at 28 days of inoculated by isolate K-61. Conclusions: This study revealed that the leaf spray inoculation technique was the most effective method, followed by seedling inoculation, for the deployment of Beauveria bassiana and Metarhizium robertsii endophytes in tomato plant tissues. Therefore, virulent Beauveria bassiana and Metarhizium robertsii, are promising bioagents for the control of Tuta absoluta if deployed as endophytes.


Assuntos
Beauveria , Endófitos , Metarhizium , Controle Biológico de Vetores , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Solanum lycopersicum/parasitologia , Animais , Beauveria/patogenicidade , Beauveria/fisiologia , Endófitos/fisiologia , Endófitos/patogenicidade , Metarhizium/patogenicidade , Metarhizium/fisiologia , Controle Biológico de Vetores/métodos , Lepidópteros/microbiologia , Larva/microbiologia , Virulência , Mariposas/microbiologia
11.
Mol Plant Pathol ; 25(7): e13491, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38961768

RESUMO

Root-knot nematodes (RKNs) are microscopic parasitic worms able to infest the roots of thousands of plant species, causing massive crop yield losses worldwide. They evade the plant's immune system and manipulate plant cell physiology and metabolism to transform a few root cells into giant cells, which serve as feeding sites for the nematode. RKN parasitism is facilitated by the secretion in planta of effector molecules, mostly proteins that hijack host cellular processes. We describe here a conserved RKN-specific effector, effector 12 (EFF12), that is synthesized exclusively in the oesophageal glands of the nematode, and we demonstrate its function in parasitism. In the plant, MiEFF12 localizes to the endoplasmic reticulum (ER). A combination of RNA-sequencing analysis and immunity-suppression bioassays revealed the contribution of MiEFF12 to the modulation of host immunity. Yeast two-hybrid, split luciferase and co-immunoprecipitation approaches identified an essential component of the ER quality control system, the Solanum lycopersicum plant bap-like (PBL), and basic leucine zipper 60 (BZIP60) proteins as host targets of MiEFF12. Finally, silencing the PBL genes in Nicotiana benthamiana decreased susceptibility to Meloidogyne incognita infection. Our results suggest that EFF12 manipulates PBL function to modify plant immune responses to allow parasitism.


Assuntos
Retículo Endoplasmático , Tylenchoidea , Animais , Retículo Endoplasmático/metabolismo , Tylenchoidea/fisiologia , Tylenchoidea/patogenicidade , Proteínas de Helminto/metabolismo , Proteínas de Helminto/genética , Imunidade Vegetal , Nicotiana/parasitologia , Nicotiana/imunologia , Nicotiana/genética , Solanum lycopersicum/parasitologia , Solanum lycopersicum/imunologia , Solanum lycopersicum/genética , Doenças das Plantas/parasitologia , Doenças das Plantas/imunologia , Raízes de Plantas/parasitologia , Raízes de Plantas/imunologia , Interações Hospedeiro-Parasita
12.
J Microbiol Biotechnol ; 34(8): 1627-1635, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39081258

RESUMO

The inhabitation and parasitism of root-knot nematodes (RKNs) can be difficult to control, as its symptoms can be easily confused with other plant diseases; hence, identifying and controlling the occurrence of RKNs in plants remains an ongoing challenge. Moreover, there are only a few biological agents for controlling these harmful nematodes. In this study, Xenorhabdus sp. SCG isolated from entomopathogenic nematodes of genus Steinernema was evaluated for nematicidal effects under in vitro and greenhouse conditions. The cell-free filtrates of strain SCG showed nematicidal activity against Meloidogyne species J2s, with mortalities of > 88% at a final concentration of 10%, as well as significant nematicidal activity against the three other genera of plant-parasitic nematodes in a dose-dependent manner. Thymine was isolated as active compounds by assay-guided fractionation and showed high nematicidal activity against M. incognita. Greenhouse experiments suggested that cell-free filtrates of strain SCG efficiently controlled the nematode population in M. incognita-infested tomatoes (Solanum lycopersicum L., cv. Rutgers). In addition, a significant increase in host plant growth was observed after 45 days of treatment. To our knowledge, this is the first to demonstrate the nematicidal activity spectrum of isolated Xenorhabdus species and their application to S. lycopersicum L., cv. Rutgers under greenhouse conditions. Xenorhabdus sp. SCG could be a promising biological nematicidal agent with plant growth-enhancing properties.


Assuntos
Doenças das Plantas , Solanum lycopersicum , Simbiose , Tylenchoidea , Xenorhabdus , Xenorhabdus/fisiologia , Animais , Tylenchoidea/efeitos dos fármacos , Solanum lycopersicum/microbiologia , Solanum lycopersicum/parasitologia , Doenças das Plantas/parasitologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Raízes de Plantas/microbiologia , Raízes de Plantas/parasitologia , Controle Biológico de Vetores/métodos , Antinematódeos/farmacologia
13.
PLoS One ; 19(6): e0304663, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38843239

RESUMO

The productivity of agricultural ecosystems is heavily influenced by soil-dwelling organisms. To optimize agricultural practices and management, it is critical to know the composition, abundance, and interactions of soil microorganisms. Our study focused on Acrobeles complexus nematodes collected from tomato fields in South Africa and analyzed their associated bacterial communities utilizing metabarcoding analysis. Our findings revealed that A. complexus forms associations with a wide range of bacterial species. Among the most abundant species identified, we found Dechloromonas sp., a bacterial species commonly found in aquatic sediments, Acidovorax temperans, a bacterial species commonly found in activated sludge, and Lactobacillus ruminis, a commensal motile lactic acid bacterium that inhabits the intestinal tracts of humans and animals. Through principal component analysis (PCA), we found that the abundance of A. complexus in the soil is negatively correlated with clay content (r = -0.990) and soil phosphate levels (r = -0.969) and positively correlated with soil sand content (r = 0.763). This study sheds light on the bacterial species associated to free-living nematodes in tomato crops in South Africa and highlights the occurrence of various potentially damaging and beneficial nematode-associated bacteria, which can in turn, impact soil health and tomato production.


Assuntos
Produtos Agrícolas , Nematoides , Microbiologia do Solo , Solanum lycopersicum , Animais , Solanum lycopersicum/microbiologia , Solanum lycopersicum/parasitologia , África do Sul , Produtos Agrícolas/parasitologia , Produtos Agrícolas/microbiologia , Nematoides/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Solo/parasitologia , RNA Ribossômico 16S/genética , Análise de Componente Principal
14.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38928010

RESUMO

The identification of novel drug targets in plant-parasitic nematodes (PPNs) is imperative due to the loss of traditional nematicides and a lack of replacements. Chemosensation, which is pivotal for PPNs in locating host roots, has become a focus in nematode behavioral research. However, its underlying molecular basis is still indistinct in such a diverse group of PPNs. To characterize genes participating in chemosensation in the Javanese root-knot nematode Meloidogyne javanica, RNA-sequencing of the second-stage juveniles (J2s) treated with tomato root exudate (TRE) for 1 h and 6 h was performed. Genes related to chemosensation in M. javanica mainly responded to TRE treatment at 1 h. Moreover, a gene ontology (GO) analysis underscored the significance of the neuropeptide G protein-coupled receptor signaling pathway. Consequently, the repertoire of putative neuropeptides in M. javanica, including FMRFamide-like peptides (FLPs), insulin-like peptides (ILPs), and neuropeptide-like peptides (NLPs), were outlined based on a homology analysis. The gene Mjflp-14a, harboring two neuropeptides, was significantly up-regulated at 1 h TRE treatment. Through peptide synthesis and J2 treatment, one of the two neuropeptides (MjFLP-14-2) was proven to influence the J2 chemotaxis towards tomato root tips. Overall, our study reinforces the potential of nematode neuropeptides as novel targets and tools for root-knot nematode control.


Assuntos
Neuropeptídeos , Raízes de Plantas , Solanum lycopersicum , Tylenchoidea , Animais , Tylenchoidea/fisiologia , Neuropeptídeos/metabolismo , Neuropeptídeos/genética , Raízes de Plantas/parasitologia , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Solanum lycopersicum/parasitologia , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Doenças das Plantas/parasitologia , Doenças das Plantas/genética , Quimiotaxia , Proteínas de Helminto/metabolismo , Proteínas de Helminto/genética
15.
Plant Cell Environ ; 47(8): 3227-3240, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38738504

RESUMO

Plants synthesise a vast array of volatile organic compounds (VOCs), which serve as chemical defence and communication agents in their interactions with insect herbivores. Although nitrogen (N) is a critical resource in the production of plant metabolites, its regulatory effects on defensive VOCs remain largely unknown. Here, we investigated the effect of N content in tomato (Solanum lycopersicum) on the tobacco cutworm (Spodoptera litura), a notorious agricultural pest, using biochemical and molecular experiments in combination with insect behavioural and performance analyses. We observed that on tomato leaves with different N contents, S. litura showed distinct feeding preference and growth and developmental performance. Particularly, metabolomics profiling revealed that limited N availability conferred resistance upon tomato plants to S. litura is likely associated with the biosynthesis and emission of the volatile metabolite α-humulene as a repellent. Moreover, exogenous application of α-humulene on tomato leaves elicited a significant repellent response against herbivores. Thus, our findings unravel the key factors involved in N-mediated plant defence against insect herbivores and pave the way for innovation of N management to improve the plant defence responses to facilitate pest control strategies within agroecosystems.


Assuntos
Herbivoria , Nitrogênio , Folhas de Planta , Solanum lycopersicum , Spodoptera , Compostos Orgânicos Voláteis , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiologia , Solanum lycopersicum/parasitologia , Animais , Nitrogênio/metabolismo , Spodoptera/fisiologia , Compostos Orgânicos Voláteis/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Defesa das Plantas contra Herbivoria , Volatilização , Larva/fisiologia
16.
BMC Plant Biol ; 24(1): 469, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811862

RESUMO

BACKGROUND: Green nanoparticles are considered to be an effective strategy for improving phytochemicals and raising productivity in soil infected by root-knot nematodes. This work aims to understand the characteristics of certain nanomaterials, including non-iron (nFe), green non-iron (GnFe), and green magnetic nanobiochar (GMnB), and the effect of adding them at 3 and 6 mg kg- 1 on phytochemicals and tomato (Solanum lycopersicum) plant growth in soils infected by root-knot nematodes. RESULTS: Spectroscopic characterization of nanomaterials showed that nFe, GnFe, and GMnB contained functional groups (e.g., Fe-O, S-H, C-H, OH, and C = C) and possessed a large surface area. Application of GMB at 6 mg kg- 1 was the most efficient treatment for increasing the phytochemicals of the tomato plant, with a rise of 123.2% in total phenolic, 194.7% in total flavonoids, 89.7% in total carbohydrate, 185.2% in total free amino acids, and 165.1% in total tannin compared to the untreated soil. Tomato plant growth and attributes increased with increasing levels of soil nano-amendment in this investigation. The addition of GnFe3 and GnFe6 increased the reduction of root galls of root-knot nematodes by 22.44% and 17.76% compared with nFe3 and nFe6, respectively. The inclusion of the examined soil nano-amendments increased phytochemicals and reduced the total number of root-knot nematodes on tomato plants at varying rates, which played a significant role in enhancing tomato growth. CONCLUSIONS: In conclusion, treating tomato plants with GnFe or GMnB can be used as a promising green nanomaterial to eliminate root-knot nematodes and increase tomato yield in sandy clay loam soil.


Assuntos
Compostos Fitoquímicos , Solanum lycopersicum , Tylenchoidea , Solanum lycopersicum/parasitologia , Solanum lycopersicum/crescimento & desenvolvimento , Animais , Compostos Fitoquímicos/química , Tylenchoidea/fisiologia , Tylenchoidea/efeitos dos fármacos , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Nanopartículas Magnéticas de Óxido de Ferro/química , Resistência à Doença , Raízes de Plantas/parasitologia , Solo/parasitologia , Solo/química
17.
Plant Physiol Biochem ; 212: 108706, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38776824

RESUMO

Trichoderma spp. can enhance plant resistance against a wide range of biotic stressors. However, the fundamental mechanisms by which Trichoderma enhances plant resistance against Meloidogyne incognita, known as root-knot nematodes (RKNs), are still unclear. Here, we identified a strain of Trichoderma asperellum (T141) that could effectively suppress RKN infestation in tomato (Solanum lycopersicum L.). Nematode infestation led to an increase in the concentrations of reactive oxygen species (ROS) and malondialdehyde (MDA) in roots but pre-inoculation with T141 significantly decreased oxidative stress. The reduction in ROS and MDA was accompanied by an increase in the activity of antioxidant enzymes and the accumulation of flavonoids and phenols. Moreover, split root test-based analysis showed that T141 inoculation in local roots before RKN inoculation increased the concentration of phytohormone jasmonate (JA) and the transcripts of JA synthesis and signaling-related genes in distant roots. UPLC-MS/MS-based metabolomics analysis identified 1051 differentially accumulated metabolites (DAMs) across 4 pairwise comparisons in root division test, including 81 flavonoids. Notably, 180 DAMs were found in comparison between RKN and T141-RKN, whereas KEGG annotation and enrichment analysis showed that the secondary metabolic pathways, especially the flavonoid biosynthesis, played a key role in the T141-induced systemic resistance to RKNs. The role of up-regulated flavonoids in RKN mortality was further verified by in vitro experiments with the exogenous treatment of kaempferol, hesperidin and rutin on J2-stage RKNs. Our results revealed a critical mechanism by which T141 induced resistance of tomato plants against the RKNs by systemically promoting secondary metabolism in distant roots.


Assuntos
Resistência à Doença , Flavonoides , Doenças das Plantas , Raízes de Plantas , Solanum lycopersicum , Tylenchoidea , Solanum lycopersicum/parasitologia , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Solanum lycopersicum/genética , Solanum lycopersicum/imunologia , Flavonoides/metabolismo , Animais , Doenças das Plantas/parasitologia , Doenças das Plantas/imunologia , Tylenchoidea/fisiologia , Tylenchoidea/patogenicidade , Raízes de Plantas/parasitologia , Raízes de Plantas/metabolismo , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Hypocreales/metabolismo , Resistência Sistêmica Adquirida da Planta
18.
J Appl Microbiol ; 135(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692851

RESUMO

AIMS: Clonostachys rosea is a well-known mycoparasite that has recently been investigated as a bio-based alternative to chemical nematicides for the control of plant-parasitic nematodes. In the search for a promising biocontrol agent, the ability of the C. rosea strain PHP1701 to control the southern root-knot nematode Meloidogyne incognita was tested. METHODS AND RESULTS: Control of M. incognita in vitro and in soil by C. rosea strain PHP1701 was significant and concentration dependent. Small pot greenhouse trials confirmed a significant reduction in tomato root galling compared to the untreated control. In a large greenhouse trial, the control effect was confirmed in early and mid-season. Tomato yield was higher when the strain PHP1701 was applied compared to the untreated M. incognita-infected control. However, the yield of non-M. incognita-infected tomato plants was not reached. A similar reduction in root galling was also observed in a field trial. CONCLUSIONS: The results highlight the potential of this fungal strain as a promising biocontrol agent for root-knot nematode control in greenhouses, especially as part of an integrated pest management approach. We recommend the use of C. rosea strain PHP1701 for short-season crops and/or to reduce M. incognita populations on fallow land before planting the next crop.


Assuntos
Hypocreales , Controle Biológico de Vetores , Doenças das Plantas , Raízes de Plantas , Microbiologia do Solo , Solanum lycopersicum , Tylenchoidea , Solanum lycopersicum/parasitologia , Animais , Tylenchoidea/fisiologia , Raízes de Plantas/parasitologia , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Hypocreales/fisiologia , Solo/parasitologia
19.
Plant Dis ; 108(5): 1252-1260, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38709560

RESUMO

Strategies for plant nutrient resource allocation under Meloidogyne spp. infection and different soil nutrient conditions are not well established. In response, the objectives of this research are to determine if increased vegetative growth of Solanum lycopersicon var. cerasiforme (cherry tomato) under high nutrition enhances resistance to M. incognita and whether adaptive strategies for growth, reproduction, and nutrient uptake by cherry tomato infected with M. incognita alter nutrient availability. The study was conducted under greenhouse conditions using high, medium, and low soil nutrient regimes. The research results indicate that the total biomass of cherry tomato was less in the presence of M. incognita infection under all three nutrient conditions, compared with plants grown in the absence of this nematode. However, the increase in the root/shoot ratio indicates that cherry tomato allocated more resources to belowground organs. Under the combined impacts of M. incognita infection and low or medium soil nutrition, the nitrogen content in root system tissues and the phosphorus content in shoot system tissues were increased to meet the nutrient requirements of galled root tissue and plant fruit production. It is suggested that plants increase the allocation of reproductive resources to fruits by improving phosphorus transportation to the aboveground reproductive tissues under low and medium nutrient conditions. Overall, the study highlights a significant impact of soil nutrient levels on the growth and resource allocation associated with M. incognita-infected cherry tomato. In response, soil nutrient management is another practice for reducing the impacts of plant-parasitic nematodes on crop production.


Assuntos
Doenças das Plantas , Raízes de Plantas , Solo , Solanum lycopersicum , Tylenchoidea , Tylenchoidea/fisiologia , Solanum lycopersicum/parasitologia , Animais , Solo/química , Solo/parasitologia , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Raízes de Plantas/parasitologia , Nitrogênio/metabolismo , Biomassa , Fósforo/metabolismo , Fósforo/análise
20.
Exp Appl Acarol ; 93(1): 169-195, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744726

RESUMO

Trichomes are well-known efficient plant defense mechanisms to limit arthropod herbivory, especially in Solanaceae. The present study aims to evaluate the impact of trichome types on the development, survival and dispersal of Tetranychus urticae, and the phytoseiid predatory mite Typhlodromus (Anthoseius) recki. Six Solanum lycopersicum cultivars and two wild Solanum species, S. cheesmaniae and S. peruvianum, presenting contrasting densities and types of trichomes, were considered. Cultivars and species were characterized by counting each trichome type on leaves, petioles and stems. Mites stuck on petiole and stem and alive mites on the leaflet used for mite release and in the whole plant were counted three weeks after T. urticae plant infestation. Tetranychus urticae settlement and dispersal were differently affected by trichomes. Trichome types V and VI did not affect settlement and dispersal, whereas trichome types I and IV on the petiole had the highest impacton mites. Trichomes on leaves slightly affected mite establishment, there appears to be a repellent effect of trichome types I and IV. The low densities of both T. urticae and its predator detected for the cv. Lancaster could not be clearly associated to the trichome types here considered. The predator did not seem to be affected by plant characteristics, but rather by T. urticae numbers on the plant. The trichome traits unfavorable to T. urticae, did not affect the predator which showed high efficiency to control this pest on all the plant genotypes considered, but at a favorable predator:prey ratio (1:1). Altogether, these results are encouraging for the use of T. (A.) recki as a biological control agent of T. urticae regardless of the trichome structure of the tomato cultivars, but other conditions should be tested to conclude on practical implementations.


Assuntos
Ácaros , Comportamento Predatório , Solanum lycopersicum , Tetranychidae , Tricomas , Animais , Tetranychidae/fisiologia , Ácaros/fisiologia , Solanum lycopersicum/parasitologia , Cadeia Alimentar , Controle Biológico de Vetores , Folhas de Planta/parasitologia , Herbivoria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...