Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
Mais filtros












Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 927, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39367326

RESUMO

Eggplant (Solanum melongena) is moderately sensitive to salinity. Seed priming and exogenous supplementation are technique that enhances germination, growth, and crop yield by overcoming salt stress. Therefore, this study was designed to understand the role of seed priming and copper (Cu) supplementation in modulating salt tolerance in eggplant. When exposed to salt stress, eggplant seedlings showed significantly higher Na+ content, an increased Na/K ratio, prolonged mean germination time, higher relative water loss, more days to flower bud initiation and first flowering, along with decreased germination rate, growth factors, water content, photosynthetic pigments, ionic contents (K+, Ca2+, Mg2+), and yield. The results demonstrated that the germination rate, final germination percentage, germination index, germination energy, and seed vigor index significantly improved, while the mean germination time decreased in Cu-primed seeds. The results also revealed that Cu supplementations increased seedling traits, leaf water content, photosynthetic pigment contents, ionic contents (K+, Ca2+, and Mg2+), and yield while decreasing the contents of Na+, and Na/K ratio, mean germination time, relative water loss, days to flower bud initiation, and days to 1st flowering under salt stress. Germination of seeds, seedlings growth traits, plant water status, plant pigments, yield, and ionic contents with the NaCl and Cu treatments were found to substantially interact with each other according to both hierarchical clustering and PCA. Overall, Cu seed priming and exogenous supplementation emerged as a promising strategy to enhance salt tolerance and promote germination, growth, and yield by regulating water status, photosynthetic pigments, and ion homeostasis in eggplant seedlings under NaCl stress. These findings provide valuable insights into the mechanisms of Cu-mediated stress alleviation in eggplant, with implications for sustainable crop production in saline environments.


Assuntos
Cobre , Germinação , Homeostase , Fotossíntese , Estresse Salino , Solanum melongena , Água , Solanum melongena/fisiologia , Solanum melongena/crescimento & desenvolvimento , Solanum melongena/efeitos dos fármacos , Solanum melongena/metabolismo , Cobre/metabolismo , Fotossíntese/efeitos dos fármacos , Água/metabolismo , Germinação/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Plântula/efeitos dos fármacos , Íons , Tolerância ao Sal
2.
BMC Plant Biol ; 24(1): 742, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39095745

RESUMO

In this study, various constraints of Cd toxicity on growth, morpho-anatomical characters along with physiological and biochemical metabolic processes of Solanum melongena L. plants were analyzed. Conversely, ameliorative role of iron oxide nanoparticles (FeONPs) was examined against Cd stress. For this purpose, the following treatments were applied in completely randomized fashion; 3 mM CdCl2 solution applied with irrigation water, 40 and 80 ppm solutions of FeONPs applied via foliar spray. Regarding the results, Cd caused oxidative damage to plants' photosynthetic machinery, resulting in elevated levels of stress-markers like malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolytic leakage (EL) along with slight increase in antioxidants activities, including glutathione (GsH), ascorbate (AsA), catalases (CAT), peroxidases (POD), superoxide dismutase (SOD), and ascorbate peroxidases (APX). Also, high Cd level in plants disturb ions homeostasis and reduced essential minerals uptake, including Ca and K. This ultimately reduced growth and development of S. melongena plants. In contrast, FeONPs supplementations improved antioxidants (enzymatic and non-enzymatic) defenses which in turn limited ROS generation and lowered the oxidative damage to photosynthetic machinery. Furthermore, it maintained ionic balance resulting in enhanced uptake of Ca and K nutrients which are necessary for photosynthesis, hence also improved photosynthesis rate of S. melongena plants. Overall, FeONPs foliar spray effectively mitigated Cd toxicity imposed on S. melongena plants.


Assuntos
Antioxidantes , Cádmio , Estresse Oxidativo , Solanum melongena , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/metabolismo , Cádmio/toxicidade , Solanum melongena/efeitos dos fármacos , Solanum melongena/metabolismo , Fotossíntese/efeitos dos fármacos , Malondialdeído/metabolismo
3.
Sci Rep ; 14(1): 19289, 2024 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164381

RESUMO

Plants are affected by many environmental factors during their various stages of growth, among which salt stress is a key factor. WRKY transcription factors play important roles in the response to stress in plants. In this study, SmWRKY40 from eggplant (Solanum melongena L.) was found to belong to the subfamily of WRKY transcription factor group II, closely related to the evolution of wild tomato ScWRKY40 (Solanum chilense). The expression of SmWRKY40 could be induced by several abiotic stresses (drought, salt, and high temperature) and ABA to different degrees, with salt stress being the most significant. In Arabidopsis thaliana, the seed germination rate of SmWRKY40 overexpression seedlings was significantly higher than those of the wild type under high concentrations of NaCl and ABA, and root elongation of overexpression lines was also longer than wild type under NaCl treatments. SmWRKY40 overexpression lines were found to enhance Arabidopsis tolerance to salt with lower ROS, MDA, higher soluble protein, proline accumulation, and more active antioxidant enzymes. The expression level of genes related to stress and ABA signaling displayed significant differences in SmWRKY40 overexpression line than that of WT. These results indicate that SmWRKY40 regulates ABA and salt stress responses in Arabidopsis.


Assuntos
Ácido Abscísico , Arabidopsis , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Estresse Salino , Solanum melongena , Fatores de Transcrição , Solanum melongena/genética , Solanum melongena/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo , Plantas Geneticamente Modificadas , Estresse Fisiológico , Tolerância ao Sal/genética , Germinação/genética , Filogenia , Plântula/genética , Plântula/metabolismo , Plântula/crescimento & desenvolvimento
4.
Plant Cell Environ ; 47(11): 4293-4304, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38963294

RESUMO

NAC-domain transcription factors (TFs) are plant-specific transcriptional regulators playing crucial roles in plant secondary cell wall (SCW) biosynthesis. SCW is important for plant growth and development, maintaining plant morphology, providing rigid support, ensuring material transportation and participating in plant stress responses as a protective barrier. However, the molecular mechanisms underlying SCW in eggplant have not been thoroughly explored. In this study, the NAC domain TFs SmNST1 and SmNST2 were cloned from the eggplant line 'Sanyue qie'. SmNST1 and SmNST2 expression levels were the highest in the roots and stems. Subcellular localization analysis showed that they were localized in the cell membrane and nucleus. Their overexpression in transgenic tobacco showed that SmNST1 promotes SCW thickening. The expression of a set of SCW biosynthetic genes for cellulose, xylan and lignin, which regulate SCW formation, was increased in transgenic tobacco. Bimolecular fluorescence and luciferase complementation assays showed that SmNST1 interacted with SmNST2 in vivo. Yeast one-hybrid, electrophoretic mobility shift assay (EMSA) and Dual-luciferase reporter assays showed that SmMYB26 directly bound to the SmNST1 promoter and acted as an activator. SmNST1 and SmNST2 interact with the SmMYB108 promoter and repress SmMYB108 expression. Altogether, we showed that SmNST1 positively regulates SCW formation, improving our understanding of SCW biosynthesis transcriptional regulation.


Assuntos
Parede Celular , Regulação da Expressão Gênica de Plantas , Nicotiana , Proteínas de Plantas , Plantas Geneticamente Modificadas , Solanum melongena , Fatores de Transcrição , Parede Celular/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Nicotiana/genética , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Solanum melongena/genética , Solanum melongena/metabolismo , Regiões Promotoras Genéticas/genética
5.
BMC Plant Biol ; 24(1): 702, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39054439

RESUMO

BACKGROUND: Climate change exacerbates abiotic stresses, which are expected to intensify their impact on crop plants. Drought, the most prevalent abiotic stress, significantly affects agricultural production worldwide. Improving eggplant varieties to withstand abiotic stress is vital due to rising drought from climate change. Despite the diversity of wild eggplant species that thrive under harsh conditions, the understanding of their drought tolerance mechanisms remains limited. In the present study, we used chlorophyll fluorescence (ChlaF) imaging, which reveals a plant's photosynthetic health, to investigate desiccation tolerance in eggplant and its wild relatives. Conventional fluorescence measurements lack spatial heterogeneity, whereas ChlaF imaging offers comprehensive insights into plant responses to environmental stresses. Hence, employing noninvasive imaging techniques is essential for understanding this heterogeneity. RESULTS: Desiccation significantly reduced the leaf tissue moisture content (TMC) across species. ChlaF and TMC displayed greater photosystem II (PSII) efficiency after 54 h of desiccation in S. macrocarpum, S. torvum, and S. indicum, with S. macrocarpum demonstrating superior efficiency due to sustained fluorescence. PSII functions declined gradually in S. macrocarpum and S. torvum, unlike those in other species, which exhibited abrupt declines after 54 h of desiccation. However, after 54 h, PSII efficiency remained above 50% of its initial quantum yield in S. macrocarpum at 35% leaf RWC (relative water content), while S. torvum and S. indicum displayed 50% decreases at 31% and 33% RWC, respectively. Conversely, the susceptible species S. gilo and S. sisymbriifolium exhibited a 50% reduction in PSII function at an early stage of 50% RWC, whereas in S. melongena, this reduction occurred at 40% RWC. CONCLUSION: Overall, our study revealed notably greater leaf desiccation tolerance, especially in S. macrocarpum, S. torvum, and S. indicum, attributed to sustained PSII efficiency at low TMC levels, indicating that these species are promising sources of drought tolerance.


Assuntos
Clorofila , Solanum melongena , Clorofila/metabolismo , Fluorescência , Solanum melongena/fisiologia , Solanum melongena/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo , Dessecação , Complexo de Proteína do Fotossistema II/metabolismo , Fotossíntese/fisiologia , Estresse Fisiológico , Secas , Desidratação , Especificidade da Espécie
6.
Int J Phytoremediation ; 26(12): 1885-1892, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38825962

RESUMO

The effects of rootstocks tomato (Solanum lycopersicum L.), eggplant (Solanum melongena L.), and nightshade (Solanum nigrum L.) grafting on the growth and selenium (Se) accumulation of Cyphomandra betacea Sendt. seedlings were studied to identify the most suitable rootstock for increasing Se uptake of fruit trees grown in Se-contaminated soil. The rootstocks of tomato, eggplant, and nightshade grafting increased the scion biomass of C. betacea seedlings by 146.1%, 23.2%, and 94.5%, respectively, compared with the un-grafted seedlings. Moreover, tomato, eggplant, and nightshade rootstocks grafting increased the photosynthesis, superoxide dismutase activity, and peroxidase activity, while reducing the catalase activity and soluble protein content of C. betacea seedlings. Although all three rootstocks grafting decreased Se contents in rootstock roots and stems, only nightshade rootstock grafting increased Se content in the scions of C. betacea seedlings. Notably, root biomass, catalase activity, soluble protein content, rootstock root Se content, and rootstock stem Se content were closely related to the scion Se content. These findings suggest that only grafting onto nightshade rootstock significantly enhances Se uptake in C. betacea, whereas tomato and eggplant rootstocks grafting have no effect on Se uptake.


This study shows that under selenium (Se)-contaminated soil conditions, tomato, eggplant, and nightshade rootstocks can promote the growth of C. betacea seedlings and improve their stress resistance. The nightshade rootstock stands out for its ability to promote Se uptake in C. betacea seedlings, suggesting its suitability as a promising rootstock to enhance both growth and Se uptake in C. betacea.


Assuntos
Biodegradação Ambiental , Raízes de Plantas , Plântula , Selênio , Poluentes do Solo , Solanum lycopersicum , Solanum melongena , Poluentes do Solo/metabolismo , Selênio/metabolismo , Plântula/metabolismo , Solanum melongena/metabolismo , Solanum lycopersicum/metabolismo , Raízes de Plantas/metabolismo , Solanum nigrum/metabolismo
7.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38928516

RESUMO

Anthocyanins are a large group of water-soluble flavonoid pigments. These specialized metabolites are ubiquitous in the plant kingdom and play an essential role not only in plant reproduction and dispersal but also in responses to biotic and abiotic stresses. Anthocyanins are recognized as important health-promoting and chronic-disease-preventing components in the human diet. Therefore, interest in developing food crops with improved levels and compositions of these important nutraceuticals is growing. This review focuses on work conducted to elucidate the genetic control of the anthocyanin pathway and modulate anthocyanin content in eggplant (Solanum melongena L.) and tomato (Solanum lycopersicum L.), two solanaceous fruit vegetables of worldwide relevance. While anthocyanin levels in eggplant fruit have always been an important quality trait, anthocyanin-based, purple-fruited tomato cultivars are currently a novelty. As detailed in this review, this difference in the anthocyanin content of the cultivated germplasm has largely influenced genetic studies as well as breeding and transgenic approaches to improve the anthocyanin content/profile of these two important solanaceous crops. The information provided should be of help to researchers and breeders in devising strategies to address the increasing consumer demand for nutraceutical foods.


Assuntos
Antocianinas , Frutas , Solanum lycopersicum , Solanum melongena , Antocianinas/análise , Antocianinas/metabolismo , Solanum melongena/genética , Solanum melongena/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Frutas/genética , Frutas/metabolismo , Frutas/química , Biotecnologia/métodos , Plantas Geneticamente Modificadas/genética , Melhoramento Vegetal/métodos , Regulação da Expressão Gênica de Plantas , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo
8.
PeerJ ; 12: e17341, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827281

RESUMO

Phosphorus is one of the lowest elements absorbed and utilized by plants in the soil. SPX domain-containing genes family play an important role in plant response to phosphate deficiency signaling pathway, and related to seed development, disease resistance, absorption and transport of other nutrients. However, there are no reports on the mechanism of SPX domain-containing genes in response to phosphorus deficiency in eggplant. In this study, the whole genome identification and functional analysis of SPX domain-containing genes family in eggplant were carried out. Sixteen eggplant SPX domain-containing genes were identified and divided into four categories. Subcellular localization showed that these proteins were located in different cell compartments, including nucleus and membrane system. The expression patterns of these genes in different tissues as well as under phosphate deficiency with auxin were explored. The results showed that SmSPX1, SmSPX5 and SmSPX12 were highest expressed in roots. SmSPX1, SmSPX4, SmSPX5 and SmSPX14 were significantly induced by phosphate deficiency and may be the key candidate genes in response to phosphate starvation in eggplant. Among them, SmSPX1 and SmSPX5 can be induced by auxin under phosphate deficiency. In conclusion, our study preliminary identified the SPX domain genes in eggplant, and the relationship between SPX domain-containing genes and auxin was first analyzed in response to phosphate deficiency, which will provide theoretical basis for improving the absorption of phosphorus in eggplants through molecular breeding technology.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Solanum melongena , Solanum melongena/genética , Solanum melongena/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Genoma de Planta/genética , Família Multigênica , Fósforo/metabolismo , Fósforo/deficiência , Genes de Plantas , Fosfatos/metabolismo , Fosfatos/deficiência
9.
BMC Plant Biol ; 24(1): 560, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877388

RESUMO

BACKGROUND: The generation of new eggplant (Solanum melongena L.) cultivars with drought tolerance is a main challenge in the current context of climate change. In this study, the eight parents (seven of S. melongena and one of the wild relative S. incanum L.) of the first eggplant MAGIC (Multiparent Advanced Generation Intercrossing) population, together with four F1 hybrids amongst them, five S5 MAGIC recombinant inbred lines selected for their genetic diversity, and one commercial hybrid were evaluated in young plant stage under water stress conditions (30% field capacity; FC) and control conditions (100% FC). After a 21-day treatment period, growth and biomass traits, photosynthetic pigments, oxidative stress markers, antioxidant compounds, and proline content were evaluated. RESULTS: Significant effects (p < 0.05) were observed for genotype, water treatments and their interaction in most of the traits analyzed. The eight MAGIC population parental genotypes displayed a wide variation in their responses to water stress, with some of them exhibiting enhanced root development and reduced foliar biomass. The commercial hybrid had greater aerial growth compared to root growth. The four F1 hybrids among MAGIC parents differed in their performance, with some having significant positive or negative heterosis in several traits. The subset of five MAGIC lines displayed a wide diversity in their response to water stress. CONCLUSION: The results show that a large diversity for tolerance to drought is available among the eggplant MAGIC materials, which can contribute to developing drought-tolerant eggplant cultivars.


Assuntos
Antioxidantes , Desidratação , Solanum melongena , Solanum melongena/genética , Solanum melongena/crescimento & desenvolvimento , Solanum melongena/fisiologia , Solanum melongena/metabolismo , Antioxidantes/metabolismo , Hibridização Genética , Genótipo , Secas , Vigor Híbrido/genética , Prolina/metabolismo , Biomassa
10.
Int J Biol Macromol ; 269(Pt 2): 132139, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38719008

RESUMO

Accumulating salinity in soil critically affected growth, development, and yield in plant. However, the mechanisms of plant against salt stress largely remain unknown. Herein, we identified a gene named SmCYP78A7a, which encoded a cytochrome P450 monooxygenase and belonged to the CYP78A sub-family, and its transcript level was significantly up-regulated by salt stress and down-regulated by dehydration stress. SmCYP78A7a located in the endoplasmic reticulum. Silencing of SmCYP78A7a enhanced susceptibility of eggplant to salt stress, and significantly down-regulated the transcript levels of salt stress defense related genes SmGSTU10 and SmWRKY11 as well as increased hydrogen peroxide (H2O2) content and decreased catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX) enzyme activities. In addition, SmCYP78A7a transient expression enhanced eggplant tolerance to salt stress. By chromatin immunoprecipitation PCR (ChIP-PCR), luciferase reporter assay, and electrophoretic mobility shift assay (EMSA), SmWRKY11 activated SmCYP78A7a expression by directly binding to the W-box 6-8 (W-box 6, W-box 7, and W-box 8) within SmCYP78A7a promoter to confer eggplant tolerance to salt stress. In summary, our finds reveal that SmCYP78A7a positively functions in eggplant response to salt stress via forming a positive feedback loop with SmWRKY11, and provide a new insight into regulatory mechanisms of eggplant to salt stress.


Assuntos
Sistema Enzimático do Citocromo P-450 , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Estresse Salino , Solanum melongena , Solanum melongena/genética , Solanum melongena/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Estresse Salino/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Retroalimentação Fisiológica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Peróxido de Hidrogênio/metabolismo , Tolerância ao Sal/genética
11.
Int J Mol Sci ; 25(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38791283

RESUMO

Fruit color is an intuitive quality of horticultural crops that can be used as an evaluation criterion for fruit ripening and is an important factor affecting consumers' purchase choices. In this study, a genetic population from the cross of green peel 'Qidong' and purple peel '8 guo' revealed that the purple to green color of eggplant peel is dominant and controlled by a pair of alleles. Bulked segregant analysis (BSA), SNP haplotyping, and fine genetic mapping delimited candidate genes to a 350 kb region of eggplant chromosome 10 flanked by markers KA2381 and CA8828. One ANS gene (EGP22363) was predicted to be a candidate gene based on gene annotation and sequence alignment of the 350-kb region. Sequence analysis revealed that a single base mutation of 'T' to 'C' on the exon green peel, which caused hydrophobicity to become hydrophilic serine, led to a change in the three-level spatial structure. Additionally, EGP22363 was more highly expressed in purple peels than in green peels. Collectively, EGP22363 is a strong candidate gene for anthocyanin biosynthesis in purple eggplant peels. These results provide important information for molecular marker-assisted selection in eggplants, and a basis for analyzing the regulatory pathways responsible for anthocyanin biosynthesis in eggplants.


Assuntos
Antocianinas , Mapeamento Cromossômico , Frutas , Solanum melongena , Solanum melongena/genética , Solanum melongena/metabolismo , Antocianinas/biossíntese , Antocianinas/genética , Frutas/genética , Frutas/metabolismo , Pigmentação/genética , Polimorfismo de Nucleotídeo Único , Genes de Plantas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
Plant Physiol Biochem ; 211: 108678, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38714126

RESUMO

The consistently increasing use of zinc oxide nanoparticles (ZnONPs) in crop optimization practices and their persistence in agro-environment necessitate expounding their influence on sustainable agro-environment. Attempts have been made to understand nanoparticle-plant beneficial bacteria (PBB)- plant interactions; the knowledge of toxic impact of nanomaterials on soil-PBB-vegetable systems and alleviating nanotoxicity using PBB is scarce and inconsistent. This study aims at bio-fabrication of ZnONPs from Rosa indica petal extracts and investigates the impact of PBB on growth and biochemical responses of biofertilized eggplants exposed to phyto-synthesized nano-ZnO. Microscopic and spectroscopic techniques revealed nanostructure, triangular shape, size 32.5 nm, and different functional groups of ZnONPs and petal extracts. Inoculation of Pseudomonas fluorescens and Azotobacter chroococcum improved germination efficiency by 22% and 18% and vegetative growth of eggplants by 14% and 15% under NPs stress. Bio-inoculation enhanced total chlorophyll content by 36% and 14 %, increasing further with higher ZnONP concentrations. Superoxide dismutase and catalase activity in nano-ZnO and P. fluorescens inoculated eggplant shoots reduced by 15-23% and 9-11%. Moreover, in situ experiment unveiled distortion and accumulation of NPs in roots revealed by scanning electron microscope and confocal laser microscope. The present study highlights the phytotoxicity of biosynthesized ZnONPs to eggplants and demonstrates that PBB improved agronomic traits of eggplants while declining phytochemicals and antioxidant levels. These findings suggest that P. fluorescens and A. chroococcum, with NPs ameliorative activity, can be cost-effective and environment-friendly strategy for alleviating NPs toxicity and promoting eggplant production under abiotic stress, fulfilling vegetable demands.


Assuntos
Nanopartículas Metálicas , Solanum melongena , Óxido de Zinco , Óxido de Zinco/farmacologia , Solanum melongena/efeitos dos fármacos , Solanum melongena/metabolismo , Solanum melongena/crescimento & desenvolvimento , Solanum melongena/microbiologia , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Pseudomonas fluorescens/efeitos dos fármacos , Pseudomonas fluorescens/metabolismo , Azotobacter/efeitos dos fármacos , Azotobacter/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Clorofila/metabolismo , Nanopartículas/química
13.
Curr Genet ; 70(1): 7, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743270

RESUMO

Fermented eggplant is a traditional fermented food, however lactic acid bacteria capable of producing exopolysaccharide (EPS) have not yet been exploited. The present study focused on the production and protective effects against oxidative stress of an EPS produced by Lacticaseibacillus paracasei NC4 (NC4-EPS), in addition to deciphering its genomic features and EPS biosynthesis pathway. Among 54 isolates tested, strain NC4 showed the highest EPS yield and antioxidant activity. The maximum EPS production (2.04 ± 0.11 g/L) was achieved by culturing in MRS medium containing 60 g/L sucrose at 37 °C for 48 h. Under 2 mM H2O2 stress, the survival of a yeast model Saccharomyces cerevisiae treated with 0.4 mg/mL NC4-EPS was 2.4-fold better than non-treated cells, which was in agreement with the catalase and superoxide dismutase activities measured from cell lysates. The complete genome of NC4 composed of a circular chromosome of 2,888,896 bp and 3 circular plasmids. The NC4 genome comprises more genes with annotated function in nitrogen metabolism, phosphorus metabolism, cell division and cell cycle, and iron acquisition and metabolism as compared to other reported L. paracasei. Of note, the eps gene cluster is not conserved across L. paracasei. Pathways of sugar metabolism for EPS biosynthesis were proposed for the first time, in which gdp pathway only present in few plant-derived bacteria was identified. These findings shed new light on the cell-protective activity and biosynthesis of EPS produced by L. paracasei, paving the way for future efforts to enhance yield and tailor-made EPS production for food and pharmaceutical industries.


Assuntos
Fermentação , Lacticaseibacillus paracasei , Estresse Oxidativo , Polissacarídeos Bacterianos , Solanum melongena , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/metabolismo , Solanum melongena/microbiologia , Solanum melongena/genética , Solanum melongena/metabolismo , Lacticaseibacillus paracasei/metabolismo , Lacticaseibacillus paracasei/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Antioxidantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Genoma Bacteriano , Alimentos Fermentados/microbiologia , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética
14.
BMC Plant Biol ; 24(1): 256, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594627

RESUMO

BACKGROUND: Climate change has led to severe cold events, adversely impacting global crop production. Eggplant (Solanum melongena L.), a significant economic crop, is highly susceptible to cold damage, affecting both yield and quality. Unraveling the molecular mechanisms governing cold resistance, including the identification of key genes and comprehensive transcriptional regulatory pathways, is crucial for developing new varieties with enhanced tolerance. RESULTS: In this study, we conducted a comparative analysis of leaf physiological indices and transcriptome sequencing results. The orthogonal partial least squares discriminant analysis (OPLS-DA) highlighted peroxidase (POD) activity and soluble protein as crucial physiological indicators for both varieties. RNA-seq data analysis revealed that a total of 7024 and 6209 differentially expressed genes (DEGs) were identified from variety "A" and variety "B", respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment of DEGs demonstrated that the significant roles of starch and sucrose metabolism, glutathione metabolism, terpenoid synthesis, and energy metabolism (sucrose and starch metabolism) were the key pathways in eggplant. Weighted gene co-expression network analysis (WGCNA) shown that the enrichment of numerous cold-responsive genes, pathways, and soluble proteins in the MEgrep60 modules. Core hub genes identified in the co-expression network included POD, membrane transporter-related gene MDR1, abscisic acid-related genes, growth factor enrichment gene DELLA, core components of the biological clock PRR7, and five transcription factors. Among these, the core transcription factor MYB demonstrated co-expression with signal transduction, plant hormone, biosynthesis, and metabolism-related genes, suggesting a pivotal role in the cold response network. CONCLUSION: This study integrates physiological indicators and transcriptomics to unveil the molecular mechanisms responsible for the differences in cold tolerance between the eggplant cold-tolerant variety "A" and the cold-sensitive variety "B". These mechanisms include modulation of reactive oxygen species (ROS), elevation in osmotic carbohydrate and free proline content, and the expression of terpenoid synthesis genes. This comprehensive understanding contributes valuable insights into the molecular underpinnings of cold stress tolerance, ultimately aiding in the improvement of crop cold tolerance.


Assuntos
Solanum melongena , Transcriptoma , Solanum melongena/genética , Solanum melongena/metabolismo , Fisiologia Comparada , Perfilação da Expressão Gênica/métodos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Resposta ao Choque Frio/genética , Amido/metabolismo , Sacarose/metabolismo , Terpenos/metabolismo , Regulação da Expressão Gênica de Plantas
15.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673847

RESUMO

Anthocyanins are ubiquitous pigments derived from the phenylpropanoid compound conferring red, purple and blue pigmentations to various organs of horticultural crops. The metabolism of flavonoids in the cytoplasm leads to the biosynthesis of anthocyanin, which is then conveyed to the vacuoles for storage by plant glutathione S-transferases (GST). Although GST is important for transporting anthocyanin in plants, its identification and characterization in eggplant (Solanum melongena L.) remains obscure. In this study, a total of 40 GST genes were obtained in the eggplant genome and classified into seven distinct chief groups based on the evolutionary relationship with Arabidopsis thaliana GST genes. The seven subgroups of eggplant GST genes (SmGST) comprise: dehydroascorbate reductase (DHAR), elongation factor 1Bγ (EF1Bγ), Zeta (Z), Theta(T), Phi(F), Tau(U) and tetra-chlorohydroquinone dehalogenase TCHQD. The 40 GST genes were unevenly distributed throughout the 10 eggplant chromosomes and were predominantly located in the cytoplasm. Structural gene analysis showed similarity in exons and introns within a GST subgroup. Six pairs of both tandem and segmental duplications have been identified, making them the primary factors contributing to the evolution of the SmGST. Light-related cis-regulatory elements were dominant, followed by stress-related and hormone-responsive elements. The syntenic analysis of orthologous genes indicated that eggplant, Arabidopsis and tomato (Solanum lycopersicum L.) counterpart genes seemed to be derived from a common ancestry. RNA-seq data analyses showed high expression of 13 SmGST genes with SmGSTF1 being glaringly upregulated on the peel of purple eggplant but showed no or low expression on eggplant varieties with green or white peel. Subsequently, SmGSTF1 had a strong positive correlation with anthocyanin content and with anthocyanin structural genes like SmUFGT (r = 0.9), SmANS (r = 0.85), SmF3H (r = 0.82) and SmCHI2 (r = 0.7). The suppression of SmGSTF1 through virus-induced gene silencing (VIGs) resulted in a decrease in anthocyanin on the infiltrated fruit surface. In a nutshell, results from this study established that SmGSTF1 has the potential of anthocyanin accumulation in eggplant peel and offers viable candidate genes for the improvement of purple eggplant. The comprehensive studies of the SmGST family genes provide the foundation for deciphering molecular investigations into the functional analysis of SmGST genes in eggplant.


Assuntos
Antocianinas , Regulação da Expressão Gênica de Plantas , Glutationa Transferase , Solanum melongena , Antocianinas/metabolismo , Antocianinas/biossíntese , Arabidopsis/genética , Arabidopsis/metabolismo , Cromossomos de Plantas/genética , Frutas/genética , Frutas/metabolismo , Genoma de Planta , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solanum melongena/enzimologia , Solanum melongena/genética , Solanum melongena/metabolismo
16.
Plant Physiol Biochem ; 209: 108544, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520965

RESUMO

Flower abscission is an important developmental process that can significantly reduce the yield of horticultural plants. We previously reported that SmMYB113 is a key transcription factor promoting anthocyanin biosynthesis and improve fruit quality. However, the overexpression of SmMYB113 in eggplant increased flower drop rate and reduced fruit yield. Here, we elucidate the regulatory mechanisms of SmMYB113 on flower abscission in eggplant. RNA-seq analysis indicated that the regulation of flower abscission by SmMYB113 was associated with altered expression of genes related to ethylene biosynthesis and signal transduction, including ethylene biosynthetic genes SmACS1, SmACS8 and SmACO4. Then, the ethylene content in flowers and the function of ethephon (ETH, which promotes fruit ripening) and 1-Methylcyclopropene (1-MCP, which acts as an ethylene perception inhibitor) were analyzed, which revealed that SmMYB113 directly regulates ethylene-dependent flower abscission. Yeast one-hybrid and dual-luciferase assays revealed that SmMYB113 could directly bind to the promoters of SmACS1, SmACS8, and SmACO4 to activate their expression. Through construction of a yeast two-hybrid (Y2H) screening library, the protein SmERF38 was found to interact with SmMYB113, and verified by Y2H, bimolecular fluorescence complementation (BiFC), and luciferase complementation assay. Furthermore, dual-luciferase assays showed that SmERF38 enhanced the role of SmMYB113 on the promoters of SmACS1. Our results provided new insight into the molecular mechanism of flower abscission in eggplant.


Assuntos
Solanum melongena , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Solanum melongena/genética , Solanum melongena/metabolismo , Saccharomyces cerevisiae/metabolismo , Regulação da Expressão Gênica de Plantas , Etilenos/metabolismo , Flores/metabolismo , Luciferases/genética , Luciferases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
BMC Plant Biol ; 24(1): 128, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383291

RESUMO

Salinity poses significant challenges to agricultural productivity, impacting crops' growth, morphology and biochemical parameters. A pot experiment of three months was conducted between February to April 2023 in the Department of Botany, The Islamia University of Bahawalpur. Four brinjal (eggplant) varieties: ICS-BR-1351, HBR-313-D, HBR-314-E, and HBR-334-D were selected and assessed for the effects of salinity on various growth and biochemical attributes. The experiment was completely randomized in design with three replicates each. This study revealed that increased salinity significantly reduced the shoot length, root length, and leaf number across all varieties, with maximum adverse effects observed at a 300mM NaCl concentration. Among the tested varieties, ICS-BR-1351 demonstrated superior performance in most growth parameters, suggesting potential salt tolerance. Biochemically, salinity decreased chlorophyll content across all varieties, with the sharpest decline observed at the highest salt concentration. V4 (HBR-334-D) showed a 57% decrease in chlorophyll followed by V3 (HBR-314-E) at 56%, V2 (HBR-313-D) at 54%, and V1 (ICS-BR-1351) at 33% decrease at maximum salt levels as compared to control. Conversely, carotenoid content increased up to -42.11% in V3 followed by V2 at -81.48%, V4 at -94.11%, and - 233% in V1 at 300mM NaCl stress as compared to respective controls. V3 (HBR-314-E) has the maximum value for carotenoids while V1 has the lowest value for carotenoids as compared to the other three brinjal varieties. In addition to pigments, the study indicated a salinity-induced decrease in total proteins and total soluble sugar, whereas total amino acids and flavonoids increased. Total proteins showed a decrease in V2 (49.46%) followed by V3 (36.44%), V4 (53.42%), and V1 (53.79%) at maximum salt concentration as compared to plants treated with tap water only. Whereas, total soluble sugars showed a decrease of 52.07% in V3, 41.53% in V2, 19.49% in V1, and 18.99% in V4 at the highest salt level. While discussing total amino acid, plants showed a -9.64% increase in V1 as compared to V4 (-31.10%), V2 (-36.62%), and V3 (-22.61%) with high salt levels in comparison with controls. Plant flavonoid content increased in V3 (-15.61%), V2 (-19.03%), V4 (-18.27%) and V1 (-27.85%) at 300mM salt concentration. Notably, salinity elevated the content of anthocyanin, lycopene, malondialdehyde (MDA), and hydrogen peroxide (H2O2) across all varieties. Antioxidant enzymes like peroxidase, catalase, and superoxide dismutase also increased under salt stress, suggesting an adaptive response to combat oxidative damage. However, V3 (HBR-314-E) has shown an increase in anthocyanin at -80.00%, lycopene at -24.81%, MDA at -168.04%, hydrogen peroxide at -24.22%, POD at -10.71%, CAT as-36.63 and SOD as -99.14% at 300mM NaCl stress as compared to control and other varieties. The enhanced accumulation of antioxidants and other protective compounds suggests an adaptive mechanism in brinjal to combat salt-induced oxidative stress. The salt tolerance of different brinjal varieties was assessed by principal component analysis (PCA), and the order of salt tolerance was V1 (ICS-BR-1351) > V4 (HBR-334-D), > V2 (HBR-313-D) > V3 (HBR-314-E). Among the varieties studied, ICS-BR-1351 demonstrated resilience against saline conditions, potentially offering a promising candidate for saline-prone agricultural areas.


Assuntos
Antioxidantes , Solanum melongena , Antocianinas , Antioxidantes/metabolismo , Carotenoides , Clorofila/metabolismo , Peróxido de Hidrogênio/metabolismo , Licopeno , Salinidade , Tolerância ao Sal , Cloreto de Sódio/efeitos adversos , Solanum melongena/metabolismo
18.
Plant Sci ; 341: 112014, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38309473

RESUMO

Brassinosteroids (BRs) function importantly in plant growth and development, but the roles in regulating fruit development and anthocyanin pigmentation remain unclear. Eggplant (Solanum melongena L.) is an important Solanaceae vegetable crop rich in anthocyanins. The fruit size and coloration are important agronomic traits for eggplant breeding. In this study, transgenic eggplant exhibiting endogenous BRs deficiency was created by overexpressing a heterologous BRs-inactivating enzyme gene GhPAG1 driven by CaMV 35 S promoter. 35 S::GhPAG1 eggplant exhibited severe dwarfism, reduced fruit size, and less anthocyanin accumulation. Microscopic observation showed that the cell size of 35 S::GhPAG1 eggplant was significantly reduced compared to WT. Furthermore, the levels of IAA, ME-IAA, and active JAs (JA, JA-ILE, and H2JA) all decreased in 35 S::GhPAG1 eggplant fruit. RNA-Seq analyses showed a decrease in the expression of genes involved in cell elongation, auxin signaling, and JA signaling. Besides, overexpression of GhPAG1 significantly downregulated anthocyanin biosynthetic genes and associated transcription regulators. Altogether, these results strongly suggest that endogenous brassinosteroid deficiency arising from GhPAG1 overexpression impacts eggplant fruit development and anthocyanin coloration mainly by altering hormone homeostasis.


Assuntos
Antocianinas , Solanum melongena , Antocianinas/metabolismo , Solanum melongena/genética , Solanum melongena/metabolismo , Frutas/metabolismo , Melhoramento Vegetal , Hormônios/metabolismo , Homeostase , Regulação da Expressão Gênica de Plantas
19.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396743

RESUMO

Calmodulin-binding transcription activator (CAMTA) is an important calmodulin-binding protein with a conserved structure in eukaryotes which is widely involved in plant stress response, growth and development, hormone signal transduction, and other biological processes. Although CAMTA genes have been identified and characterized in many plant species, a systematic and comprehensive analysis of CAMTA genes in the Solanaceae genome is performed for the first time in this study. A total of 28 CAMTA genes were identified using bioinformatics tools, and the biochemical/physicochemical properties of these proteins were investigated. CAMTA genes were categorized into three major groups according to phylogenetic analysis. Tissue-expression profiles indicated divergent spatiotemporal expression patterns of SmCAMTAs. Furthermore, transcriptome analysis of SmCAMTA genes showed that exposure to cold induced differential expression of many eggplant CAMTA genes. Yeast two-hybrid and bimolecular fluorescent complementary assays suggested an interaction between SmCAMTA2 and SmERF1, promoting the transcription of the cold key factor SmCBF2, which may be an important mechanism for plant cold resistance. In summary, our results provide essential information for further functional research on Solanaceae family genes, and possibly other plant families, in the determination of the development of plants.


Assuntos
Solanaceae , Solanum melongena , Resposta ao Choque Frio/genética , Solanum melongena/genética , Solanum melongena/metabolismo , Solanaceae/metabolismo , Filogenia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética
20.
Sci Total Environ ; 915: 170115, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38232848

RESUMO

Grafting is an effective horticultural method to reduce Cd accumulation in crops. However, the mechanism of grafting inducing the decrease in Cd content in scions remains unclear. This study evaluated the effect of grafting on fruit quality, yield, and Cd content of Solanum melongena, and explored the potential mechanism of grafting reducing Cd content in scions. In the low Cd-contaminated soil, compared with un-grafted (UG) and self-grafted plants (SG), the fruit yield of inter-grafted plants (EG) increased by 38 %, and the fruit quality was not markedly affected. In EG, the decrease in total S and Cd content was not related to organic acids and thiol compounds. The decrease in total S and Cd content in EG leaves and fruits was closely related to the synthesis and transportation of glucosinolates (GSL). The genes encoding GSL synthesis in leaves, such as basic helix-loop-helix, myelocytomatosis proteins, acetyl-CoA, cytochrome P450, and glutathione S-transferases, were significantly downregulated. In EG leaves, the contents of five of the eight amino acids involved in GSL synthesis decreased significantly (P < 0.05). Notably, total GSL in EG stems, leaves, and fruits had a significant linear correlation with total S and Cd. In summary, the decrease in total S and Cd content in scions caused by grafting is closely related to GSL. Our findings provide a theoretical basis for the safe use of Cd-contaminated soil, exploring the long-distance transport of Cd in plants and cultivating crops with low Cd accumulation.


Assuntos
Poluentes do Solo , Solanum melongena , Cádmio/análise , Solanum melongena/metabolismo , Glucosinolatos/análise , Antioxidantes/metabolismo , Solo , Poluentes do Solo/análise , Raízes de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...