Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.813
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000098

RESUMO

Potato mop-top virus (PMTV) is an emerging viral pathogen that causes tuber necrosis in potatoes. PMTV is composed of three single-stranded RNA segments: RNA1 encodes RNA-dependent RNA polymerase, RNA2 contains the coat protein (CP), and RNA3 harbors a triple gene block (TGB 1, TGB2, and TGB3). CP plays a role in viral transmission, while TGB is known to facilitate cell-to-cell and long-distance systemic movement. The role of CP in symptom development, specifically in the presence of TGB genes, was investigated using potato virus X (PVX) as a delivery vehicle to express PMTV genes in the model plant Nicotiana benthamiana. Plants expressing individual genes showed mild symptoms that included leaf curling and crumpling. Interestingly, symptom severity varied among plants infected with three different combinations: CP with TGB1, CP with TGB2, and CP with TGB3. Notably, the combination of CP and TGB3 induced a hypersensitive response, accompanied by stunted growth and downward curling and crumpling. These results suggest the potential role of TGB co-expressed with CP in symptom development during PMTV infection. Additionally, this study demonstrates the use of the PVX-based expression system as a valuable platform for assessing the role of unknown genes in viral pathogenicity.


Assuntos
Proteínas do Capsídeo , Nicotiana , Doenças das Plantas , Potexvirus , Solanum tuberosum , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Nicotiana/genética , Nicotiana/virologia , Nicotiana/metabolismo , Potexvirus/genética , Potexvirus/patogenicidade , Doenças das Plantas/virologia , Doenças das Plantas/genética , Solanum tuberosum/virologia , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
2.
Environ Monit Assess ; 196(8): 752, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028326

RESUMO

Metal uptake by vegetables is becoming a threat to the life of consumers. Therefore, continuous monitoring of metals in vegetables and soils is becoming a necessity. In this study, the occurrence of 18 metals in amadumbe (Colocasia esculenta L.), sweet potatoes (Ipomoea batatas L.), potatoes (Solanum tuberosum L.), and carrots (Daucus carrota L.) grown in small-scale South African agricultural farms was monitored using inductively coupled plasma-optical emission spectroscopy. All the 18 investigated elements were detected in soils and different vegetative plants parts. Bioaccumulation factors indicated the transfer of selected metals from soils into the plant roots. Toxic metals Cd, Cr, and Pb had their concentrations exceeding the maximum permissible levels set by the World Health Organization in the edible parts of all root vegetables. Cd and Pb varied between 18.89 and 19.19 mg kg-1 and 10.46 and 11.46 mg kg-1, respectively, while Cr remained constant at 16.78 mg kg-1. The exact metals together with As and Ni had their total hazard quotients exceeding the threshold value of 1, which indicated that the daily consumption of the investigated root vegetables is likely to pose health risks to both adults and children. Therefore, this study points out to a possibility of toxic health effects that could arise when these vegetables are consumed daily.


Assuntos
Monitoramento Ambiental , Fazendas , Poluentes do Solo , Verduras , África do Sul , Verduras/química , Verduras/metabolismo , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Medição de Risco , Monitoramento Ambiental/métodos , Bioacumulação , Metais/metabolismo , Metais/análise , Raízes de Plantas/metabolismo , Raízes de Plantas/química , Humanos , Contaminação de Alimentos/análise , Solanum tuberosum/metabolismo , Solanum tuberosum/química , Metais Pesados/análise , Metais Pesados/metabolismo , Daucus carota/metabolismo , Daucus carota/química , Colocasia/metabolismo , Ipomoea batatas/metabolismo
3.
Sci Rep ; 14(1): 15329, 2024 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961199

RESUMO

GDP-L-galactose phosphorylase (GGP) is a key rate-limiting enzyme in plant ascorbic acid synthesis, which plays an important role in plant growth and development as well as stress response. However, the presence of GGP and its function in potato and pepper are not known. In this study, we first identified two GGP genes in each potato and pepper genomes using a genome-wide search approach. We then analyzed their physicochemical properties, conserved domains, protein structures and phylogenetic relationships. Phylogenetic tree analysis revealed that members of the potato and pepper GGP gene families are related to eggplant (Solanum melongena L.), Arabidopsis (Arabidopsis thaliana L.), tobacco (Nicotiana tabacum L.) and tomato (Solanum lycopersicum L.), with tomato being the most closely related. The promoter sequences mainly contain homeopathic elements such as light-responsive, hormone-responsive and stress-responsive, with light-responsive elements being the most abundant. By analyzing the structure of the genes, it was found that there is no transmembrane structure or signal peptide in the GGP gene family of potatoes and peppers, and that all of its members are hydrophilic proteins. The expression profiles of different tissues show that StGGP1 has the highest expression levels in leaves, StGGP2 has the highest expression levels in stamens, and CaGGPs have the highest expression levels in the early stages of fruit development (Dev1). It was found that StGGPs and CaGGPs genes showed different response to phytohormones and abiotic stresses. Abscisic acid (ABA) treatment induced the most significant change in the expression of StGGPs, while the expression of CaGGPs showed the most pronounced change under methyl jasmonate (MeJA) treatment. StGGPs responded mainly to dark treatment, whereas CaGGPs responded mainly to NaCl stress. These results provide an important basis for a detailed study about the functions of GGP homologous genes in potato and pepper in response to abiotic stresses.


Assuntos
Capsicum , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Reguladores de Crescimento de Plantas , Proteínas de Plantas , Solanum tuberosum , Estresse Fisiológico , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Capsicum/genética , Capsicum/crescimento & desenvolvimento , Capsicum/metabolismo , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Regiões Promotoras Genéticas
4.
J Agric Food Chem ; 72(28): 15449-15462, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38970497

RESUMO

Potato (Solanum tuberosum) is a major agricultural crop cultivated worldwide. To meet market demand, breeding programs focus on enhancing important agricultural traits such as disease resistance and improvement of tuber palatability. However, while potato tubers get a lot of attention from research, potato berries are mostly overlooked due to their level of toxicity and lack of usefulness for the food production sector. Generally, they remain unused in the production fields after harvesting the tuber. These berries are toxic due to high levels of glycoalkaloids, which might confer some interesting bioactivities. Berries of various solanaceous species contain bioactive secondary metabolites, suggesting that potato berries might contain similarly valuable metabolites. Therefore, possible applications of potato berries, e.g., in the protection of plants against pests and pathogens, as well as the medical exploitation of their anti-inflammatory, anticarcinogenic, and antifungal properties, are plausible. The presence of valuable compounds in potato berries could also contribute to the bioeconomy by providing a novel use for otherwise discarded agricultural side streams. Here we review the potential use of these berries for the extraction of compounds that can be exploited to produce pharmaceuticals and plant protection products.


Assuntos
Proteção de Cultivos , Frutas , Solanum tuberosum , Solanum tuberosum/química , Solanum tuberosum/metabolismo , Frutas/química , Proteção de Cultivos/métodos , Extratos Vegetais/química , Tubérculos/química , Tubérculos/metabolismo , Animais , Humanos
5.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892181

RESUMO

Potato (Solanum tuberosum L.) is a major global food crop, and oxidative stress can significantly impact its growth. Previous studies have shown that its resistance to oxidative stress is mainly related to transcription factors, post-translational modifications, and antioxidant enzymes in vivo, but the specific molecular mechanisms remain unclear. In this study, we analyzed the transcriptome data from potato leaves treated with H2O2 and Methyl viologen (MV), and a control group, for 12 h. We enriched 8334 (CK vs. H2O2) and 4445 (CK vs. MV) differentially expressed genes (DEGs), respectively, and randomly selected 15 DEGs to verify the sequencing data by qRT-PCR. Gene ontology (GO) enrichment analysis showed that the DEGs were mainly concentrated in cellular components and related to molecular function, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that most of the DEGs were related to metabolic pathways, plant hormone signal transduction, MAPK-signaling pathway, and plant-pathogen interactions. In addition, several candidate transcription factors, mainly including MYB, WRKY, and genes associated with Ca2+-mediated signal transduction, were also found to be differentially expressed. Among them, the plant hormone genes Soltu.DM.03G022780 and Soltu.DM.06G019360, the CNGC gene Soltu.DM.06G006320, the MYB transcription factors Soltu.DM.06G004450 and Soltu.DM.09G002130, and the WRKY transcription factor Soltu.DM.06G020440 were noticeably highly expressed, which indicates that these are likely to be the key genes in the regulation of oxidative stress tolerance. Overall, these findings lay the foundation for further studies on the molecular mechanisms of potato leaves in response to oxidative stress.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Estresse Oxidativo , Folhas de Planta , Solanum tuberosum , Transcriptoma , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
J Agric Food Chem ; 72(26): 14760-14768, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38899439

RESUMO

Potato common scab (PCS) is a widespread plant disease that lacks effective control measures. Using a small molecule elicitor, we activate the production of a novel class of polyketide antibiotics, streptolateritic acids A-D, in Streptomyces sp. FXJ1.172. These compounds show a promising control efficacy against PCS and an unusual acyclic pentacarboxylic acid structure. A gene cluster encoding a type I modular polyketide synthase is identified to be responsible for the biosynthesis of these metabolites. A cytochrome P450 (CYP) and an aldehyde dehydrogenase (ADH) encoded by two genes in the cluster are proposed to catalyze iterative oxidation of the starter-unit-derived methyl group and three of six branching methyl groups to carboxylic acids during chain assembly. Our findings highlight how activation of silent biosynthetic gene clusters can be employed to discover completely new natural product classes able to combat PCS and new types of modular polyketide synthase-based biosynthetic machinery.


Assuntos
Proteínas de Bactérias , Família Multigênica , Doenças das Plantas , Policetídeo Sintases , Solanum tuberosum , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Streptomyces/química , Doenças das Plantas/microbiologia , Solanum tuberosum/metabolismo , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/biossíntese , Vias Biossintéticas , Ácidos Carboxílicos/química , Ácidos Carboxílicos/metabolismo
7.
Plant Physiol Biochem ; 213: 108792, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851149

RESUMO

Tuber flesh pigmentation, conferred by the presence of secondary metabolite anthocyanins, is one of many key agronomic traits for potato tubers. Although several genes of potato anthocyanin biosynthesis have been reported, transcription factors (TFs) contributing to tuber flesh pigmentation are still not fully understood. In this study, transcriptomic profiling of diploid potato accessions with or without tuber flesh pigmentation was conducted and genes of the anthocyanin biosynthesis pathway were found significantly enriched within the 1435 differentially expressed genes (DEGs). Weighted Gene Co-expression Network Analysis (WGCNA) and connectivity analysis pinpointed a subset of 173 genes closely related to the key biosynthetic gene StDFR. Of the eight transcription factors in the subset, group III WRKY StWRKY70, was chosen for showing high connectivity to StDFR and ten other anthocyanin biosynthetic genes and homology to known WRKYs of anthocyanin pathway. The transient activation assay showed StWRKY70 predominantly stimulated the expression of StDFR and StANS as well as the accumulation of anthocyanins by enhancing the function of the MYB transcription factor StAN1. Furthermore, the interaction between StWRKY70 and StAN1 was verified by Y2H and BiFC. Our analysis discovered a new transcriptional activator StWRKY70 which potentially involved in tuber flesh pigmentation, thus may lay the foundation for deciphering how the WRKY-MYB-bHLH-WD40 (WRKY-MBW) complex regulate the accumulation of anthocyanins and provide new strategies to breed for more nutritious potato varieties with enhanced tuber flesh anthocyanins.


Assuntos
Antocianinas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Pigmentação , Proteínas de Plantas , Tubérculos , Solanum tuberosum , Fatores de Transcrição , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos/genética , Tubérculos/metabolismo , Pigmentação/genética , Antocianinas/metabolismo , Antocianinas/biossíntese , Antocianinas/genética , Transcriptoma/genética
8.
Sci Rep ; 14(1): 14913, 2024 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942961

RESUMO

Β-glucans are polysaccharide macromolecules that can be found in the cell walls of molds, such as Rhizopus oryzae. They provide functional properties in food systems and have immunomodulatory activity, anticancer, and prebiotic effects; reduce triglycerides and cholesterol; and prevent obesity, among others benefits. Furthermore, potato starch production requires a large amount of water, which is usually discharged into the environment, creating problems in soils and bodies of water. The physical parameters to produce ß-glucans were determined, liquid waste from potato starch processing was used and native Rhizopus oryzae was isolated and identified from cereal grains. The isolates grew quickly on the three types of agars used at 25 °C and 37 °C, and they did not grow at 45 °C. Rhizopus oryzae M10A1 produced the greatest amount of ß-glucans after six days of culture at 30 °C, pH 6, a stirring rate of 150 rpm and a fermentation volume of 250 mL. By establishing the physical fermentation parameters and utilizing the liquid waste from potato starch, Rhizopus oryzae M10A1 yielded 397.50 mg/100 g of ß-glucan was obtained.


Assuntos
Fermentação , Rhizopus oryzae , Solanum tuberosum , Amido , beta-Glucanas , beta-Glucanas/metabolismo , Solanum tuberosum/microbiologia , Solanum tuberosum/metabolismo , Amido/metabolismo , Rhizopus oryzae/metabolismo , Concentração de Íons de Hidrogênio , Rhizopus/metabolismo , Temperatura
9.
Sci Rep ; 14(1): 13484, 2024 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866836

RESUMO

Current study is the first ever storage cum market trial of radiation processed (28 tons) of potato conducted in India at a commercial scale. The objective was to affirm the efficacy of very low dose of gamma radiation processing of potato for extended storage with retained quality and to understand the plausible mechanism at the gene modulation level for suppression of potato sprouting. Genes pertaining to abscisic acid (ABA) biosynthesis were upregulated whereas its catabolism was downregulated in irradiated potatoes. Additionally, genes related to auxin buildup were downregulated in irradiated potatoes. The change in the endogenous phytohormone contents in irradiated potato with respect to the control were found to be correlated well with the differential expression level of certain related genes. Irradiated potatoes showed retention of processing attributes including cooking and chip-making qualities, which could be attributed to the elevated expression of invertase inhibitor in these tubers. Further, quality retention in radiation treated potatoes may also be related to inhibition in the physiological changes due to sprout inhibition. Ecological and economical analysis of national and global data showed that successful adoption of radiation processing may gradually replace sprout suppressants like isopropyl N-(3-chlorophenyl) carbamate (CIPC), known to leave residue in the commodity, stabilize the wholesale annual market price, and provide a boost to the industries involved in product manufacturing.


Assuntos
Regulação da Expressão Gênica de Plantas , Tubérculos , Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Solanum tuberosum/efeitos da radiação , Tubérculos/genética , Tubérculos/metabolismo , Tubérculos/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Armazenamento de Alimentos/métodos , Raios gama , Reguladores de Crescimento de Plantas/metabolismo , Irradiação de Alimentos/métodos , Ácido Abscísico/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
10.
Nat Commun ; 15(1): 5224, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890293

RESUMO

Continued climate change impose multiple stressors on crops, including pathogens, salt, and drought, severely impacting agricultural productivity. Innovative solutions are necessary to develop resilient crops. Here, using quantitative potato proteomics, we identify Parakletos, a thylakoid protein that contributes to disease susceptibility. We show that knockout or silencing of Parakletos enhances resistance to oomycete, fungi, bacteria, salt, and drought, whereas its overexpression reduces resistance. In response to biotic stimuli, Parakletos-overexpressing plants exhibit reduced amplitude of reactive oxygen species and Ca2+ signalling, and silencing Parakletos does the opposite. Parakletos homologues have been identified in all major crops. Consecutive years of field trials demonstrate that Parakletos deletion enhances resistance to Phytophthora infestans and increases yield. These findings demark a susceptibility gene, which can be exploited to enhance crop resilience towards abiotic and biotic stresses in a low-input agriculture.


Assuntos
Doenças das Plantas , Proteínas de Plantas , Solanum tuberosum , Estresse Fisiológico , Solanum tuberosum/genética , Solanum tuberosum/microbiologia , Solanum tuberosum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Secas , Phytophthora infestans , Plantas Geneticamente Modificadas , Produtos Agrícolas/genética , Produtos Agrícolas/microbiologia , Deleção de Genes , Proteômica
11.
BMC Genomics ; 25(1): 442, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702658

RESUMO

Genes containing the SET domain can catalyse histone lysine methylation, which in turn has the potential to cause changes to chromatin structure and regulation of the transcription of genes involved in diverse physiological and developmental processes. However, the functions of SET domain-containing (StSET) genes in potato still need to be studied. The objectives of our study can be summarized as in silico analysis to (i) identify StSET genes in the potato genome, (ii) systematically analyse gene structure, chromosomal distribution, gene duplication events, promoter sequences, and protein domains, (iii) perform phylogenetic analyses, (iv) compare the SET domain-containing genes of potato with other plant species with respect to protein domains and orthologous relationships, (v) analyse tissue-specific expression, and (vi) study the expression of StSET genes in response to drought and heat stresses. In this study, we identified 57 StSET genes in the potato genome, and the genes were physically mapped onto eleven chromosomes. The phylogenetic analysis grouped these StSET genes into six clades. We found that tandem duplication through sub-functionalisation has contributed only marginally to the expansion of the StSET gene family. The protein domain TDBD (PFAM ID: PF16135) was detected in StSET genes of potato while it was absent in all other previously studied species. This study described three pollen-specific StSET genes in the potato genome. Expression analysis of four StSET genes under heat and drought in three potato clones revealed that these genes might have non-overlapping roles under different abiotic stress conditions and durations. The present study provides a comprehensive analysis of StSET genes in potatoes, and it serves as a basis for further functional characterisation of StSET genes towards understanding their underpinning biological mechanisms in conferring stress tolerance.


Assuntos
Regulação da Expressão Gênica de Plantas , Genoma de Planta , Família Multigênica , Filogenia , Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Cromossomos de Plantas/genética , Estresse Fisiológico/genética , Duplicação Gênica , Domínios PR-SET/genética , Mapeamento Cromossômico , Perfilação da Expressão Gênica , Secas
12.
Curr Opin Plant Biol ; 80: 102544, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38759482

RESUMO

Underground storage organs occur in phylogenetically diverse plant taxa and arise from multiple tissue types including roots and stems. Thickening growth allows underground storage organs to accommodate carbohydrates and other nutrients and requires proliferation at various lateral meristems followed by cell expansion. The WOX-CLE module regulates thickening growth via the vascular cambium in several eudicot systems, but the molecular mechanisms of proliferation at other lateral meristems are not well understood. In potato, onion, and other systems, members of the phosphatidylethanolamine-binding protein (PEBP) gene family induce underground storage organ development in response to photoperiod cues. While molecular mechanisms of tuber development in potato are well understood, we lack detailed mechanistic knowledge for the extensive morphological and taxonomic diversity of underground storage organs in plants.


Assuntos
Tubérculos , Tubérculos/crescimento & desenvolvimento , Tubérculos/metabolismo , Tubérculos/genética , Tubérculos/anatomia & histologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Meristema/crescimento & desenvolvimento , Meristema/genética , Meristema/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/anatomia & histologia , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Solanum tuberosum/anatomia & histologia
13.
New Phytol ; 243(2): 688-704, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38769723

RESUMO

Potato (Solanum tuberosum) is the fourth largest food crop in the world. Late blight, caused by oomycete Phytophthora infestans, is the most devastating disease threatening potato production. Previous research has shown that StRFP1, a potato Arabidopsis Tóxicos en Levadura (ATL) family protein, positively regulates late blight resistance via its E3 ligase activity. However, the underlying mechanism is unknown. Here, we reveal that StRFP1 is associated with the plasma membrane (PM) and undergoes constitutive endocytic trafficking. Its PM localization is essential for inhibiting P. infestans colonization. Through in vivo and in vitro assays, we investigated that StRFP1 interacts with two sugar transporters StSWEET10c and StSWEET11 at the PM. Overexpression (OE) of StSWEET10c or StSWEET11 enhances P. infestans colonization. Both StSWEET10c and StSWEET11 exhibit sucrose transport ability in yeast, and OE of StSWEET10c leads to an increased sucrose content in the apoplastic fluid of potato leaves. StRFP1 ubiquitinates StSWEET10c and StSWEET11 to promote their degradation. We illustrate a novel mechanism by which a potato ATL protein enhances disease resistance by degrading susceptibility (S) factors, such as Sugars Will Eventually be Exported Transporters (SWEETs). This offers a potential strategy for improving disease resistance by utilizing host positive immune regulators to neutralize S factors.


Assuntos
Resistência à Doença , Phytophthora infestans , Doenças das Plantas , Proteínas de Plantas , Solanum tuberosum , Ubiquitina-Proteína Ligases , Doenças das Plantas/microbiologia , Resistência à Doença/genética , Phytophthora infestans/patogenicidade , Solanum tuberosum/microbiologia , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Membrana Celular/metabolismo , Ubiquitinação , Regulação da Expressão Gênica de Plantas , Sacarose/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Ligação Proteica , Transporte Proteico
14.
Sci Rep ; 14(1): 10414, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710735

RESUMO

Streptomyces bacteria are notable for producing chemically diverse specialized metabolites that exhibit various bioactivities and mediate interactions with different organisms. Streptomyces sp. 11-1-2 is a plant pathogen that produces nigericin and geldanamycin, both of which display toxic effects against various plants. Here, the 'One Strain Many Compounds' approach was used to characterize the metabolic potential of Streptomyces sp. 11-1-2. Organic extracts were prepared from 11-1-2 cultures grown on six different agar media, and the extracts were tested in antimicrobial and plant bioassays and were subjected to untargeted metabolomics and molecular networking. Most extracts displayed strong bioactivity against Gram-positive bacteria and yeast, and they exhibited phytotoxic activity against potato tuber tissue and radish seedlings. Several known specialized metabolites, including musacin D, galbonolide B, guanidylfungin A, meridamycins and elaiophylin, were predicted to be present in the extracts along with closely related compounds with unknown structure and bioactivity. Targeted detection confirmed the presence of elaiophylin in the extracts, and bioassays using pure elaiophylin revealed that it enhances the phytotoxic effects of geldanamycin and nigericin on potato tuber tissue. Overall, this study reveals novel insights into the specialized metabolites that may mediate interactions between Streptomyces sp. 11-1-2 and other bacteria and eukaryotic organisms.


Assuntos
Metaboloma , Streptomyces , Streptomyces/metabolismo , Raphanus/efeitos dos fármacos , Raphanus/metabolismo , Raphanus/microbiologia , Doenças das Plantas/microbiologia , Metabolômica , Solanum tuberosum/metabolismo , Solanum tuberosum/microbiologia , Antibacterianos/farmacologia
15.
Plant Signal Behav ; 19(1): 2360296, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38808631

RESUMO

Rainfall, wind and touch, as mechanical forces, were mimicked on 6-week-old soil-grown tomato and potato under controlled conditions. Expression level changes of xyloglucan endotransglucosylase/hydrolase genes (XTHs) of tomato (Solanum lycopersicum L. cv. Micro Tom; SlXTHs) and potato (Solanum tuberosum L. cv. Desirée; StXTHs) were analyzed in response to these mechanical forces. Transcription intensity of every SlXTHs of tomato was altered in response to rainfall, while the expression intensity of 72% and 64% of SlXTHs was modified by wind and touch, respectively. Ninety-one percent of StXTHs (32 out of 35) in potato responded to the rainfall, while 49% and 66% of the StXTHs were responsive to the wind and touch treatments, respectively. As previously demonstrated, all StXTHs were responsive to ultrasound treatment, and all were sensitive to one or more of the environmental mechanical factors examined in the current study. To our best knowledge, this is the first study to demonstrate that these ubiquitous mechanical environmental cues, such as rainfall, wind and touch, influence the transcription of most XTHs examined in both species.


Assuntos
Regulação da Expressão Gênica de Plantas , Chuva , Solanum lycopersicum , Solanum tuberosum , Vento , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Solanum tuberosum/fisiologia , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Tato/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas
16.
J Environ Radioact ; 276: 107442, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703691

RESUMO

Long-term field experiments have been carried out in the Chornobyl Exclusion zone to determine parameters describing technetium (99Tc) transfer into five food plants (Lettuce, Radish, Wheat, Bean, and Potato) from four types of soil, namely Podzoluvisol, Greyzem, Phaeozem, and Chernozem. Technetium was added to the soils under field conditions in a pertechnetate form. In the first two years, soil type had little effect on Tc uptake by plants. In the first and second years after contamination, the concentration ratios (CR), defined as 99Tc activity concentration in the crop (dry weight) divided by that in the soil (dry weight), for radish roots and lettuce leaves ranged from 60 to 210. For potato tubers, the CR was d 0.4-2.3, i.e., two orders of magnitude lower than for radish and lettuce, and for summer wheat grain it was lower at 0.6 ± 0.1. After 8-9 years, root uptake of 99Tc by wheat decreased by 3-7 fold (CR from 0.016 ± 0.005 to 0.12 ± 0.034) and only 13-22 % of the total 99Tc added remained in the upper 20 cm soil layers. The time taken for half of the added 99Tc to be removed from the 20-cm arable soil layer due to vertical migration and transfer to plants was short at c. 2-3 years.


Assuntos
Produtos Agrícolas , Monitoramento de Radiação , Poluentes Radioativos do Solo , Tecnécio , Poluentes Radioativos do Solo/análise , Poluentes Radioativos do Solo/metabolismo , Tecnécio/química , Monitoramento de Radiação/métodos , Produtos Agrícolas/metabolismo , Raphanus/metabolismo , Lactuca/metabolismo , Triticum/metabolismo , Solanum tuberosum/metabolismo
17.
Int J Mol Sci ; 25(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38791120

RESUMO

The post-harvest phase of potato tuber dormancy and sprouting are essential in determining the economic value. The intricate transition from dormancy to active growth is influenced by multiple factors, including environmental factors, carbohydrate metabolism, and hormonal regulation. Well-established environmental factors such as temperature, humidity, and light play pivotal roles in these processes. However, recent research has expanded our understanding to encompass other novel influences such as magnetic fields, cold plasma treatment, and UV-C irradiation. Hormones like abscisic acid (ABA), gibberellic acid (GA), cytokinins (CK), auxin, and ethylene (ETH) act as crucial messengers, while brassinosteroids (BRs) have emerged as key modulators of potato tuber sprouting. In addition, jasmonates (JAs), strigolactones (SLs), and salicylic acid (SA) also regulate potato dormancy and sprouting. This review article delves into the intricate study of potato dormancy and sprouting, emphasizing the impact of environmental conditions, carbohydrate metabolism, and hormonal regulation. It explores how various environmental factors affect dormancy and sprouting processes. Additionally, it highlights the role of carbohydrates in potato tuber sprouting and the intricate hormonal interplay, particularly the role of BRs. This review underscores the complexity of these interactions and their importance in optimizing potato dormancy and sprouting for agricultural practices.


Assuntos
Dormência de Plantas , Reguladores de Crescimento de Plantas , Tubérculos , Solanum tuberosum , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/metabolismo , Solanum tuberosum/fisiologia , Solanum tuberosum/genética , Tubérculos/crescimento & desenvolvimento , Tubérculos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Metabolismo dos Carboidratos
18.
Plant Signal Behav ; 19(1): 2336724, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38600704

RESUMO

Biostimulants are obtained from various sources like plants, animals, microorganisms, and industrial by-products as well as waste material. Their utilization in agriculture practices is being increased that is giving positive results. The purpose of the current study was to use plant-derived smoke (SMK) solution and biogas digestate (BGD) slurry as biostimulant to elucidate their impact on potato (Solanum tuberosum) performance. The experiment was conducted in lab as well as field conditions, and SMK and BGD solutions were prepared in varying concentrations such as SMK 1:500, SMK 1:250, BGD 50:50, and BGD 75:25. Foliar applications were performed thrice during experiments and data were collected related to photosynthesis, growth, pigments, and genome-wide methylation profiling. Net photosynthesis rate (A) and water use efficiency (WUE) were found higher in SMK- and BGD-treated lab and field grown plants. Among pigments, BGD-treated plants depicted higher levels of Chl a and Chl b while SMK-treated plants showed higher carotenoid levels. Alongside, enhancement in growth-related parameters like leaf number and dry weight was also observed in both lab- and field-treated plants. Furthermore, DNA methylation profile of SMK- and BGD-treated plants depicted variation compared to control. DNA methylation events increased in all the treatments compared to control except for SMK 1:500. These results indicate that smoke and slurry both act as efficient biostimulants which result in better performance of plants. Biostimulants also affected the genome-wide DNA methylation profile that resultantly might have changed the plant gene expression profiling and played its role in plant responsiveness to these biostimulants. However, there is need to elucidate a possible synergistic effect of SMK and BGD on plant growth along with gene expression profiling.


Assuntos
Fumaça , Solanum tuberosum , Animais , Solanum tuberosum/metabolismo , Biocombustíveis , Fotossíntese , Metilação
19.
Physiol Plant ; 176(2): e14293, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38641970

RESUMO

MicroRNAs (miRNAs) are small noncoding RNAs in eukaryotes. Plant endogenous miRNAs play pivotal roles in regulating plant development and defense responses. MicroRNA394 (miR394) has been reported to regulate plant development, abiotic stresses and defense responses. Previous reports showed that miR394 responded to P. infestans inoculation in potato, indicating that miR394 may be involved in defense responses. In this study, we further investigated its role in potato defense against P. infestans. Stable expression of miR394 in tobacco and potato enhances the susceptibility to P. infestans, which is accompanied with the reduced accumulation of ROS and down-regulation of the PTI (pattern-triggered immunity) marker genes. Besides well-known target StLCR, miR394 also targets StA/N-INVE, which encodes a chloroplast Alkaline/Neutral Invertases (A/N-INVE). Both StLCR and StA/N-INVE positively regulate late blight resistance, while miR394 degrades them. Interestingly, StA/N-INVE is located in the chloroplast, indicating that miR394 may manipulate chloroplast immunity. Degradation of StA/N-INVE may affect the chloroplast function and hence lead to the compromised ROS (reactive oxygen species) burst and reduced retrograde signaling from the chloroplast to the nucleus and cytoplasm. In summary, this study provides new information that miR394 targets and degrades StA/N-INVE and StLCR, which are positive regulators, to enhance potato susceptibility to P. infestans.


Assuntos
MicroRNAs , Phytophthora infestans , Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Phytophthora infestans/genética , Phytophthora infestans/metabolismo , Plantas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
20.
PLoS One ; 19(4): e0297334, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38574179

RESUMO

Potato tubers are rich sources of various nutrients and unique sources of starch. Many genes play major roles in different pathways, including carbohydrate metabolism during the potato tuber's life cycle. Despite substantial scientific evidence about the physiological and morphological development of potato tubers, the molecular genetic aspects of mechanisms underlying tuber formation have not yet been fully understood. In this study, for the first time, RNA-seq analysis was performed to shed light on the expression of genes involved in starch biosynthesis during potato tuber development. To this end, samples were collected at the hook-like stolon (Stage I), swollen tips stolon (Stage II), and tuber initiation (Stage III) stages of tuber formation. Overall, 23 GB of raw data were generated and assembled. There were more than 20000 differentially expressed genes (DEGs); the expression of 73 genes involved in starch metabolism was further studied. Moreover, qRT-PCR analysis revealed that the expression profile of the starch biosynthesis DEGs was consistent with that of the RNA-seq data, which further supported the role of the DEGs in starch biosynthesis. This study provides substantial resources on potato tuber development and several starch synthesis isoforms associated with starch biosynthesis.


Assuntos
Solanum tuberosum , Solanum tuberosum/metabolismo , Perfilação da Expressão Gênica , Tubérculos/metabolismo , Metabolismo dos Carboidratos/genética , Amido/metabolismo , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...