Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.082
Filtrar
1.
Adv Genet ; 111: 497-535, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38908905

RESUMO

Due to the multifactorial and complex nature of rest, we focus on phenotypes related to sleep. Sleep regulation is a multifactorial process. In this chapter, we focus on those phenotypes inherent to sleep that are highly prevalent in the population, and that can be modulated by lifestyle, such as sleep quality and duration, insomnia, restless leg syndrome and daytime sleepiness. We, therefore, leave in the background those phenotypes that constitute infrequent pathologies or for which the current level of scientific evidence does not favour the implementation of practical approaches of this type. Similarly, the regulation of sleep quality is intimately linked to the regulation of the circadian rhythm. Although this relationship is discussed in the sections that require it, the in-depth study of circadian rhythm regulation at the molecular level deserves a separate chapter, and this is how it is dealt with in this volume.


Assuntos
Ritmo Circadiano , Distúrbios do Início e da Manutenção do Sono , Sono , Humanos , Sono/genética , Sono/fisiologia , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Distúrbios do Início e da Manutenção do Sono/genética , Síndrome das Pernas Inquietas/genética , Fenótipo , Animais , Qualidade do Sono
2.
Genes (Basel) ; 15(6)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38927705

RESUMO

Recent research has highlighted associations between sleep and microbial taxa and pathways. However, the causal effect of these associations remains unknown. To investigate this, we performed a bidirectional two-sample Mendelian randomization (MR) analysis using summary statistics of genome-wide association studies (GWAS) from 412 gut microbiome traits (N = 7738) and GWAS studies from seven sleep-associated traits (N = 345,552 to 386,577). We employed multiple MR methods to assess causality, with Inverse Variance Weighted (IVW) as the primary method, alongside a Bonferroni correction ((p < 2.4 × 10-4) to determine significant causal associations. We further applied Cochran's Q statistical analysis, MR-Egger intercept, and Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) for heterogeneity and pleiotropy assessment. IVW estimates revealed 79 potential causal effects of microbial taxa and pathways on sleep-related traits and 45 inverse causal relationships, with over half related to pathways, emphasizing their significance. The results revealed two significant causal associations: genetically determined relative abundance of pentose phosphate decreased sleep duration (p = 9.00 × 10-5), and genetically determined increase in fatty acid level increased the ease of getting up in the morning (p = 8.06 × 10-5). Sensitivity analyses, including heterogeneity and pleiotropy tests, as well as a leave-one-out analysis of single nucleotide polymorphisms, confirmed the robustness of these relationships. This study explores the potential causal relationships between sleep and microbial taxa and pathways, offering novel insights into their complex interplay.


Assuntos
Microbioma Gastrointestinal , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Sono , Humanos , Microbioma Gastrointestinal/genética , Sono/genética , Polimorfismo de Nucleotídeo Único , Causalidade
3.
Medicine (Baltimore) ; 103(24): e38318, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38875424

RESUMO

Observational studies have revealed that several sleep traits can impact ovarian function in women. However, there is no evidence suggesting associations between sleep traits and age at natural menopause (ANM). The objective of this study was to investigate the causal relationship between sleep traits (insomnia, sleep duration, daytime sleepiness) and ANM from the perspective of genetic variation. We selected the single-nucleotide polymorphisms from large-scale genome-wide association studies as instrumental variables and conducted a two-sample Mendelian randomization (MR) analysis on these single-nucleotide polymorphisms, including inverse variance weighting, MR-Egger, weighted median, simple mode and weighted mode. The Steiger test was employed to verify the correct causal directionality. The robustness of the MR analysis was examined through Cochran's Q test, horizontal pleiotropy test, and leave-one-out analysis. The results indicated that insomnia was causally associated with ANM (inverse variance weighting: ß = -0.982; 95% CI: -1.852 to -0.111, P = .027), with other analyses confirming the robustness of this finding. Steiger test and reverse MR Analysis validated the absence of a reverse causal association between the two. However, sleep duration and daytime sleepiness did not exhibit a causal effect on ANM. In summary, this study provides initial evidence that insomnia can contribute to an earlier onset of ANM. Nevertheless, further clinical studies are needed to elucidate these findings.


Assuntos
Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Menopausa , Polimorfismo de Nucleotídeo Único , Sono , Humanos , Menopausa/genética , Feminino , Sono/genética , Sono/fisiologia , Distúrbios do Início e da Manutenção do Sono/genética , Distúrbios do Início e da Manutenção do Sono/epidemiologia , Fatores Etários , Pessoa de Meia-Idade
4.
Bone ; 186: 117168, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38878990

RESUMO

BACKGROUND: Unhealthy sleep behaviors are associated with higher risks of osteoporosis (OP), while prospective evidence is limited. This study aimed to prospectively investigate this association, quantify the attributable burden of OP incidence reduction due to unhealthy sleep behaviors, and explore potential modifications by genetic risk factors. METHODS: This longitudinal cohort study was conducted utilizing data from the UK Biobank, comprising 293,164 participants initially free of OP and with requisite sleep behaviors data at baseline. We followed the participants after recruitment until November 30, 2022, to ascertain incident OP. We assessed the associations of five sleep behaviors including sleep duration, chronotype, insomnia, daytime napping, and morning wake-up difficulties, as well as sleep behavior patterns identified based on the above sleep behaviors, with the risk of OP, using Cox models adjusted for multiple confounders. The analyses were then performed separately among individuals with different OP susceptibility, indexed by standard polygenetic risk scores(PRS) for OP. Our secondary outcome was OP with pathologic fracture. Subgroup and sensitivity analyses were performed. Additionally, attributable risk percent in the exposed population (AR%) and population attributable fraction (PAF) of sleep behaviors were calculated. RESULTS: Over a median follow-up of 13.7 years, 8253 new-onset OP cases were documented. Unhealthy sleep behaviors, such as long or short sleep duration, insomnia, daytime napping, morning wake-up difficulties, and unhealthy sleep patterns, were associated with elevated risks of OP (HRs ranging from 1.14 to 1.46, all P-value <0.001) compared to healthy sleep behaviors. Similar associations were observed for OP with pathologic fractures. Insomnia exhibited the largest AR% of 39.98 % (95%CI: 36.46, 43.31) and PAF of 33.25 % (95%CI: 30.00, 36.34) among healthy sleep patterns and components. A statistically significant multiplicative interaction was noted between sleep behaviors and OP PRS on OP risk (all P-interaction <0.001). CONCLUSIONS: Four unhealthy sleep behaviors and sleep behavior patterns were associated to increased OP risk, with insomnia contributing the most to OP incidence, while genetic risk for OP modified this association. These findings underscore the crucial role of adhering to healthy sleep behaviors for effective OP prevention.


Assuntos
Predisposição Genética para Doença , Osteoporose , Sono , Humanos , Feminino , Estudos Prospectivos , Osteoporose/genética , Osteoporose/epidemiologia , Masculino , Sono/fisiologia , Sono/genética , Fatores de Risco , Pessoa de Meia-Idade , Incidência , Estudos Longitudinais , Idoso , Adulto
5.
Sci Rep ; 14(1): 14962, 2024 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942746

RESUMO

Self-reported shorter/longer sleep duration, insomnia, and evening preference are associated with hyperglycaemia in observational analyses, with similar observations in small studies using accelerometer-derived sleep traits. Mendelian randomization (MR) studies support an effect of self-reported insomnia, but not others, on glycated haemoglobin (HbA1c). To explore potential effects, we used MR methods to assess effects of accelerometer-derived sleep traits (duration, mid-point least active 5-h, mid-point most active 10-h, sleep fragmentation, and efficiency) on HbA1c/glucose in European adults from the UK Biobank (UKB) (n = 73,797) and the MAGIC consortium (n = 146,806). Cross-trait linkage disequilibrium score regression was applied to determine genetic correlations across accelerometer-derived, self-reported sleep traits, and HbA1c/glucose. We found no causal effect of any accelerometer-derived sleep trait on HbA1c or glucose. Similar MR results for self-reported sleep traits in the UKB sub-sample with accelerometer-derived measures suggested our results were not explained by selection bias. Phenotypic and genetic correlation analyses suggested complex relationships between self-reported and accelerometer-derived traits indicating that they may reflect different types of exposure. These findings suggested accelerometer-derived sleep traits do not affect HbA1c. Accelerometer-derived measures of sleep duration and quality might not simply be 'objective' measures of self-reported sleep duration and insomnia, but rather captured different sleep characteristics.


Assuntos
Acelerometria , Glicemia , Hemoglobinas Glicadas , Análise da Randomização Mendeliana , Sono , Humanos , Hemoglobinas Glicadas/análise , Hemoglobinas Glicadas/metabolismo , Sono/genética , Sono/fisiologia , Glicemia/análise , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Autorrelato , Idoso , Distúrbios do Início e da Manutenção do Sono/genética
6.
Nat Commun ; 15(1): 3685, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693116

RESUMO

Sleep, locomotor and social activities are essential animal behaviors, but their reciprocal relationships and underlying mechanisms remain poorly understood. Here, we elicit information from a cutting-edge large-language model (LLM), generative pre-trained transformer (GPT) 3.5, which interprets 10.2-13.8% of Drosophila genes known to regulate the 3 behaviors. We develop an instrument for simultaneous video tracking of multiple moving objects, and conduct a genome-wide screen. We have identified 758 fly genes that regulate sleep and activities, including mre11 which regulates sleep only in the presence of conspecifics, and NELF-B which regulates sleep regardless of whether conspecifics are present. Based on LLM-reasoning, an educated signal web is modeled for understanding of potential relationships between its components, presenting comprehensive molecular signatures that control sleep, locomotor and social activities. This LLM-aided strategy may also be helpful for addressing other complex scientific questions.


Assuntos
Comportamento Animal , Drosophila melanogaster , Locomoção , Sono , Animais , Sono/fisiologia , Sono/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Locomoção/fisiologia , Locomoção/genética , Comportamento Animal/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Comportamento Social , Masculino
7.
Front Endocrinol (Lausanne) ; 15: 1264410, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737549

RESUMO

Low testosterone levels in men have been linked to decreased physical and mental function, as well as a reduced quality of life. Previous prospective observational studies have suggested an association between testosterone and sleep traits, but the causality of this relationship remains unclear. We aimed to explore the potential causal link between genetically determined sleep traits and testosterone levels in men using Mendelian randomization (MR) analysis from the UK Biobank dataset. Our exposures were genetic variants associated with sleep traits (chronotype and sleep duration), whereas our outcomes were traits of sex steroid hormones (total testosterone, TT; bioavailable testosterone, BAT; and sex hormone-binding globulin, SHBG). We employed inverse variance weighted (IVW) and weighted median (WM) methods to assess the causal associations. The IVW method offers a robust estimate of causality, whereas the WM method provides reliable results even when some genetic variants are invalid instruments. Our main analysis involving sex steroid hormones and chronotype identified 155 chronotype-related variants. The primary findings from the analysis, which used chronotype as the exposure and sex steroid hormones as the outcomes, showed that a genetically predicted chronotype score was significantly associated with an increased levels of TT (association coefficient ß, 0.08; 95% confidence interval [CI], 0.02-0.14; P = 0.008) and BAT (ß, 0.08; 95% CI, 0.02-0.14; P = 0.007), whereas there was no significant association with SHBG (ß, 0.01; 95% CI, -0.02-0.03; P = 0.64). Meanwhile, MR analysis of sex steroid hormones and sleep duration was performed, and 69 variants associated with sleep duration were extracted. There were no significant association between sleep duration and sex steroid hormones (TT, P = 0.91; BAT, P = 0.82; and SHBG, P = 0.95). Our data support a causal association between chronotype and circulating testosterone levels in men. These findings underscore a potential causal relationship between chronotype and testosterone levels in men, suggesting that lifestyle adjustments are crucial for men's health. Recognizing factors that influence testosterone is essential. One limitation of this study is the use of one-sample MR, which can introduce potential bias due to non-independence of genetic associations for exposure and outcome. In conclusion, our findings indicate that a morning preference is correlated with circulating testosterone levels, emphasizing the potential impact of lifestyle habits on testosterone levels in men.


Assuntos
Análise da Randomização Mendeliana , Sono , Testosterona , Humanos , Masculino , Testosterona/sangue , Sono/genética , Sono/fisiologia , Globulina de Ligação a Hormônio Sexual/genética , Globulina de Ligação a Hormônio Sexual/metabolismo , Pessoa de Meia-Idade , Ritmo Circadiano/genética , Polimorfismo de Nucleotídeo Único , Idoso , Cronotipo
8.
Cell Rep ; 43(5): 114192, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38703367

RESUMO

The preoptic area of the hypothalamus (POA) is essential for sleep regulation. However, the cellular makeup of the POA is heterogeneous, and the molecular identities of the sleep-promoting cells remain elusive. To address this question, this study compares mice during recovery sleep following sleep deprivation to mice allowed extended sleep. Single-nucleus RNA sequencing (single-nucleus RNA-seq) identifies one galanin inhibitory neuronal subtype that shows upregulation of rapid and delayed activity-regulated genes during recovery sleep. This cell type expresses higher levels of growth hormone receptor and lower levels of estrogen receptor compared to other galanin subtypes. single-nucleus RNA-seq also reveals cell-type-specific upregulation of purinergic receptor (P2ry14) and serotonin receptor (Htr2a) during recovery sleep in this neuronal subtype, suggesting possible mechanisms for sleep regulation. Studies with RNAscope validate the single-nucleus RNA-seq findings. Thus, the combined use of single-nucleus RNA-seq and activity-regulated genes identifies a neuronal subtype functionally involved in sleep regulation.


Assuntos
Galanina , Neurônios , Área Pré-Óptica , Privação do Sono , Animais , Galanina/metabolismo , Galanina/genética , Neurônios/metabolismo , Área Pré-Óptica/metabolismo , Camundongos , Privação do Sono/metabolismo , Privação do Sono/genética , Masculino , RNA-Seq , Camundongos Endogâmicos C57BL , Sono/genética , Sono/fisiologia , Análise de Célula Única
9.
Biochem Biophys Res Commun ; 720: 150072, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38749187

RESUMO

The Eph receptor, a prototypically large receptor protein tyrosine kinase, interacts with ephrin ligands, forming a bidirectional signaling system that impacts diverse brain functions. Eph receptors and ephrins mediate forward and reverse signaling, affecting neurogenesis, axon guidance, and synaptic signaling. While mammalian studies have emphasized their roles in neurogenesis and synaptic plasticity, the Drosophila counterparts are less studied, especially in glial cells, despite structural similarities. Using RNAi to modulate Eph/ephrin expression in Drosophila neurons and glia, we studied their roles in brain development and sleep and circadian behavior. Knockdown of neuronal ephrin disrupted mushroom body development, while glial knockdown had minimal impact. Surprisingly, disrupting ephrin in neurons or glial cells altered sleep and circadian rhythms, indicating a direct involvement in these behaviors independent from developmental effects. Further analysis revealed distinct sleep phenotypes between neuronal and glial knockdowns, underscoring the intricate interplay within the neural circuits that govern behavior. Glia-specific knockdowns showed altered sleep patterns and reduced circadian rhythmicity, suggesting an intricate role of glia in sleep regulation. Our findings challenge simplistic models of Eph/ephrin signaling limited to neuron-glia communication and emphasize the complexity of the regulatory networks modulating behavior. Future investigations targeting specific glial subtypes will enhance our understanding of Eph/ephrin signaling's role in sleep regulation across species.


Assuntos
Ritmo Circadiano , Efrinas , Corpos Pedunculados , Neuroglia , Neurônios , Transdução de Sinais , Sono , Animais , Neuroglia/metabolismo , Sono/fisiologia , Sono/genética , Ritmo Circadiano/fisiologia , Neurônios/metabolismo , Efrinas/metabolismo , Efrinas/genética , Corpos Pedunculados/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Receptores da Família Eph/metabolismo , Receptores da Família Eph/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiologia , Drosophila melanogaster/genética , Drosophila/metabolismo
10.
Chronobiol Int ; 41(5): 757-766, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38695651

RESUMO

Delayed sleep phase disorder and advanced sleep phase disorder cause disruption of the circadian clock and present with extreme morning/evening chronotype with unclear role of the genetic etiology, especially for delayed sleep phase disorder. To assess if genotyping can aid in clinical diagnosis, we examined the presence of genetic variants in circadian clock genes previously linked to both sleep disorders in Slovenian patient cohort. Based on Morning-evening questionnaire, we found 15 patients with extreme chronotypes, 13 evening and 2 morning, and 28 controls. Sanger sequencing was used to determine the presence of carefully selected candidate SNPs in regions of the CSNK1D, PER2/3 and CRY1 genes. In a patient with an extreme morning chronotype and a family history of circadian sleep disorder we identified two heterozygous missense variants in PER3 gene, c.1243C>G (NM_001377275.1 (p.Pro415Ala)) and c.1250A>G (NM_001377275.1 (p.His417Arg)). The variants were significantly linked to Advanced sleep phase disorder and were also found in proband's father with extreme morningness. Additionally, a rare SNP was found in PER2 gene in a patient with clinical picture of Delayed sleep phase disorder. The novel variant in PER2 (NM_022817.3):c.1901-218 G>T was found in proband's parent with eveningness, indicating an autosomal dominant inheritance. We identified a family with autosomal dominant inheritance of two PER3 heterozygous variants that can be linked to Advanced sleep phase disorder. We revealed also a rare hereditary form of Delayed sleep phase disorder with a new PER2 variant with autosomal dominant inheritance, shedding the light into the genetic causality.


Assuntos
Relógios Circadianos , Proteínas Circadianas Period , Polimorfismo de Nucleotídeo Único , Transtornos do Sono do Ritmo Circadiano , Humanos , Proteínas Circadianas Period/genética , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Transtornos do Sono do Ritmo Circadiano/genética , Relógios Circadianos/genética , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Predisposição Genética para Doença , Eslovênia , Linhagem , Sono/genética , Sono/fisiologia , Adulto Jovem
11.
Clin Nutr ; 43(6): 1544-1550, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754306

RESUMO

Few prospective studies have investigated the joint effect of lifestyle factors and genetic susceptibility on the risk of irritable bowel syndrome (IBS). This study aims to evaluate the associations of lifestyle and genetic factors with incident IBS in the UK Biobank. We analyzed data from 481,057 participants (54% female) without prevalent IBS at enrollment in the UK Biobank. An overall healthy lifestyle was defined using six modifiable lifestyle factors, including smoking, body mass index (BMI), sleep duration, diet, physical activity, and alcohol consumption, and hence categorized into 'favorable', 'intermediate', and 'unfavorable' lifestyles. A Cox proportional hazard model was used to investigate the association between a healthy lifestyle and incident IBS. Furthermore, we constructed a polygenic risk score (PRS) for IBS and assessed whether lifestyle modified the effect of genetics on the development of IBS. During a median follow-up of 12.1 years, 8645 incident IBS were ascertained. Specifically, among the six modifiable lifestyle factors, adequate sleep demonstrates the greatest protective effect (hazard ratio [HR]: 0.72, 95% CI: 0.69,0.75) against IBS. Compared with a favorable lifestyle, an unfavorable lifestyle was associated with a 56% (95% CI: 46%-67%) increased risk of IBS (P = 8.99 × 10-40). The risk of incident IBS was 12% (95% CI: 4%-21%) higher among those at high genetic risk compared with those at low genetic risk (P = 0.005). When considering the joint effect of lifestyle and genetic susceptibility, the HR nearly doubled among individuals with high genetic risk and unfavorable lifestyle (HR: 1.80; 95% CI:1.51-2.15; P = 3.50 × 10-11) compared to those with low genetic risk and favorable lifestyle. No multiplicative or addictive interaction was observed between lifestyle and genetics. The findings from this study indicated that lifestyle and genetic factors were independently associated with the risk of incident IBS. All these results implicated a possible clinical strategy of lowering the incidence of IBS by advocating a healthy lifestyle.


Assuntos
Predisposição Genética para Doença , Síndrome do Intestino Irritável , Estilo de Vida , Humanos , Síndrome do Intestino Irritável/genética , Síndrome do Intestino Irritável/epidemiologia , Feminino , Masculino , Estudos Prospectivos , Pessoa de Meia-Idade , Incidência , Reino Unido/epidemiologia , Fatores de Risco , Adulto , Modelos de Riscos Proporcionais , Idoso , Sono/genética , Estilo de Vida Saudável , Dieta/estatística & dados numéricos
12.
Front Public Health ; 12: 1381482, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784581

RESUMO

Background: Research based on observation has demonstrated a relationship between sleep traits and frailty; however, it remains uncertain if this correlation indicates causation. The purpose of this study was to look at the causal relationship that exists between frailty and sleep traits. Method: Using summaries from a genome-wide association study of self-reported sleep features and frailty index, we performed a bidirectional Mendelian randomization (MR) analysis. Examining the causal relationships between seven sleep-related traits and frailty was the goal. The major method used to calculate effect estimates was the inverse-variance weighted method, supplemented by the weighted median and MR-Egger approaches. The study investigated pleiotropy and heterogeneity using several methodologies, such as the MR-Egger intercept, the MR-PRESSO approach, and the Cochran's Q test. We took multivariate Mendelian randomization and genetic correlations between related traits to enhance the confidence of the results. Furthermore, we used MRlap to correct for any estimation bias due to sample overlap. Results: Insomnia, napping during the day, and sleep apnea syndrome exhibited a positive connection with the frailty index in forward MR analysis. Conversely, there is a negative link between getting up in the morning, snoring and sleep duration with the frailty index. During the reverse MR analysis, the frailty index exhibited a positive correlation with insomnia, napping during the day, and sleep apnea syndrome, while demonstrating a negative correlation with sleep duration. There was no direct correlation between snoring, chronotype, and frailty. In MVMR analyses, the causal effect of sleep characteristics on frailty indices remained consistent after adjusting for potential confounders including BMI, smoking, and triglycerides. Conclusion: The findings of our investigation yield novel evidence that substantiates the notion of a bidirectional causal connection between sleep traits and frailty. Through the optimization of sleep, it is potentially feasible to hinder, postpone, or even reverse the state of frailty, and we proposed relevant interventions.


Assuntos
Causalidade , Fragilidade , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Sono , Humanos , Fragilidade/genética , Sono/fisiologia , Sono/genética , Masculino , Feminino , Idoso , Fatores de Risco , Pessoa de Meia-Idade , Transtornos do Sono-Vigília/genética , Transtornos do Sono-Vigília/epidemiologia
13.
Dev Psychobiol ; 66(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38601952

RESUMO

Maternal exposure to childhood adversity is associated with detrimental health outcomes throughout the lifespan and may have implications for offspring. Evidence links maternal adverse childhood experiences (ACEs) to detrimental birth outcomes, yet the impact on the infant's epigenome is unclear. Moreover, maternal sleep habits during pregnancy may influence this association. Here, we explore whether restless sleep during pregnancy moderates the association between exposure to maternal childhood adversity and infant epigenetic age acceleration in 332 mother-infant dyads (56% female; 39% Black; 25% Hispanic). During the 2nd trimester, mothers self-reported childhood adversity and past-week restless sleep; DNA methylation from umbilical vein endothelial cells was used to estimate five epigenetic clocks. Multivariable linear regression was used to test study hypotheses. Despite no evidence of main effects, there was evidence of an interaction between maternal ACEs and restless sleep in predicting infant epigenetic age acceleration using the EPIC Gestational Age clock. Only infants whose mothers reported exposure to both ACEs and restless sleep demonstrated accelerated epigenetic aging. Results provide preliminary evidence that maternal childhood adversity and sleep may influence the infant epigenome.


Assuntos
Experiências Adversas da Infância , Lactente , Gravidez , Humanos , Feminino , Masculino , Células Endoteliais , Mães , Envelhecimento , Epigênese Genética , Sono/genética
14.
Sci Rep ; 14(1): 9585, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671284

RESUMO

This study aimed to investigate the probable existence of a causal relationship between sleep phenotypes and proliferative diabetic retinopathy (PDR). Single nucleotide polymorphisms associated with sleep phenotypes were selected as instrumental variables at the genome-wide significance threshold (P < 5 × 10-8). Inverse-variance weighted was applied as the primary Mendelian randomization (MR) analysis method, and MR Egger regression, weighted median, simple mode, and weighted mode methods were used as complementary analysis methods to estimate the causal association between sleep phenotypes and PDR. Results indicated that genetically predicted sleep phenotypes had no causal effects on PDR risk after Bonferroni correction (P = 0.05/10) [Chronotype: P = 0.143; Daytime napping: P = 0.691; Daytime sleepiness: P = 0.473; Insomnia: P = 0.181; Long sleep duration: P = 0.671; Morning person:P = 0.113; Short sleep duration: P = 0.517; Obstructive sleep apnea: P = 0.091; Sleep duration: P = 0.216; and snoring: P = 0.014]. Meanwhile, there are no reverse causality for genetically predicted PDR on sleep phenotypes [Chronotype: P = 0.100; Daytime napping: P = 0.146; Daytime sleepiness: P = 0.469; Insomnia: P = 0.571; Long sleep duration: P = 0.779; Morning person: P = 0.040; Short sleep duration: P = 0.875; Obstructive sleep apnea: P = 0.628; Sleep duration: P = 0.896; and snoring: P = 0.047]. This study's findings did not support the causal effect of between sleep phenotypes and PDR. Whereas, longitudinal studies can further verify results validation.


Assuntos
Retinopatia Diabética , Análise da Randomização Mendeliana , Fenótipo , Polimorfismo de Nucleotídeo Único , Sono , Humanos , Retinopatia Diabética/genética , Sono/genética , Fatores de Risco , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla
15.
Cell Rep Med ; 5(5): 101534, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38670100

RESUMO

Thalamocortical (TC) circuits are essential for sensory information processing. Clinical and preclinical studies of autism spectrum disorders (ASDs) have highlighted abnormal thalamic development and TC circuit dysfunction. However, mechanistic understanding of how TC dysfunction contributes to behavioral abnormalities in ASDs is limited. Here, our study on a Shank3 mouse model of ASD reveals TC neuron hyperexcitability with excessive burst firing and a temporal mismatch relationship with slow cortical rhythms during sleep. These TC electrophysiological alterations and the consequent sensory hypersensitivity and sleep fragmentation in Shank3 mutant mice are causally linked to HCN2 channelopathy. Restoring HCN2 function early in postnatal development via a viral approach or lamotrigine (LTG) ameliorates sensory and sleep problems. A retrospective case series also supports beneficial effects of LTG treatment on sensory behavior in ASD patients. Our study identifies a clinically relevant circuit mechanism and proposes a targeted molecular intervention for ASD-related behavioral impairments.


Assuntos
Transtorno do Espectro Autista , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Proteínas do Tecido Nervoso , Tálamo , Animais , Tálamo/metabolismo , Tálamo/patologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Camundongos , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/fisiopatologia , Transtorno do Espectro Autista/patologia , Lamotrigina/farmacologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Canalopatias/genética , Canalopatias/metabolismo , Canalopatias/patologia , Humanos , Modelos Animais de Doenças , Masculino , Neurônios/metabolismo , Feminino , Camundongos Endogâmicos C57BL , Mutação/genética , Sono/fisiologia , Sono/efeitos dos fármacos , Sono/genética , Canais de Potássio
16.
Curr Opin Neurobiol ; 86: 102874, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582021

RESUMO

The metabolic signals that regulate sleep and the metabolic functions that occur during sleep are active areas of research. Prior studies have focused on sugars and nucleotides but new genetic evidence suggests novel functions of lipid and amino acid metabolites in sleep. Additional genetic studies of energetic signaling pathways and the circadian clock transcription factor network have increased our understanding of how sleep responds to changes in the metabolic state. This review focuses on key recent insights from genetic experiments in humans and model organisms to improve our understanding of the interrelationship between metabolism and sleep.


Assuntos
Sono , Humanos , Sono/fisiologia , Sono/genética , Animais , Metabolismo Energético/fisiologia , Metabolismo Energético/genética , Relógios Circadianos/fisiologia , Relógios Circadianos/genética , Ritmo Circadiano/fisiologia , Ritmo Circadiano/genética
17.
Geriatr Gerontol Int ; 24(6): 537-545, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38639007

RESUMO

AIM: Despite limited evidence regarding the impact of sleep quality on sarcopenia, it is widely recognized as being associated with various diseases. This study aimed to explore the causal relationship between sleep traits and sarcopenia-related traits. METHODS: This study utilized a two-sample bidirectional Mendelian randomization analysis. Genetic genome-wide summary data of sleep quality indicators, including chronotype, morning wake-up time, sleep duration, daytime napping, insomnia and daytime dozing, were used. Data on sarcopenia-related traits, such as appendicular lean mass, grip strength of both hands, walking pace and waist circumference, were collected from a large cohort study. The primary method used was the inverse-variance weighted analysis. RESULTS: A causal association was found between chronotype and appendicular lean mass (odds ratio [OR] 1.019, 95% confidence interval [CI] 1.016-1.211, P = 0.021). Napping during the day was connected with walking pace (OR 0.879, 95% CI 0.834-0.928, P = 2.289 × 10-6) and waist circumference (OR 1.234, 95% CI 1.081-1.408, P = 0.002). Insomnia was related to lower grip strength of the right hand (OR 0.844, 95% CI 0.747-0.954, P = 0.007), left hand (OR 0.836, 95% CI 0.742-0.943, P = 0.003), as well as walking pace (OR 0.871, 95% CI 0.798-0.951, P = 0.002). Furthermore, the reverse Mendelian randomization analysis showed associations between certain sarcopenia-related traits and poor sleep quality. CONCLUSIONS: Some sleep traits were associated with the occurrence of sarcopenia. These findings emphasized the significance of prioritizing sleep quality as a preventive measure against sarcopenia. Geriatr Gerontol Int 2024; 24: 537-545.


Assuntos
Força da Mão , Análise da Randomização Mendeliana , Sarcopenia , Humanos , Sarcopenia/genética , Sarcopenia/epidemiologia , Masculino , Força da Mão/fisiologia , Feminino , Idoso , Qualidade do Sono , Circunferência da Cintura , Estudos de Coortes , Distúrbios do Início e da Manutenção do Sono/genética , Distúrbios do Início e da Manutenção do Sono/epidemiologia , Sono/fisiologia , Sono/genética , Pessoa de Meia-Idade
18.
Exp Neurol ; 376: 114775, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604438

RESUMO

OBJECTIVE: Sleep-related hypermotor epilepsy (SHE) is a focal epilepsy syndrome characterized by seizures that predominantly occur during sleep. The pathogenesis of these seizures remains unclear. We previously detected rare variants in GABRG2, which encodes the γ2 subunit of γ-aminobutyric acid type A receptor (GABAAR), in patients with SHE and demonstrated that these variants impaired GABAAR function in vitro. However, the mechanisms by which GABRG2 variants contribute to seizure attacks during sleep remain unclear. METHODS: In this study, we designed a knock-in (KI) mouse expressing the mouse Gabrg2 T316N variant, corresponding to human GABRG2 T317N variant, using CRISPR/Cas9. Continuous video-electroencephalogram monitoring and in vivo multichannel electrophysiological recordings were performed to explore seizure susceptibility to pentylenetetrazol (PTZ), alterations in the sleep-wake cycle, spontaneous seizure patterns, and synchronized activity in the motor thalamic nuclei (MoTN) and secondary motor cortex (M2). Circadian variations in the expression of total, membrane-bound, and synaptic GABAAR subunits were also investigated. RESULTS: No obvious changes in gross morphology were detected in Gabrg2T316N/+ mice compared to their wild-type (Gabrg2+/+) littermates. Gabrg2T316N/+ mice share key phenotypes with patients, including sleep fragmentation and spontaneous seizures during sleep. Gabrg2T316N/+ mice showed increased susceptibility to PTZ-induced seizures and higher mortality after seizures. Synchronization of the local field potentials between the MoTN and M2 was abnormally enhanced in Gabrg2T316N/+ mice during light phase, when sleep dominates, accompanied by increased local activities in the MoTN and M2. Interestingly, in Gabrg2+/+ mice, GABAAR γ2 subunits showed a circadian increase on the neuronal membrane and synaptosomes in the transition from dark phase to light phase, which was absent in Gabrg2T316N/+ mice. CONCLUSION: We generated a new SHE mouse model and provided in vivo evidence that rare variants of GABRG2 contribute to seizure attacks during sleep in SHE.


Assuntos
Córtex Cerebral , Epilepsia , Receptores de GABA-A , Tálamo , Animais , Feminino , Masculino , Camundongos , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Eletroencefalografia , Epilepsia/genética , Epilepsia/fisiopatologia , Técnicas de Introdução de Genes , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Sono/fisiologia , Sono/genética , Tálamo/metabolismo , Tálamo/patologia
19.
Eur J Clin Invest ; 54(6): e14189, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38429948

RESUMO

BACKGROUND: Disturbances in habitual sleep have been associated with multiple age-associated diseases. However, the biological mechanisms underpinning these associations remain largely unclear. We assessed the possible involvement of the circulating immune system by determining the associations between sleep traits and white blood cell counts using multivariable-adjusted linear regression and Mendelian randomization. METHODS: Cross-sectional multivariable-adjusted linear regression analyses were done using participants within the normal range of total white blood cell counts (>4.5 × 109 and <11.0 × 109/µL) from UK Biobank. For the sleep traits, we examined (short and long) sleep duration, chronotype, insomnia symptoms and daytime dozing. Two-sample Mendelian randomization analyses were done using instruments for sleep traits derived from European-ancestry participants from UK Biobank (over 410,000 participants) and using SNP-outcome data derived from European-ancestry participants from the Blood Cell Consortium (N = 563,946) to which no data from UK Biobank contributed. RESULTS: Using data from 357,656 participants (mean [standard deviation] age: 56.5 [8.1] years, and 44.4% men), we did not find evidence that disturbances in any of the studied sleep traits were associated with differences in blood cell counts (total, lymphocytes, neutrophiles, eosinophiles and basophiles). Also, we did not find associations between disturbances in any of the studied sleep traits and white blood cell counts using Mendelian Randomization. CONCLUSION: Based on the results from two different methodologies, disturbances in habitual sleep are unlikely to cause changes in blood cell counts and thereby differences in blood cell counts are unlikely to be underlying the observed sleep-disease associations.


Assuntos
Análise da Randomização Mendeliana , Sono , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Contagem de Leucócitos , Estudos Transversais , Sono/genética , Sono/fisiologia , Idoso , Distúrbios do Início e da Manutenção do Sono/genética , Distúrbios do Início e da Manutenção do Sono/epidemiologia , Modelos Lineares , Polimorfismo de Nucleotídeo Único , Adulto , Análise Multivariada
20.
Sleep Breath ; 28(3): 1423-1430, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38507120

RESUMO

PURPOSE: Previous observational studies have suggested an association between sleep disturbance and metabolic syndrome (MetS). However, it remains unclear whether this association is causal. This study aims to investigate the causal effects of sleep-related traits on MetS using Mendelian randomization (MR). METHODS: Single-nucleotide polymorphisms strongly associated with daytime napping, insomnia, chronotype, short sleep, and long sleep were selected as genetic instruments from the corresponding genome-wide association studies (GWAS). Summary-level data for MetS were obtained from two independent GWAS datasets. Univariable and multivariable MR analyses were conducted to investigate and verify the causal effects of sleep traits on MetS. RESULTS: The univariable MR analysis demonstrated that genetically predicted daytime napping and insomnia were associated with increased risk of MetS in both discovery dataset (OR daytime napping = 1.630, 95% CI 1.273, 2.086; OR insomnia = 1.155, 95% CI 1.108, 1.204) and replication dataset (OR daytime napping = 1.325, 95% CI 1.131, 1.551; OR insomnia = 1.072, 95% CI 1.046, 1.099). For components, daytime napping was positively associated with triglycerides (beta = 0.383, 95% CI 0.160, 0.607) and waist circumference (beta = 0.383, 95% CI 0.184, 0.583). Insomnia was positively associated with hypertension (OR = 1.101, 95% CI 1.042, 1.162) and waist circumference (beta = 0.067, 95% CI 0.031, 0.104). The multivariable MR analysis indicated that the adverse effect of daytime napping and insomnia on MetS persisted after adjusting for BMI, smoking, drinking, and another sleep trait. CONCLUSION: Our study supported daytime napping and insomnia were potential causal factors for MetS characterized by central obesity, hypertension, or elevated triglycerides.


Assuntos
Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Síndrome Metabólica , Polimorfismo de Nucleotídeo Único , Humanos , Síndrome Metabólica/genética , Síndrome Metabólica/epidemiologia , Polimorfismo de Nucleotídeo Único/genética , Sono/genética , Sono/fisiologia , Distúrbios do Início e da Manutenção do Sono/genética , Distúrbios do Início e da Manutenção do Sono/epidemiologia , Masculino , Transtornos do Sono-Vigília/genética , Transtornos do Sono-Vigília/epidemiologia , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...