Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 418
Filtrar
1.
Plant Physiol Biochem ; 212: 108780, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850726

RESUMO

The study evaluated the effects of treating irrigation water with a coaxial flow variator (CFV) on the morpho-physiology of pot-cultivated test species, including cucumber (Cucumis sativus, CU), lettuce (Lactuca sativa, LE), and sorghum (Sorghum vulgare, SO), in early stages of growth. CFV caused a lower oxidation reduction potential (ORP), increased pH and flow resistance and inductance. It induced changes in the absorbance characteristics of water in specific spectral regions, likely associated with greater stretching and reduced bending vibrations compared to untreated water. While assimilation rate and photosynthetic efficiency were not significantly affected at 60 days after sowing, treated water increased the stomatal conductance to water vapour gsw (+79%) and the electron transport rate ETR (+10%) in CU, as well as the non-photochemical quenching NPQ (+33%) in SO. Treated water also reduced leaf temperature in all species (-0.86 °C on average). This translated into improved plant biomass (leaves: +34%; roots: +140%) and reduced leaf-to-root biomass ratio (-42%) in SO, allowing both faster aerial growth and soil colonization, which can be exploited to improve plant tolerance against abiotic stresses. In the C3 species CU and LE, plant biomass was instead reduced, although significantly in LE only, while the leaf-to-root biomass ratio was generally enhanced, a result likely profitable in the cultivation of leafy vegetables. This is a preliminary trial on the effects of functionalized water and much remains to be investigated in other physiological processes, plant species, and growth stages for the full exploitation of this water treatment in agronomy.


Assuntos
Cucumis sativus , Lactuca , Fotossíntese , Água , Água/metabolismo , Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/metabolismo , Cucumis sativus/fisiologia , Lactuca/crescimento & desenvolvimento , Lactuca/metabolismo , Sorghum/crescimento & desenvolvimento , Sorghum/metabolismo , Irrigação Agrícola/métodos , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento
2.
BMC Plant Biol ; 24(1): 562, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877425

RESUMO

BACKGROUND: On tropical regions, phosphorus (P) fixation onto aluminum and iron oxides in soil clays restricts P diffusion from the soil to the root surface, limiting crop yields. While increased root surface area favors P uptake under low-P availability, the relationship between the three-dimensional arrangement of the root system and P efficiency remains elusive. Here, we simultaneously assessed allelic effects of loci associated with a variety of root and P efficiency traits, in addition to grain yield under low-P availability, using multi-trait genome-wide association. We also set out to establish the relationship between root architectural traits assessed in hydroponics and in a low-P soil. Our goal was to better understand the influence of root morphology and architecture in sorghum performance under low-P availability. RESULT: In general, the same alleles of associated SNPs increased root and P efficiency traits including grain yield in a low-P soil. We found that sorghum P efficiency relies on pleiotropic loci affecting root traits, which enhance grain yield under low-P availability. Root systems with enhanced surface area stemming from lateral root proliferation mostly up to 40 cm soil depth are important for sorghum adaptation to low-P soils, indicating that differences in root morphology leading to enhanced P uptake occur exactly in the soil layer where P is found at the highest concentration. CONCLUSION: Integrated QTLs detected in different mapping populations now provide a comprehensive molecular genetic framework for P efficiency studies in sorghum. This indicated extensive conservation of P efficiency QTL across populations and emphasized the terminal portion of chromosome 3 as an important region for P efficiency in sorghum. Increases in root surface area via enhancement of lateral root development is a relevant trait for sorghum low-P soil adaptation, impacting the overall architecture of the sorghum root system. In turn, particularly concerning the critical trait for water and nutrient uptake, root surface area, root system development in deeper soil layers does not occur at the expense of shallow rooting, which may be a key reason leading to the distinctive sorghum adaptation to tropical soils with multiple abiotic stresses including low P availability and drought.


Assuntos
Estudo de Associação Genômica Ampla , Fósforo , Raízes de Plantas , Locos de Características Quantitativas , Sorghum , Sorghum/genética , Sorghum/metabolismo , Sorghum/crescimento & desenvolvimento , Fósforo/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/anatomia & histologia , Mapeamento Cromossômico , Polimorfismo de Nucleotídeo Único , Solo/química , Fenótipo
3.
Funct Plant Biol ; 512024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38902905

RESUMO

The aim of this study was to investigate whether silicon (Si) supply was able to alleviate the harmful effects caused by salinity stress on sorghum-sudangrass (Sorghum bicolor ×Sorghum sudanense ), a species of grass raised for forage and grain. Plants were grown in the presence or absence of 150mM NaCl, supplemented or not with Si (0.5mM Si). Biomass production, water and mineral status, photosynthetic pigment contents, and gas exchange parameters were investigated. Special focus was accorded to evaluating the PSI and PSII. Salinity stress significantly reduced plant growth and tissue hydration, and led to a significant decrease in all other studied parameters. Si supply enhanced whole plant biomass production by 50%, improved water status, decreased Na+ and Cl- accumulation, and even restored chlorophyll a , chlorophyll b , and carotenoid contents. Interestingly, both photosystem activities (PSI and PSII) were enhanced with Si addition. However, a more pronounced enhancement was noted in PSI compared with PSII, with a greater oxidation state upon Si supply. Our findings confirm that Si mitigated the adverse effects of salinity on sorghum-sudangrass throughout adverse approaches. Application of Si in sorghum appears to be an efficient key solution for managing salt-damaging effects on plants.


Assuntos
Clorofila , Fotossíntese , Salinidade , Silício , Sorghum , Sorghum/crescimento & desenvolvimento , Sorghum/efeitos dos fármacos , Sorghum/metabolismo , Silício/farmacologia , Fotossíntese/efeitos dos fármacos , Clorofila/metabolismo , Biomassa , Complexo de Proteína do Fotossistema II/metabolismo , Estresse Salino/efeitos dos fármacos , Clorofila A/metabolismo
4.
BMC Plant Biol ; 24(1): 514, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849739

RESUMO

BACKGROUND: Drought is a major determinant for growth and productivity of all crops, including cereals, and the drought-induced detrimental effects are anticipated to jeopardize world food security under the ongoing global warming scenario. Biostimulants such as humic acid (HA) can improve drought tolerance in many cereals, including maize and sorghum. These two plant species are genetically related; however, maize is more susceptible to drought than sorghum. The physiological and biochemical mechanisms underlying such differential responses to water shortage in the absence and presence of HA, particularly under field conditions, are not fully understood. RESULTS: Herein, the effects of priming maize and sorghum seeds in 100 mg L-1 HA on their vegetative growth and physiological responses under increased levels of drought (100%, 80%, and 60% field capacity) were simultaneously monitored in the field. In the absence of HA, drought caused 37.0 and 58.7% reductions in biomass accumulation in maize compared to 21.2 and 32.3% in sorghum under low and high drought levels, respectively. These responses were associated with differential retardation in overall growth, relative water content (RWC), photosynthetic pigments and CO2 assimilation in both plants. In contrast, drought increased root traits as well as H2O2, malondialdehyde, and electrolyte leakage in both species. HA treatment significantly improved the growth of both plant species under well-watered and drought conditions, with maize being more responsive than sorghum. HA induced a 29.2% increase in the photosynthetic assimilation rate in maize compared to 15.0% in sorghum under high drought level. The HA-promotive effects were also associated with higher total chlorophyll, stomatal conductance, RWC, sucrose, total soluble sugars, total carbohydrates, proline, and total soluble proteins. HA also reduced the drought-induced oxidative stress via induction of non-enzymic and enzymic antioxidants at significantly different extents in maize and sorghum. CONCLUSION: The current results identify significant quantitative differences in a set of critical physiological biomarkers underlying the differential responses of field-grown maize and sorghum plants against drought. They also reveal the potential of HA priming as a drought-alleviating biostimulant and as an effective approach for sustainable maize and sorghum production and possibly other crops in drought-affected lands.


Assuntos
Secas , Substâncias Húmicas , Sorghum , Zea mays , Sorghum/fisiologia , Sorghum/crescimento & desenvolvimento , Zea mays/fisiologia , Zea mays/crescimento & desenvolvimento , Estresse Fisiológico , Fotossíntese
5.
Sci Rep ; 14(1): 12649, 2024 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825611

RESUMO

Economic losses from insect herbivory in agroecosystems has driven the development of integrated pest management strategies that reduce pest incidence and damage; however, traditional chemicals-based control is either being complemented or substituted with sustainable and integrated methods. Major sustainable pest management strategies revolve around improving host plant resistance, and one of these traits of interest is Brown midrib (BMR). Originally developed to increase nutritional value and ease of digestion for animal agriculture, BMR is a recessive plant gene usually found in annual grasses, including sorghum and sorghum-sudangrass hybrids. In sorghum-sudangrass, BMR expressed plants have lower amounts of lignin, which produces a less fibrous, more digestible crop, with possible implications for plant defense against herbivores- an area currently unexplored. Fall Armyworm (FAW; Spodoptera frugiperda) is a ruinous pest posing immense threat for sorghum producers by severely defoliating crops and being present in every plant stage. Using FAW, we tested the effect of seed treatment, BMR, and plant age on FAW growth, development, and plant defense responses in sorghum-sudangrass. Our results show that seed treatment did not affect growth or development, or herbivory. However, presence of BMR significantly reduced pupal mass relative to its non-BMR counterpart, alongside a significant reduction in adult mass. We also found that plant age was a major factor as FAW gained significantly less mass, had longer pupation times, and had lower pupal mass on the oldest plant stage explored, 60-days, compared to younger plants. These findings collectively show that pest management strategies should consider plant age, and that the effects of BMR on plant defenses should also be studied.


Assuntos
Herbivoria , Sorghum , Spodoptera , Animais , Spodoptera/fisiologia , Spodoptera/crescimento & desenvolvimento , Sorghum/parasitologia , Sorghum/crescimento & desenvolvimento , Larva
6.
Plant Physiol Biochem ; 212: 108737, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763003

RESUMO

Over evolutionary time, plants have developed sophisticated regulatory mechanisms to adapt to fluctuating nitrogen (N) environments, ensuring that their growth is balanced with their responses to N stress. This study explored the potential of L-tryptophan (Trp) in regulating sorghum root growth under conditions of N limitation. Here, two distinct sorghum genotypes (low-N tolerance 398B and low-N sensitive CS3541) were utilized for investigating effect of low-N stress on root morphology and conducting a comparative transcriptomics analysis. Our foundings indicated that 398B exhibited longer roots, greater root dry weights, and a higher Trp content compared to CS3541 under low-N conditions. Furthermore, transcriptome analysis revealed substantial differences in gene expression profiles related to Trp pathway and carbon (C) and N metabolism pathways between the two genotypes. Additional experiments were conducted to assess the effects of exogenous Trp treatment on the interplay between sorghum root growth and low-N tolerance. Our observations showed that Trp-treated plants developed longer root and had elevated levels of Trp and IAA under low-N conditons. Concurrently, these plants demonstrated stronger physiological activities in C and N metabolism when subjected to low-N stress. These results underscored the pivotal role of Trp on root growth and low-N stress responses by balancing IAA levels and C and N metabolism. This study not only deepens our understanding of how plants maintain growth plasticity during environmental stress but also provides valuable insights into the availability of amino acid in crops, which could be instrumental in developing strategies for promoting crop resilience to N deficiency.


Assuntos
Nitrogênio , Raízes de Plantas , Sorghum , Triptofano , Sorghum/crescimento & desenvolvimento , Sorghum/metabolismo , Sorghum/genética , Sorghum/efeitos dos fármacos , Nitrogênio/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Triptofano/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Carbono/metabolismo , Estresse Fisiológico
7.
Theor Appl Genet ; 137(6): 137, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38769163

RESUMO

KEY MESSAGE: We identified a SbPLSH1gene conferring purple leaf sheath in sorghum (sorghumbicolor(L.) Moench)and developed a functional markerfor it. The purple leaf sheath of sorghum, a trait mostly related to anthocyanin deposition, is a visually distinguishable morphological marker widely used to evaluate the purity of crop hybrids. We aimed to dissect the genetic mechanism for leaf sheath color to mine the genes regulating this trait. In this study, two F2 populations were constructed by crossing a purple leaf sheath inbred line (Gaoliangzhe) with two green leaf sheath inbred lines (BTx623 and Silimei). Based on the results of bulked-segregant analysis sequencing, bulk-segregant RNA sequencing, and map-based cloning, SbPLSH1 (Sobic.006G175700), which encodes a bHLH transcription factor on chromosome 6, was identified as the candidate gene for purple leaf sheath in sorghum. Genetic analysis demonstrated that overexpression of SbPLSH1 in Arabidopsis resulted in anthocyanin deposition and purple petiole, while two single-nucleotide polymorphism (SNP) variants on the exon 6 resulted in loss of function. Further haplotype analysis revealed that there were two missense mutations and one cis-acting element mutation in SbPLSH1, which are closely associated with leaf sheath color in sorghum. Based on the variations, a functional marker (LSC4-2) for marker-assisted selection was developed, which has a broad-spectrum capability of distinguishing leaf sheath color in natural variants. In summary, this study lays a foundation for analyzing the genetic mechanism for sorghum leaf sheath color.


Assuntos
Antocianinas , Folhas de Planta , Polimorfismo de Nucleotídeo Único , Sorghum , Sorghum/genética , Sorghum/crescimento & desenvolvimento , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Antocianinas/metabolismo , Marcadores Genéticos , Fenótipo , Pigmentação/genética , Mapeamento Cromossômico , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Genes de Plantas , Plantas Geneticamente Modificadas/genética , Haplótipos , Regulação da Expressão Gênica de Plantas
8.
Plant Physiol Biochem ; 211: 108655, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744086

RESUMO

The challenge of desert farming with a high salt level has become an ecological task due to salt stress negatively affecting plant growth and reproduction. The current study deals with the cultivation of sorghum under salt stress conditions to counteract the effect of chitosan and gibberellic acid (GA3). Here, the effects of chitosan, GA3 and nano-composite (GA3@chitosan) on biochemical contents, growth and seed yield of sorghum under salinity stress conditions were studied. The results showed that spraying with GA3@chitosan increased sorghum grain yield by 2.07, 1.81 and 1.64 fold higher than salinity stressed plants, chitosan treatment and GA3 treatment, respectively. Additionally, compared to the control of the same variety, the GA3@chitosan spraying treatment improved the concentration of microelements in the grains of the Shandweel-1 and Dorado by 24.51% and 18.39%, respectively for each variety. Furthermore, spraying GA3@chitosan on sorghum varieties increased the accumulation of the macroelements N, P, and K by 34.03%, 47.61%, and 8.67% higher than salt-stressed plants, respectively. On the other hand, the proline and glycinebetaine content in sorghum leaves sprayed with nano-composite were drop by 51.04% and 11.98% less than stressed plants, respectively. The results showed that, in Ras Sudr, the Shandweel-1 variety produced more grain per feddan than the Dorado variety. These findings suggest that GA3@chitosan improves the chemical and biochemical components leading to a decrease in the negative effect of salt stress on the plant which reflects in the high-yield production of cultivated sorghum plants in salt conditions.


Assuntos
Quitosana , Giberelinas , Estresse Salino , Sorghum , Sorghum/efeitos dos fármacos , Sorghum/metabolismo , Sorghum/crescimento & desenvolvimento , Giberelinas/metabolismo , Giberelinas/farmacologia , Estresse Salino/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo
9.
PeerJ ; 12: e17274, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737742

RESUMO

Background: This experiment was conducted in the Research and Application Field of Canakkale Onsekiz Mart University, Faculty of Agriculture, during the 2020 and 2021 summer period. The objective of this experiment was to determine the effects of different harvesting heights on forage yields and crude ash, fat, protein, and carbon and nitrogen content of leaves and stalks of sweet sorghum (SS) and sorghum sudangrass hybrid (SSH) cultivars. Methods: Nutri Honey and Nutrima varieties of SSH and the M81-E and Topper-76 varieties of SS were used in this study. The experiment was conducted using the randomized complete block design with four replications. The main plots each included two early and late varieties of SS and SSH cultivars, while the subplots were used to test different harvesting heights (30, 60, 90, 120, 150 cm) and physiological parameters of each crop. Results: The results of this study showed that dry forage yields increased with plant growth, with the amount of forage produced at the end of the growth cycle increasing 172.2% compared to the early growth stages. Carbon (C) content of leaves decreased by 6.5%, nitrogen (N) by 46%, crude protein (CP) by 54%, crude fat (CF) by 34%, while crude ash (CA) content increased by 6% due to the increase in plant height harvest. At the same time, in parallel with the increase in plant height at harvest, the nitrogen content of the stems of the plants decreased by 87%, crude protein by 65%, crude ash by 33% and crude fat by 41%, while the carbon content increased by 4%. As plant height at harvest increased, hay yield increased but nutrient contents of the hay decreased. However, the Nutrima, Nutri Honey and M81-E sorghum cultivars, harvested three times at heights of 90 to 120 cm, are recommended for the highest yield.


Assuntos
Sorghum , Sorghum/crescimento & desenvolvimento , Sorghum/metabolismo , Sorghum/química , Nitrogênio/metabolismo , Nitrogênio/análise , Folhas de Planta/química , Folhas de Planta/metabolismo , Carbono/metabolismo , Carbono/análise , Ração Animal/análise
10.
Sci Rep ; 14(1): 9499, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664438

RESUMO

Sorghum is a vital food and feed crop in the world's dry regions. Developing sorghum cultivars with high biomass production and carbon sequestration can contribute to soil health and crop productivity. The objective of this study was to assess agronomic performance, biomass production and carbon accumulation in selected sorghum genotypes for production and breeding. Fifty sorghum genotypes were evaluated at three locations (Silverton, Ukulinga, and Bethlehem) in South Africa during 2022 and 2023 growing seasons. Significant genotype × location (p < 0.05) interactions were detected for days to 50% heading (DTH), days to 50% maturity (DTM), plant height (PH), total plant biomass (PB), shoot biomass (SB), root biomass (RB), root-to-shoot biomass ratio (RS), and grain yield (GY). The highest GY was recorded for genotypes AS115 (25.08 g plant-1), AS251 (21.83 g plant-1), and AS134 (21.42 g plant-1). Genotypes AS122 and AS27 ranked first and second, respectively, for all the carbon stock parameters except for root carbon stock (RCs), whereas genotype AS108 had the highest RCs of 8.87 g plant-1. The principal component analysis identified GY, DTH, PH, PB, SB, RB, RCs, RCs/SCs, total plant carbon stock (PCs), shoot carbon stock (SCs), and grain carbon stock (GCs) as the most discriminated traits among the test genotypes. The cluster analysis using agronomic and carbon-related parameters delineated the test genotypes into three genetic groups, indicating marked genetic diversity for cultivar development and enhanced C storage and sustainable sorghum production. The selected sorghum genotypes are recommended for further breeding and variety release adapted to various agroecologies in South Africa.


Assuntos
Biomassa , Carbono , Genótipo , Raízes de Plantas , Brotos de Planta , Sorghum , Sorghum/genética , Sorghum/crescimento & desenvolvimento , Sorghum/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Carbono/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/genética , Brotos de Planta/metabolismo , África do Sul , Melhoramento Vegetal , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo
11.
Pest Manag Sci ; 80(7): 3278-3292, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38372427

RESUMO

BACKGROUND: Faced with the need to develop new herbicides with modes of action different to those observed for existing agrochemicals, one of the most promising strategies employed by synthetic chemists involves the structural modification of molecules found in natural products. Molecules containing amides, imides, and epoxides as functional groups are prevalent in nature and find extensive application in synthesizing more intricate compounds due to their biological properties. In this context, this paper delineates the synthesis of N-phenylnorbornenesuccinimide derivatives, conducts biological assays, and carries out in silico investigation of the protein target associated with the most potent compound in plant organisms. The phytotoxic effects of the synthesized compounds (2-29) were evaluated on Allium cepa, Bidens pilosa, Cucumis sativus, Sorghum bicolor, and Solanum lycopersicum. RESULTS: Reaction of endo-bicyclo[2.2.1]hept-5-ene-3a,7a-dicarboxylic anhydride (1) with aromatic amines led to the N-phenylnorbornenesuccinic acids (2-11) with yields ranging from 75% to 90%. Cyclization of compounds (2-11) in the presence of acetic anhydride and sodium acetate afforded N-phenylnorbornenesuccinimides (12-20) with yields varying from 65% to 89%. Those imides were then subjected to epoxidation reaction to afford N-phenylepoxynorbornanesuccimides (21-29) with yields from 60% to 90%. All compounds inhibited the growth of seedlings of the plants evaluated. Substance 23 was the most active against the plants tested, inhibiting 100% the growth of all species in all concentrations. Cyclophilin was found to be the enzymatic target of compound 23. CONCLUSION: These findings suggest that derivatives of N-phenylnorbornenesuccinimide are promising compounds in the quest for more selective and stable agrochemicals. This perspective reinforces the significance of these derivatives as potential innovative herbicides and emphasizes the importance of further exploring their biological activity on weeds. © 2024 Society of Chemical Industry.


Assuntos
Herbicidas , Herbicidas/farmacologia , Herbicidas/química , Succinimidas/farmacologia , Succinimidas/química , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/crescimento & desenvolvimento , Cebolas/efeitos dos fármacos , Sorghum/efeitos dos fármacos , Sorghum/crescimento & desenvolvimento , Cucumis sativus/efeitos dos fármacos , Cucumis sativus/crescimento & desenvolvimento
12.
Braz. j. biol ; 84: e253083, 2024. tab, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1360201

RESUMO

Phosphorus (P) use efficiency is crucial for sorghum production. P acquisition efficiency is the most important component of P use efficiency. The early-stage evaluation of plant development is a useful tool for identifying P-efficient genotypes. This study aimed to identify sorghum hybrids that are efficient in P use efficiency and assess the genetic diversity among hybrids based on traits related to P acquisition efficiency. Thus, 38 sorghum hybrids and two inbred lines (checks) were evaluated under low and high P in a paper pouch system with nutrient solution. Biomass and root traits related to P efficiency were measured. There was no interaction between genotypes and P levels concerning all evaluated traits. The biomass and root traits, except root diameter, presented smaller means under low P than high P. Efficient and inefficient hybrids under each P level were identified. The genetic diversity assessment grouped these genotypes in different clusters. The hybrids AG1090, MSK326, AG1060, 1G100, AS 4639, DKB 540, and DKB 590 were superior under low-P and high-P. Hybrids SC121, 1236020 e 1167017 presented the lowest means than all other hybrids, under both conditions. The evaluated hybrids showed phenotypic diversity for traits related to P acquisition, such as root length and root surface area, which can be useful for establishing selection strategies for sorghum breeding programs and increasing P use efficiency.


A eficiência do uso do fósforo (P) é fundamental para a produção de sorgo. A avaliação no estágio inicial do desenvolvimento da planta é uma ferramenta útil para a identificação de genótipos eficientes de P. Este trabalho teve como objetivo identificar híbridos de sorgo que sejam eficientes ao uso de P e avaliar a diversidade genética entre os híbridos com base em características relacionadas à eficiência de aquisição de P. Assim, 38 híbridos de sorgo e duas linhagens (testemunhas) foram avaliados sob baixo e alto P em sistema de pastas de papel com solução nutritiva. Características de biomassa e de raiz relacionadas à eficiência de P foram mensuradas. Não houve interação entre genótipos e níveis de P em todas as características avaliadas. As características de biomassa e raiz, exceto o diâmetro da raiz, apresentaram médias menores sob baixo P em comparação com alto P. Híbridos eficientes e ineficientes sob cada nível de P foram identificados e agrupados quanto à diversidade genética. Os híbridos AG1090, MSK326, AG1060, 1G100, AS 4639, DKB 540 e DKB 590 foram superiores sob baixo-P e alto-P. Os híbridos SC121, 1236020 e 1167017 apresentaram as menores médias que todos os outros híbridos, em ambas condições. Os híbridos avaliados apresentaram diversidade fenotípica para características relacionadas à aquisição de P, como comprimento e área superficial da raiz, o que pode ser útil para estabelecer estratégias de seleção para programas de melhoramento de sorgo e aumentar a eficiência de uso do P.


Assuntos
Fósforo , Variação Genética , Hidroponia , Sorghum/crescimento & desenvolvimento
13.
Sci Rep ; 13(1): 7212, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37137877

RESUMO

Various plants, including sorghum (Sorghum bicolor L.), are exposed to waterlogging; however, little is known about the effects of waterlogging at different growth stages on sorghum. A pot experiment was conducted using two sorghum hybrids, Jinuoliang 01 (JN01) and Jinza 31 (JZ31), to investigate the effects of waterlogging at different growth stages on the photosynthesis enzyme activity, chlorophyll content, malondialdehyde (MDA) content, photosynthetic parameters, dry matter accumulation, and grain yield. The experiment was conducted using waterlogging treatments implemented at the five-leaf stage (T1), flowering stage (T2), and filling stage (T3), using standard management (no waterlogging) as a control (CK). The adverse effects of waterlogging on sorghum growth varied with the waterlogging timing, with the maximum impact at T1, followed by T2 and T3. JZ31 was more sensitive to waterlogging compared to JN01. Waterlogged conditions inhibited the photosynthetic enzyme activity and reduced the chlorophyll content and photosynthesis, ultimately lowering the biomass yield and grain yield. The maximum yield loss was observed with the T1 waterlogging treatment; the grain yield of JN01 and JZ31 decreased by 52.01-54.58% and 69.52-71.97%, respectively, compared with CK. Furthermore, the decline in grain yield in T1 was associated with reducing grain number per panicle. These findings indicate that sorghum is sensitive to waterlogging at the five-leaf stage and JZ31 is more sensitive to waterlogging than JN01, which may provide a basis for selecting genotypes and management measures to cope with waterlogging in sorghum.


Assuntos
Mudança Climática , Sorghum , Sorghum/crescimento & desenvolvimento , Folhas de Planta/química , Clorofila/análise , Ribulose-Bifosfato Carboxilase/análise , Fosfoenolpiruvato Carboxilase/análise , Fotossíntese , Biomassa , Agricultura/métodos
14.
Int J Mol Sci ; 23(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35269548

RESUMO

Grain size, grain number per panicle, and grain weight are crucial determinants of yield-related traits in cereals. Understanding the genetic basis of grain yield-related traits has been the main research object and nodal in crop science. Sorghum and maize, as very close C4 crops with high photosynthetic rates, stress tolerance and large biomass characteristics, are extensively used to produce food, feed, and biofuels worldwide. In this review, we comprehensively summarize a large number of quantitative trait loci (QTLs) associated with grain yield in sorghum and maize. We placed great emphasis on discussing 22 fine-mapped QTLs and 30 functionally characterized genes, which greatly hinders our deep understanding at the molecular mechanism level. This review provides a general overview of the comprehensive findings on grain yield QTLs and discusses the emerging trend in molecular marker-assisted breeding with these QTLs.


Assuntos
Locos de Características Quantitativas , Sorghum/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Mapeamento Cromossômico , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Fotossíntese , Melhoramento Vegetal , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Sorghum/genética , Sorghum/metabolismo , Zea mays/genética , Zea mays/metabolismo
15.
PLoS One ; 17(2): e0263036, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35213549

RESUMO

Seed priming is regarded as a beneficial and effective method enhancing performance of plants grown under stress conditions. This study illustrated the effect of four seed priming agents (2% H2O2, 52 mM NaCl, 50 mM KCl, 250 mM MgSO4) on two sorghum cultivars (Canada sorghum CFSH-30 and sorghum '1230') grown in saline soils. Sorghum growth characteristics and biochemical parameters were investigated. Seed priming treatments alleviated the adverse effects of salt stress by decreasing MDA content and enhancing antioxidant enzymes (CAT, POD and SOD) activities and proline content, and hence increased sorghum fresh and dry weight. In terms of various parameters, sorghum '1230' was more suitable to be grown in saline soil, and 52 mM NaCl and 50 mM KCl were the optimum priming agents to improve the performance of salt-stressed sorghum.


Assuntos
Estresse Oxidativo/genética , Proteínas de Plantas/genética , Sementes/genética , Sorghum/genética , Antioxidantes/metabolismo , Canadá , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo/fisiologia , Prolina/genética , Estresse Salino/genética , Sementes/crescimento & desenvolvimento , Sorghum/crescimento & desenvolvimento
16.
Sci Rep ; 12(1): 1638, 2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35102220

RESUMO

Almost half of the Burkinabe population is moderately or severely affected by food insecurity. With climate change, domestic food production may become more under pressure, further jeopardizing food security. In this study, we focus on the production of maize, sorghum and millet as staple cereal crops in Burkina Faso to assess food availability as one component of food security. Based on a statistical weather-driven crop model, we provide a within-season forecast of crop production 1 month before the harvest. Hindcast results from 1984 to 2018 produce an r2 of 0.95 in case of known harvest areas and an r2 of 0.88 when harvest areas are modelled instead. We compare actually supplied calories with those usually consumed from staple crops, allowing us to provide early information on shortages in domestic cereal production on the national level. Despite the-on average-sufficient domestic cereal production from maize, sorghum and millet, a considerable level of food insecurity prevails for large parts of the population. We suggest to consider such forecasts as an early warning signal for shortages in domestic staple crop production and encourage a comprehensive assessment of all dimensions of food security to rapidly develop counteractions for looming food crises.


Assuntos
Produção Agrícola/tendências , Produtos Agrícolas/crescimento & desenvolvimento , Grão Comestível/crescimento & desenvolvimento , Insegurança Alimentar , Abastecimento de Alimentos , Milhetes/crescimento & desenvolvimento , Sorghum/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Burkina Faso , Mudança Climática , Previsões , Humanos , Modelos Teóricos , Fatores de Tempo , Tempo (Meteorologia)
17.
Genes (Basel) ; 13(1)2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35052482

RESUMO

Domestication has resulted in a loss of genetic diversity in our major food crops, leading to susceptibility to biotic and abiotic stresses linked with climate change. Crop wild relatives (CWR) may provide a source of novel genes potentially important for re-gaining climate resilience. Sorghum bicolor is an important cereal crop with wild relatives that are endemic to Australia. Sorghum bicolor is cyanogenic, but the cyanogenic status of wild Sorghum species is not well known. In this study, leaves of wild species endemic in Australia are screened for the presence of the cyanogenic glucoside dhurrin. The direct measurement of dhurrin content and the potential for dhurrin-derived HCN release (HCNp) showed that all the tested Australian wild species were essentially phenotypically acyanogenic. The unexpected low dhurrin content may reflect the variable and generally nutrient-poor environments in which they are growing in nature. Genome sequencing of six CWR and PCR amplification of the CYP79A1 gene from additional species showed that a high conservation of key amino acids is required for correct protein function and dhurrin synthesis, pointing to the transcriptional regulation of the cyanogenic phenotype in wild sorghum as previously shown in elite sorghum.


Assuntos
Glicosídeos/metabolismo , Cianeto de Hidrogênio/metabolismo , Nitrilas/metabolismo , Proteínas de Plantas/metabolismo , Sorghum/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Genótipo , Fenótipo , Proteínas de Plantas/genética , Sorghum/genética , Sorghum/crescimento & desenvolvimento
18.
Theor Appl Genet ; 135(1): 201-216, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34633473

RESUMO

bHLH family proteins play an important role in plant stress response. However, the molecular mechanism regulating the salt response of bHLH is largely unknown. This study aimed to investigate the function and regulating mechanism of the sweet sorghum SbbHLH85 during salt stress. The results showed that SbbHLH85 was different from its homologs in other species. Also, it was a new atypical bHLH transcription factor and a key gene for root development in sweet sorghum. The overexpression of SbbHLH85 resulted in significantly increased number and length of root hairs via ABA and auxin signaling pathways, increasing the absorption of Na+. Thus, SbbHLH85 plays a negative regulatory role in the salt tolerance of sorghum. We identified a potential interaction partner of SbbHLH85, which was phosphate transporter chaperone PHF1 and modulated the distribution of phosphate, through screening a yeast two-hybrid library. Both yeast two-hybrid and BiFC experiments confirmed the interaction between SbbHLH85 and PHF1. The overexpression of SbbHLH85 led to a decrease in the expression of PHF1 as well as the content of Pi. Based on these results, we suggested that the increase in the Na+ content and the decrease in the Pi content resulted in the salt sensitivity of transgenic sorghum.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Proteínas de Plantas/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Tolerância ao Sal/fisiologia , Sorghum/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Clonagem Molecular , Perfilação da Expressão Gênica , Sequências Hélice-Alça-Hélice , Proteínas de Transporte de Fosfato/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Estresse Salino , Tolerância ao Sal/genética , Transdução de Sinais , Sódio/metabolismo , Sorghum/genética , Sorghum/crescimento & desenvolvimento
19.
Plant Mol Biol ; 108(1-2): 1-14, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34846608

RESUMO

KEY MESSAGE: Developing embryo and endosperm of sorghum show substantial and multifaceted differences in gene expression and alternative splicing, which are potentially relevant to heterosis. Differential regulation of gene expression and alternative splicing (AS) are major molecular mechanisms dictating plant growth and development, as well as underpinning heterosis in F1 hybrids. Here, using deep RNA-sequencing we analyzed differences in genome-wide gene expression and AS between developing embryo and endosperm, and between F1 hybrids and their pure-line parents in sorghum. We uncover dramatic differences in both gene expression and AS between embryo and endosperm with respect to gene features and functions, which are consistent with the fundamentally different biological roles of the two tissues. Accordingly, F1 hybrids showed substantial and multifaceted differences in gene expression and AS compared with their pure-line parents, again with clear tissue specificities including extents of difference, genes involved and functional enrichments. Our results provide useful transcriptome resources as well as novel insights for further elucidation of seed yield heterosis in sorghum and related crops.


Assuntos
Processamento Alternativo/genética , Endosperma/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Sementes/crescimento & desenvolvimento , Sorghum/genética , Endosperma/genética , Expressão Gênica/genética , Sequenciamento de Nucleotídeos em Larga Escala , Hibridização Genética/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/genética , Sorghum/crescimento & desenvolvimento , Sorghum/metabolismo , Especificidade da Espécie
20.
Sci Rep ; 11(1): 23309, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34857783

RESUMO

Sorghum [Sorghum bicolor (L.) Moench] has been gaining attention as a feedstock for biomass energy production. While it is obvious that nitrogen (N) supply significantly affects sorghum growth and biomass accumulation, our knowledge is still limited regarding the effect of N on the biomass quality of sorghum, such as the contents and structures of lignin and other cell wall components. Therefore, in this study, we investigated the effects of N supply on the structure and composition of sorghum cell walls. The cell walls of hydroponically cultured sorghum seedlings grown under sufficient or deficient N conditions were analyzed using chemical, two-dimensional nuclear magnetic resonance, gene expression, and immunohistochemical methods. We found that the level of N supply considerably affected the cell wall structure and composition of sorghum seedlings. Limitation of N led to a decrease in the syringyl/guaiacyl lignin unit ratio and an increase in the amount and alteration of tissue distribution of several hemicelluloses, including mixed linkage (1 → 3), (1 → 4)-ß-D-glucan, and arabinoxylan. At least some of these cell wall alterations could be associated with changes in gene expression. Nitrogen status is thus one of the factors affecting the cell wall properties of sorghum seedlings.


Assuntos
Parede Celular/metabolismo , Nitrogênio/deficiência , Plântula/metabolismo , Sorghum/crescimento & desenvolvimento , Sorghum/fisiologia , Biomassa , Metabolismo Energético , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Lignina/química , Lignina/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Sorghum/citologia , Sorghum/genética , Xilanos/química , Xilanos/metabolismo , beta-Glucanas/química , beta-Glucanas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...