Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.017
Filtrar
1.
Wiley Interdiscip Rev RNA ; 15(4): e1866, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38972853

RESUMO

Pre-mRNA splicing, the removal of introns and ligation of flanking exons, is a crucial step in eukaryotic gene expression. The spliceosome, a macromolecular complex made up of five small nuclear RNAs (snRNAs) and dozens of proteins, assembles on introns via a complex pathway before catalyzing the two transesterification reactions necessary for splicing. All of these steps have the potential to be highly regulated to ensure correct mRNA isoform production for proper cellular function. While Saccharomyces cerevisiae (yeast) has a limited set of intron-containing genes, many of these genes are highly expressed, resulting in a large number of transcripts in a cell being spliced. As a result, splicing regulation is of critical importance for yeast. Just as in humans, yeast splicing can be influenced by protein components of the splicing machinery, structures and properties of the pre-mRNA itself, or by the action of trans-acting factors. It is likely that further analysis of the mechanisms and pathways of splicing regulation in yeast can reveal general principles applicable to other eukaryotes. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing.


Assuntos
Precursores de RNA , Splicing de RNA , Saccharomyces cerevisiae , Spliceossomos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Spliceossomos/metabolismo , Spliceossomos/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
2.
BMC Biol ; 22(1): 153, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38982460

RESUMO

Pre-mRNA splicing is a significant step for post-transcriptional modifications and functions in a wide range of physiological processes in plants. Human NHP2L binds to U4 snRNA during spliceosome assembly; it is involved in RNA splicing and mediates the development of human tumors. However, no ortholog has yet been identified in plants. Therefore, we report At4g12600 encoding the ortholog NHP2L protein, and AtSNU13 associates with the component of the spliceosome complex; the atsnu13 mutant showed compromised resistance in disease resistance, indicating that AtSNU13 is a positive regulator of plant immunity. Compared to wild-type plants, the atsnu13 mutation resulted in altered splicing patterns for defense-related genes and decreased expression of defense-related genes, such as RBOHD and ALD1. Further investigation shows that AtSNU13 promotes the interaction between U4/U6.U5 tri-snRNP-specific 27 K and the motif in target mRNAs to regulate the RNA splicing. Our study highlights the role of AtSNU13 in regulating plant immunity by affecting the pre-mRNA splicing of defense-related genes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Imunidade Vegetal , Precursores de RNA , Splicing de RNA , Imunidade Vegetal/genética , Arabidopsis/genética , Arabidopsis/imunologia , Precursores de RNA/genética , Precursores de RNA/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Spliceossomos/metabolismo , Spliceossomos/genética , Doenças das Plantas/genética , Doenças das Plantas/imunologia
3.
Nat Commun ; 15(1): 4697, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824128

RESUMO

Differentiation of male gametocytes into flagellated fertile male gametes relies on the assembly of axoneme, a major component of male development for mosquito transmission of the malaria parasite. RNA-binding protein (RBP)-mediated post-transcriptional regulation of mRNA plays important roles in eukaryotic sexual development, including the development of female Plasmodium. However, the role of RBP in defining the Plasmodium male transcriptome and its function in male gametogenesis remains incompletely understood. Here, we performed genome-wide screening for gender-specific RBPs and identified an undescribed male-specific RBP gene Rbpm1 in the Plasmodium. RBPm1 is localized in the nucleus of male gametocytes. RBPm1-deficient parasites fail to assemble the axoneme for male gametogenesis and thus mosquito transmission. RBPm1 interacts with the spliceosome E complex and regulates the splicing initiation of certain introns in a group of 26 axonemal genes. RBPm1 deficiency results in intron retention and protein loss of these axonemal genes. Intron deletion restores axonemal protein expression and partially rectifies axonemal defects in RBPm1-null gametocytes. Further splicing assays in both reporter and endogenous genes exhibit stringent recognition of the axonemal introns by RBPm1. The splicing activator RBPm1 and its target introns constitute an axonemal intron splicing program in the post-transcriptional regulation essential for Plasmodium male development.


Assuntos
Axonema , Íntrons , Proteínas de Protozoários , Splicing de RNA , Proteínas de Ligação a RNA , Íntrons/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Animais , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Masculino , Axonema/metabolismo , Feminino , Gametogênese/genética , Spliceossomos/metabolismo , Spliceossomos/genética , Plasmodium berghei/genética , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/metabolismo , Malária/parasitologia , Plasmodium/genética , Plasmodium/metabolismo
4.
BMC Genomics ; 25(1): 649, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943073

RESUMO

Despite the fact that introns mean an energy and time burden for eukaryotic cells, they play an irreplaceable role in the diversification and regulation of protein production. As a common feature of eukaryotic genomes, it has been reported that in protein-coding genes, the longest intron is usually one of the first introns. The goal of our work was to find a possible difference in the biological function of genes that fulfill this common feature compared to genes that do not. Data on the lengths of all introns in genes were extracted from the genomes of six vertebrates (human, mouse, koala, chicken, zebrafish and fugu) and two other model organisms (nematode worm and arabidopsis). We showed that more than 40% of protein-coding genes have the relative position of the longest intron located in the second or third tertile of all introns. Genes divided according to the relative position of the longest intron were found to be significantly increased in different KEGG pathways. Genes with the longest intron in the first tertile predominate in a range of pathways for amino acid and lipid metabolism, various signaling, cell junctions or ABC transporters. Genes with the longest intron in the second or third tertile show increased representation in pathways associated with the formation and function of the spliceosome and ribosomes. In the two groups of genes defined in this way, we further demonstrated the difference in the length of the longest introns and the distribution of their absolute positions. We also pointed out other characteristics, namely the positive correlation between the length of the longest intron and the sum of the lengths of all other introns in the gene and the preservation of the exact same absolute and relative position of the longest intron between orthologous genes.


Assuntos
Íntrons , Íntrons/genética , Animais , Humanos , Arabidopsis/genética , Spliceossomos/genética , Spliceossomos/metabolismo
5.
Commun Biol ; 7(1): 640, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796645

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common autosomal dominant muscle disorders, yet no cure or amelioration exists. The clinical presentation is diverse, making it difficult to identify the actual driving pathomechanism among many downstream events. To unravel this complexity, we performed a meta-analysis of 13 original omics datasets (in total 171 FSHD and 129 control samples). Our approach confirmed previous findings about the disease pathology and specified them further. We confirmed increased expression of former proposed DUX4 biomarkers, and furthermore impairment of the respiratory chain. Notably, the meta-analysis provides insights about so far not reported pathways, including misregulation of neuromuscular junction protein encoding genes, downregulation of the spliceosome, and extensive alterations of nuclear envelope protein expression. Finally, we developed a publicly available shiny app to provide a platform for researchers who want to search our analysis for genes of interest in the future.


Assuntos
Distrofia Muscular Facioescapuloumeral , Junção Neuromuscular , Membrana Nuclear , Spliceossomos , Humanos , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/metabolismo , Distrofia Muscular Facioescapuloumeral/patologia , Membrana Nuclear/metabolismo , Membrana Nuclear/genética , Spliceossomos/metabolismo , Spliceossomos/genética , Junção Neuromuscular/metabolismo , Junção Neuromuscular/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Regulação da Expressão Gênica
6.
Genes Dev ; 38(7-8): 322-335, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38724209

RESUMO

Rare, full-length circular intron RNAs distinct from lariats have been reported in several species, but their biogenesis is not understood. We envisioned and tested a hypothesis for their formation using Saccharomyces cerevisiae, documenting full-length and novel processed circular RNAs from multiple introns. Evidence implicates a previously undescribed catalytic activity of the intron lariat spliceosome (ILS) in which the 3'-OH of the lariat tail (with optional trimming and adenylation by the nuclear 3' processing machinery) attacks the branch, joining the intron 3' end to the 5' splice site in a 3'-5' linked circle. Human U2 and U12 spliceosomes produce analogous full-length and processed circles. Postsplicing catalytic activity of the spliceosome may promote intron transposition during eukaryotic genome evolution.


Assuntos
Íntrons , Splicing de RNA , Saccharomyces cerevisiae , Spliceossomos , Spliceossomos/metabolismo , Spliceossomos/genética , Íntrons/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Humanos , Splicing de RNA/genética , RNA Circular/genética , RNA Circular/metabolismo , RNA/metabolismo , RNA/genética
7.
PLoS Genet ; 20(5): e1011284, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38743783

RESUMO

The Integrator is a multi-subunit protein complex that catalyzes the maturation of snRNA transcripts via 3' cleavage, a step required for snRNA incorporation with snRNP for spliceosome biogenesis. Here we developed a GFP based in vivo snRNA misprocessing reporter as a readout of Integrator function and performed a genome-wide RNAi screen for Integrator regulators. We found that loss of the Argonaute encoding csr-1 gene resulted in widespread 3' misprocessing of snRNA transcripts that is accompanied by a significant increase in alternative splicing. Loss of the csr-1 gene down-regulates the germline expression of Integrator subunits 4 and 6 and is accompanied by a reduced protein translation efficiency of multiple Integrator catalytic and non-catalytic subunits. Through isoform and motif mutant analysis, we determined that CSR-1's effect on snRNA processing is dependent on its catalytic slicer activity but does not involve the CSR-1a isoform. Moreover, mRNA-sequencing revealed high similarity in the transcriptome profile between csr-1 and Integrator subunit knockdown via RNAi. Together, our findings reveal CSR-1 as a new regulator of the Integrator complex and implicate a novel role of this Argonaute protein in snRNA 3' processing.


Assuntos
Proteínas Argonautas , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , RNA Nuclear Pequeno , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Animais , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Processamento Alternativo/genética , Interferência de RNA , Processamento Pós-Transcricional do RNA , Spliceossomos/metabolismo , Spliceossomos/genética
8.
RNA Biol ; 21(1): 1-17, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38711165

RESUMO

Spliceosome assembly contributes an important but incompletely understood aspect of splicing regulation. Prp45 is a yeast splicing factor which runs as an extended fold through the spliceosome, and which may be important for bringing its components together. We performed a whole genome analysis of the genetic interaction network of the truncated allele of PRP45 (prp45(1-169)) using synthetic genetic array technology and found chromatin remodellers and modifiers as an enriched category. In agreement with related studies, H2A.Z-encoding HTZ1, and the components of SWR1, INO80, and SAGA complexes represented prominent interactors, with htz1 conferring the strongest growth defect. Because the truncation of Prp45 disproportionately affected low copy number transcripts of intron-containing genes, we prepared strains carrying intronless versions of SRB2, VPS75, or HRB1, the most affected cases with transcription-related function. Intron removal from SRB2, but not from the other genes, partly repaired some but not all the growth phenotypes identified in the genetic screen. The interaction of prp45(1-169) and htz1Δ was detectable even in cells with SRB2 intron deleted (srb2Δi). The less truncated variant, prp45(1-330), had a synthetic growth defect with htz1Δ at 16°C, which also persisted in the srb2Δi background. Moreover, htz1Δ enhanced prp45(1-330) dependent pre-mRNA hyper-accumulation of both high and low efficiency splicers, genes ECM33 and COF1, respectively. We conclude that while the expression defects of low expression intron-containing genes contribute to the genetic interactome of prp45(1-169), the genetic interactions between prp45 and htz1 alleles demonstrate the sensitivity of spliceosome assembly, delayed in prp45(1-169), to the chromatin environment.


Assuntos
Íntrons , Fenótipo , Splicing de RNA , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Spliceossomos , Spliceossomos/metabolismo , Spliceossomos/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Regulação Fúngica da Expressão Gênica , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Histonas/metabolismo , Histonas/genética
9.
PLoS Genet ; 20(5): e1011272, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38768219

RESUMO

The position of the nucleus before it divides during mitosis is variable in different budding yeasts. Studies in the pathogenic intron-rich fungus Cryptococcus neoformans reveal that the nucleus moves entirely into the daughter bud before its division. Here, we report functions of a zinc finger motif containing spliceosome protein C. neoformans Slu7 (CnSlu7) in cell cycle progression. The budding yeast and fission yeast homologs of Slu7 have predominant roles for intron 3' splice site definition during pre-mRNA splicing. Using a conditional knockdown strategy, we show CnSlu7 is an essential factor for viability and is required for efficient cell cycle progression with major role during mitosis. Aberrant nuclear migration, including improper positioning of the nucleus as well as the spindle, were frequently observed in cells depleted of CnSlu7. However, cell cycle delays observed due to Slu7 depletion did not activate the Mad2-dependent spindle assembly checkpoint (SAC). Mining of the global transcriptome changes in the Slu7 knockdown strain identified downregulation of transcripts encoding several cell cycle regulators and cytoskeletal factors for nuclear migration, and the splicing of specific introns of these genes was CnSlu7 dependent. To test the importance of splicing activity of CnSlu7 on nuclear migration, we complemented Slu7 knockdown cells with an intron less PAC1 minigene and demonstrated that the nuclear migration defects were significantly rescued. These findings show that CnSlu7 regulates the functions of diverse cell cycle regulators and cytoskeletal components, ensuring timely cell cycle transitions and nuclear division during mitosis.


Assuntos
Núcleo Celular , Cryptococcus neoformans , Proteínas Fúngicas , Mitose , Splicing de RNA , Spliceossomos , Mitose/genética , Cryptococcus neoformans/genética , Splicing de RNA/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Spliceossomos/genética , Spliceossomos/metabolismo , Fuso Acromático/metabolismo , Fuso Acromático/genética , Regulação Fúngica da Expressão Gênica , Ciclo Celular/genética
10.
Adv Biol (Weinh) ; 8(7): e2400006, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797893

RESUMO

Spliceosomal small nuclear RNAs (snRNAs) are a fundamental class of non-coding small RNAs abundant in the nucleoplasm of eukaryotic cells, playing a crucial role in splicing precursor messenger RNAs (pre-mRNAs). They are transcribed by DNA-dependent RNA polymerase II (Pol II) or III (Pol III), and undergo subsequent processing and 3' end cleavage to become mature snRNAs. Numerous protein factors are involved in the transcription initiation, elongation, termination, splicing, cellular localization, and terminal modification processes of snRNAs. The transcription and processing of snRNAs are regulated spatiotemporally by various mechanisms, and the homeostatic balance of snRNAs within cells is of great significance for the growth and development of organisms. snRNAs assemble with specific accessory proteins to form small nuclear ribonucleoprotein particles (snRNPs) that are the basal components of spliceosomes responsible for pre-mRNA maturation. This article provides an overview of the biological functions, biosynthesis, terminal structure, and tissue-specific regulation of snRNAs.


Assuntos
Precursores de RNA , RNA Nuclear Pequeno , Spliceossomos , Spliceossomos/metabolismo , Spliceossomos/genética , Precursores de RNA/metabolismo , Precursores de RNA/genética , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Humanos , Núcleo Celular/metabolismo , Núcleo Celular/genética , Animais , Splicing de RNA , Processamento Pós-Transcricional do RNA
11.
Sci Adv ; 10(19): eadn1547, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38718117

RESUMO

Pre-mRNA splicing is a fundamental step in gene expression, conserved across eukaryotes, in which the spliceosome recognizes motifs at the 3' and 5' splice sites (SSs), excises introns, and ligates exons. SS recognition and pairing is often influenced by protein splicing factors (SFs) that bind to splicing regulatory elements (SREs). Here, we describe SMsplice, a fully interpretable model of pre-mRNA splicing that combines models of core SS motifs, SREs, and exonic and intronic length preferences. We learn models that predict SS locations with 83 to 86% accuracy in fish, insects, and plants and about 70% in mammals. Learned SRE motifs include both known SF binding motifs and unfamiliar motifs, and both motif classes are supported by genetic analyses. Our comparisons across species highlight similarities between non-mammals, increased reliance on intronic SREs in plant splicing, and a greater reliance on SREs in mammalian splicing.


Assuntos
Éxons , Íntrons , Precursores de RNA , Sítios de Splice de RNA , Splicing de RNA , Precursores de RNA/genética , Precursores de RNA/metabolismo , Animais , Íntrons/genética , Éxons/genética , Genes de Plantas , Modelos Genéticos , Spliceossomos/metabolismo , Spliceossomos/genética , Plantas/genética , Humanos , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo
12.
Mol Med ; 30(1): 62, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760666

RESUMO

Alternative splicing (AS) is a strictly regulated process that generates multiple mRNA variants from a single gene, thus contributing to proteome diversity. Transcriptome-wide sequencing studies revealed networks of functionally coordinated splicing events, which produce isoforms with distinct or even opposing functions. To date, several mechanisms of AS are deregulated in leukemic cells, mainly due to mutations in splicing and/or epigenetic regulators and altered expression of splicing factors (SFs). In this review, we discuss aberrant splicing events induced by mutations affecting SFs (SF3B1, U2AF1, SRSR2, and ZRSR2), spliceosome components (PRPF8, LUC7L2, DDX41, and HNRNPH1), and epigenetic modulators (IDH1 and IDH2). Finally, we provide an extensive overview of the biological relevance of aberrant isoforms of genes involved in the regulation of apoptosis (e. g. BCL-X, MCL-1, FAS, and c-FLIP), activation of key cellular signaling pathways (CASP8, MAP3K7, and NOTCH2), and cell metabolism (PKM).


Assuntos
Processamento Alternativo , Neoplasias Hematológicas , Humanos , Neoplasias Hematológicas/genética , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Mutação , Animais , Regulação Neoplásica da Expressão Gênica , Epigênese Genética , Spliceossomos/metabolismo , Spliceossomos/genética , Transdução de Sinais/genética
13.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38673778

RESUMO

Pre-mRNA splicing plays a key role in the regulation of gene expression. Recent discoveries suggest that defects in pre-mRNA splicing, resulting from the dysfunction of certain splicing factors, can impact the expression of genes crucial for genome surveillance mechanisms, including those involved in cellular response to DNA damage. In this study, we analyzed how cells with a non-functional spliceosome-associated Gpl1-Gih35-Wdr83 complex respond to DNA damage. Additionally, we investigated the role of this complex in regulating the splicing of factors involved in DNA damage repair. Our findings reveal that the deletion of any component within the Gpl1-Gih35-Wdr83 complex leads to a significant accumulation of unspliced pre-mRNAs of DNA repair factors. Consequently, mutant cells lacking this complex exhibit increased sensitivity to DNA-damaging agents. These results highlight the importance of the Gpl1-Gih35-Wdr83 complex in regulating the expression of DNA repair factors, thereby protecting the stability of the genome following DNA damage.


Assuntos
Dano ao DNA , Reparo do DNA , Fatores de Processamento de RNA , Splicing de RNA , Dano ao DNA/genética , Reparo do DNA/genética , Regulação Fúngica da Expressão Gênica , Precursores de RNA/genética , Precursores de RNA/metabolismo , Fatores de Processamento de RNA/metabolismo , Fatores de Processamento de RNA/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Spliceossomos/metabolismo , Spliceossomos/genética , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo
14.
Mol Syst Biol ; 20(6): 676-701, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38664594

RESUMO

Splice-switching oligonucleotides (SSOs) are antisense compounds that act directly on pre-mRNA to modulate alternative splicing (AS). This study demonstrates the value that artificial intelligence/machine learning (AI/ML) provides for the identification of functional, verifiable, and therapeutic SSOs. We trained XGboost tree models using splicing factor (SF) pre-mRNA binding profiles and spliceosome assembly information to identify modulatory SSO binding sites on pre-mRNA. Using Shapley and out-of-bag analyses we also predicted the identity of specific SFs whose binding to pre-mRNA is blocked by SSOs. This step adds considerable transparency to AI/ML-driven drug discovery and informs biological insights useful in further validation steps. We applied this approach to previously established functional SSOs to retrospectively identify the SFs likely to regulate those events. We then took a prospective validation approach using a novel target in triple negative breast cancer (TNBC), NEDD4L exon 13 (NEDD4Le13). Targeting NEDD4Le13 with an AI/ML-designed SSO decreased the proliferative and migratory behavior of TNBC cells via downregulation of the TGFß pathway. Overall, this study illustrates the ability of AI/ML to extract actionable insights from RNA-seq data.


Assuntos
Processamento Alternativo , Inteligência Artificial , Aprendizado de Máquina , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , Linhagem Celular Tumoral , Ubiquitina-Proteína Ligases Nedd4/genética , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Oligonucleotídeos Antissenso/genética , Movimento Celular/genética , Spliceossomos/metabolismo , Spliceossomos/genética , Oligonucleotídeos/genética , Feminino
15.
Plant J ; 119(1): 153-175, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38593295

RESUMO

Plant acclimation to an ever-changing environment is decisive for growth, reproduction, and survival. Light availability limits biomass production on both ends of the intensity spectrum. Therefore, the adjustment of plant metabolism is central to high-light (HL) acclimation, and the accumulation of photoprotective anthocyanins is commonly observed. However, mechanisms and factors regulating the HL acclimation response are less clear. Two Arabidopsis mutants of spliceosome components exhibiting a pronounced anthocyanin overaccumulation in HL were isolated from a forward genetic screen for new factors crucial for plant acclimation. Time-resolved physiological, transcriptome, and metabolome analysis revealed a vital function of the spliceosome components for rapidly adjusting gene expression and metabolism. Deficiency of INCREASED LEVEL OF POLYPLOIDY1 (ILP1), NTC-RELATED PROTEIN1 (NTR1), and PLEIOTROPIC REGULATORY LOCUS1 (PRL1) resulted in a marked overaccumulation of carbohydrates and strongly diminished amino acid biosynthesis in HL. While not generally limited in N-assimilation, ilp1, ntr1, and prl1 showed higher glutamate levels and reduced amino acid biosynthesis in HL. The comprehensive analysis reveals a function of the spliceosome components in the conditional regulation of the carbon:nitrogen balance and the accumulation of anthocyanins during HL acclimation. The importance of gene expression, metabolic regulation, and re-direction of carbon towards anthocyanin biosynthesis for HL acclimation are discussed.


Assuntos
Aclimatação , Proteínas de Arabidopsis , Arabidopsis , Carbono , Regulação da Expressão Gênica de Plantas , Luz , Nitrogênio , Spliceossomos , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Spliceossomos/metabolismo , Spliceossomos/genética , Carbono/metabolismo , Nitrogênio/metabolismo , Antocianinas/metabolismo
16.
RNA ; 30(7): 824-838, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38575347

RESUMO

Forkhead box P3 (FOXP3) is the master fate-determining transcription factor in regulatory T (Treg) cells and is essential for their development, function, and homeostasis. Mutations in FOXP3 cause immunodysregulation polyendocrinopathy enteropathy X-linked (IPEX) syndrome, and aberrant expression of FOXP3 has been implicated in other diseases such as multiple sclerosis and cancer. We previously demonstrated that pre-mRNA splicing of FOXP3 RNAs is highly sensitive to levels of DExD-box polypeptide 39B (DDX39B), and here we investigate the mechanism of this sensitivity. FOXP3 introns have cytidine (C)-rich/uridine (U)-poor polypyrimidine (py) tracts that are responsible for their inefficient splicing and confer sensitivity to DDX39B. We show that there is a deficiency in the assembly of commitment complexes (CCs) on FOXP3 introns, which is consistent with the lower affinity of U2AF2 for C-rich/U-poor py tracts. Our data indicate an even stronger effect on the conversion of CCs to pre-spliceosomes. We propose that this is due to an altered conformation that U2AF2 adopts when it binds to C-rich/U-poor py tracts and that this conformation has a lower affinity for DDX39B. As a consequence, CCs assembled on FOXP3 introns are defective in recruiting DDX39B, and this leads to the inefficient assembly of pre-spliceosome complexes.


Assuntos
RNA Helicases DEAD-box , Fatores de Transcrição Forkhead , Íntrons , Splicing de RNA , Spliceossomos , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Humanos , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Spliceossomos/metabolismo , Spliceossomos/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo
17.
Nucleic Acids Res ; 52(12): 7245-7260, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38676950

RESUMO

Spliced leader trans-splicing of pre-mRNAs is a critical step in the gene expression of many eukaryotes. How the spliced leader RNA and its target transcripts are brought together to form the trans-spliceosome remains an important unanswered question. Using immunoprecipitation followed by protein analysis via mass spectrometry and RIP-Seq, we show that the nematode-specific proteins, SNA-3 and SUT-1, form a complex with a set of enigmatic non-coding RNAs, the SmY RNAs. Our work redefines the SmY snRNP and shows for the first time that it is essential for nematode viability and is involved in spliced leader trans-splicing. SNA-3 and SUT-1 are associated with the 5' ends of most, if not all, nascent capped RNA polymerase II transcripts, and they also interact with components of the major nematode spliced leader (SL1) snRNP. We show that depletion of SNA-3 impairs the co-immunoprecipitation between one of the SL1 snRNP components, SNA-2, and several core spliceosomal proteins. We thus propose that the SmY snRNP recruits the SL1 snRNP to the 5' ends of nascent pre-mRNAs, an instrumental step in the assembly of the trans-spliceosome.


Assuntos
Precursores de RNA , RNA Líder para Processamento , Ribonucleoproteínas Nucleares Pequenas , Spliceossomos , Animais , RNA Líder para Processamento/metabolismo , RNA Líder para Processamento/genética , Precursores de RNA/metabolismo , Precursores de RNA/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Spliceossomos/metabolismo , Spliceossomos/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Trans-Splicing , Ligação Proteica
18.
Nat Commun ; 15(1): 3138, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605034

RESUMO

The carboxy-terminus of the spliceosomal protein PRPF8, which regulates the RNA helicase Brr2, is a hotspot for mutations causing retinitis pigmentosa-type 13, with unclear role in human splicing and tissue-specificity mechanism. We used patient induced pluripotent stem cells-derived cells, carrying the heterozygous PRPF8 c.6926 A > C (p.H2309P) mutation to demonstrate retinal-specific endophenotypes comprising photoreceptor loss, apical-basal polarity and ciliary defects. Comprehensive molecular, transcriptomic, and proteomic analyses revealed a role of the PRPF8/Brr2 regulation in 5'-splice site (5'SS) selection by spliceosomes, for which disruption impaired alternative splicing and weak/suboptimal 5'SS selection, and enhanced cryptic splicing, predominantly in ciliary and retinal-specific transcripts. Altered splicing efficiency, nuclear speckles organisation, and PRPF8 interaction with U6 snRNA, caused accumulation of active spliceosomes and poly(A)+ mRNAs in unique splicing clusters located at the nuclear periphery of photoreceptors. Collectively these elucidate the role of PRPF8/Brr2 regulatory mechanisms in splicing and the molecular basis of retinal disease, informing therapeutic approaches.


Assuntos
Sítios de Splice de RNA , Retinose Pigmentar , Spliceossomos , Humanos , Spliceossomos/genética , Spliceossomos/metabolismo , Proteômica , Splicing de RNA/genética , Processamento Alternativo/genética , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , RNA Mensageiro/metabolismo , Mutação , DNA Helicases/metabolismo , Proteínas de Ligação a RNA/metabolismo
19.
Leuk Res ; 141: 107500, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636413

RESUMO

Mutations in spliceosome genes (SRSF2, SF3B1, U2AF1, ZRSR2) correlate with inferior outcomes in patients treated with intensive chemotherapy for Acute Myeloid Leukemia. However, their prognostic impact in patients treated with less intensive protocols is not well known. This study aimed to evaluate the impact of Spliceosome mutations in patients treated with Venetoclax and Azacitidine for newly diagnosed AML. 117 patients treated in 3 different hospitals were included in the analysis. 34 harbored a mutation in at least one of the spliceosome genes (splice-mut cohort). K/NRAS mutations were more frequent in the splice-mut cohort (47% vs 19%, p=0.0022). Response rates did not differ between splice-mut and splice-wt cohorts. With a median follow-up of 15 months, splice mutations were associated with a lower 18-month LFS (p=0.0045). When analyzing splice mutations separately, we found SRSF2 mutations to be associated with poorer outcomes (p=0.034 and p=0.037 for OS and LFS respectively). This negative prognostic impact remained true in our multivariate analysis. We believe this finding should warrant further studies aimed at overcoming this negative impact.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Leucemia Mieloide Aguda , Mutação , Fatores de Processamento de Serina-Arginina , Humanos , Fatores de Processamento de Serina-Arginina/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/mortalidade , Masculino , Feminino , Pessoa de Meia-Idade , Prognóstico , Idoso , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Idoso de 80 Anos ou mais , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Azacitidina/uso terapêutico , Azacitidina/administração & dosagem , Adulto Jovem , Spliceossomos/genética , Sulfonamidas
20.
J Phys Chem Lett ; 15(13): 3502-3508, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38517341

RESUMO

RNA ATPases/helicases remodel substrate RNA-protein complexes in distinct ways. The different RNA ATPases/helicases, taking part in the spliceosome complex, reshape the RNA/RNA-protein contacts to enable premature-mRNA splicing. Among them, the bad response to refrigeration 2 (Brr2) helicase promotes U4/U6 small nuclear (sn)RNA unwinding via ATP-driven translocation of the U4 snRNA strand, thus playing a pivotal role during the activation, catalytic, and disassembly phases of splicing. The plastic Brr2 architecture consists of an enzymatically active N-terminal cassette (N-cassette) and a structurally similar but inactive C-terminal cassette (C-cassette). The C-cassette, along with other allosteric effectors and regulators, tightly and timely controls Brr2's function via an elusive mechanism. Here, microsecond-long molecular dynamics simulations, dynamical network theory, and community network analysis are combined to elucidate how allosteric effectors/regulators modulate the Brr2 function. We unexpectedly reveal that U4 snRNA itself acts as an allosteric regulator, amplifying the cross-talk of distal Brr2 domains and triggering a conformational reorganization of the protein. Our findings offer fundamental understanding into Brr2's mechanism of action and broaden our knowledge on the sophisticated regulatory mechanisms by which spliceosome ATPases/helicases control gene expression. This includes their allosteric regulation exerted by client RNA strands, a mechanism that may be broadly applicable to other RNA-dependent ATPases/helicases.


Assuntos
Ribonucleoproteínas Nucleares Pequenas , Spliceossomos , Humanos , Adenosina Trifosfatases/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/química , Ribonucleoproteína Nuclear Pequena U4-U6/genética , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , RNA/metabolismo , RNA Helicases/química , RNA Helicases/genética , RNA Helicases/metabolismo , Spliceossomos/genética , Spliceossomos/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...