Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.501
Filtrar
1.
Int J Med Microbiol ; 315: 151625, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38824713

RESUMO

OBJECTIVES: We report a case of bacteremia with pyelonephritis in an adult male with an underlying disease caused by α-hemolytic streptococci. α-Hemolytic streptococci were isolated from blood, but it was challenging to identify its species. This study aimed to characterize the causative bacterium SP4011 and to elucidate its species. METHODS: The whole-genome sequence and biochemical characteristics of SP4011 were determined. Based on the genome sequence, phylogenetic analysis was performed with standard strains of each species of α-hemolytic streptococci. Digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values were calculated. RESULTS: SP4011 showed optochin susceptibility and bile solubility, but did not react with pneumococcal omni antiserum. Phylogenetic analysis of the whole-genome sequence showed that SP4011 clustered with S. pneumoniae and S. pseodopneumoniae and was most closely related to S. pseodopneumoniae. Genomic analysis revealed that ANI and dDDH values between SP4011 and S. pseodopneumoniae were 94.0 % and 56.0 %, respectively, and between SP4011 and S. pneumoniae were 93.3 % and 52.2 %, respectively. Biochemical characteristics also showed differences between SP4011 and S. pseodopneumoniae and between SP4011 and S. pneumoniae. These results indicate that SP4011 is a novel species. CONCLUSION: Our findings indicate that SP4011 is a novel species of the genus Streptococcus. SP4011 has biochemical characteristics similar to S. pneumoniae, making it challenging to differentiate and requiring careful clinical diagnosis. This isolate was proposed to be a novel species, Streptococcus parapneumoniae sp. nov. The strain type is SP4011T (= JCM 36068T = KCTC 21228T).


Assuntos
Bacteriemia , Filogenia , Pielonefrite , Infecções Estreptocócicas , Streptococcus , Humanos , Masculino , Infecções Estreptocócicas/microbiologia , Bacteriemia/microbiologia , Streptococcus/genética , Streptococcus/isolamento & purificação , Streptococcus/classificação , Pielonefrite/microbiologia , Genoma Bacteriano , DNA Bacteriano/genética , Sequenciamento Completo do Genoma , Antibacterianos/farmacologia , Hibridização de Ácido Nucleico , Técnicas de Tipagem Bacteriana , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade
2.
Skin Res Technol ; 30(6): e13804, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38895789

RESUMO

OBJECTIVE: Research has previously established connections between the intestinal microbiome and the progression of some cancers. However, there is a noticeable gap in the literature in regard to using Mendelian randomisation (MR) to delve into potential causal relationships between the gut microbiota (GM) and basal cell carcinoma (BCC). Therefore, the purpose of our study was to use MR to explore the causal relationship between four kinds of GM (Bacteroides, Streptococcus, Proteobacteria and Lachnospiraceae) and BCC. METHODS: We used genome-wide association study (GWAS) data and MR to explore the causal relationship between four kinds of GM and BCC. This study primarily employed the random effect inverse variance weighted (IVW) model for analysis, as complemented by additional methods including the simple mode, weighted median, weighted mode and MR‒Egger methods. We used heterogeneity and horizontal multiplicity to judge the reliability of each analysis. MR-PRESSO was mainly used to detect and correct outliers. RESULTS: The random-effects IVW results showed that Bacteroides (OR = 0.936, 95% CI = 0.787-1.113, p = 0.455), Streptococcus (OR = 0.974, 95% CI = 0.875-1.083, p = 0.629), Proteobacteria (OR = 1.113, 95% CI = 0.977-1.267, p = 0.106) and Lachnospiraceae (OR = 1.027, 95% CI = 0.899-1.173, p = 0.688) had no genetic causal relationship with BCC. All analyses revealed no horizontal pleiotropy, heterogeneity or outliers. CONCLUSION: We found that Bacteroides, Streptococcus, Proteobacteria and Lachnospiraceae do not increase the incidence of BCC at the genetic level, which provides new insight for the study of GM and BCC.


Assuntos
Carcinoma Basocelular , Microbioma Gastrointestinal , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Neoplasias Cutâneas , Humanos , Carcinoma Basocelular/genética , Carcinoma Basocelular/microbiologia , Microbioma Gastrointestinal/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/microbiologia , Streptococcus/genética , Proteobactérias/genética , Bacteroides/genética , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único
3.
Acta Derm Venereol ; 104: adv34892, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898675

RESUMO

Psoriasis results from both genetic predisposition and environmental triggers, such as Streptococcal infections. This study aimed to explore the correlation between the abundance of the Streptococcus genus on the skin and psoriasis severity in individuals carrying specific psoriasis-associated genetic variants. Studying 39 chronic plaque psoriasis patients, the elbow skin microbiome and 49 psoriasis-related single nucleotide polymorphisms (SNPs) were analysed using a MiSeq instrument for 16S rDNA sequencing, and CLC Genomic Workbench for processing and analysis. Through multivariate linear regression analysis, a positive correlation was found between Streptococcus genus abundance and psoriasis severity in patients with certain FBXL19 gene-related heterozygous SNPs (rs12924903, rs10782001, rs12445568). Conversely, a negative association was observed in patients with homozygous genotypes. Moreover, we identified an association between Streptococcus abundance and psoriasis severity in patients with genetic variants related to IL-22, ERAP1, NOS2, and ILF3. This is the first study highlighting a positive association between Streptococcus skin colonization and psoriasis severity in patients with heterozygous genotypes within the FBXL19 gene region. FXBL19 targets the IL-33/IL1RL1 axis, crucial in infectious diseases and innate immunity promotion. These novel results suggests an intricate interaction among host genetics, Streptococcus skin colonization, and psoriasis inflammation, offering potential avenues for novel treatment approaches.


Assuntos
Proteínas F-Box , Polimorfismo de Nucleotídeo Único , Psoríase , Índice de Gravidade de Doença , Pele , Streptococcus , Humanos , Masculino , Psoríase/genética , Psoríase/microbiologia , Feminino , Pessoa de Meia-Idade , Adulto , Pele/microbiologia , Streptococcus/genética , Streptococcus/isolamento & purificação , Proteínas F-Box/genética , Predisposição Genética para Doença , Fenótipo , Heterozigoto , Interações Hospedeiro-Patógeno , Homozigoto , Ribotipagem , Idoso
4.
Int J Biol Macromol ; 270(Pt 2): 132334, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744368

RESUMO

Hyaluronic acid (HA), which is a highly versatile glycosaminoglycan, is widely applied across the fields of food, cosmetics, and pharmaceuticals. It is primary produced through Streptococcus fermentation, but the product presents inherent challenges concerning consistency and potential pathogenicity. However, recent strides in molecular biology have paved the way for genetic engineering, which facilitates the creation of high-yield, nonpathogenic strains adept at synthesizing HA with specific molecular weights. This comprehensive review extensively explores the molecular biology underpinning pivotal HA synthase genes, which elucidates the intricate mechanisms governing HA synthesis. Moreover, it delineates various strategies employed in engineering HA-producing strains.


Assuntos
Engenharia Genética , Ácido Hialurônico , Streptococcus , Ácido Hialurônico/biossíntese , Streptococcus/genética , Streptococcus/metabolismo , Engenharia Genética/métodos , Fermentação , Hialuronan Sintases/genética , Hialuronan Sintases/metabolismo , Vias Biossintéticas/genética
5.
Biosensors (Basel) ; 14(5)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38785731

RESUMO

Loop-mediated isothermal amplification (LAMP) technology is extensively utilized for the detection of infectious diseases owing to its rapid processing and high sensitivity. Nevertheless, conventional LAMP signaling methods frequently suffer from a lack of sequence specificity. This study integrates a triplex-forming oligonucleotide (TFO) probe into the LAMP process to enhance sequence specificity. This TFO-LAMP technique was applied for the detection of Group B Streptococcus (GBS). The TFO probe is designed to recognize a specific DNA sequence, termed the TFO targeting sequence (TTS), within the amplified product, facilitating detection via fluorescent instrumentation or lateral flow biosensors. A screening method was developed to identify TFO sequences with high affinity to integrate TFO into LAMP, subsequently incorporating a selected TTS into an LAMP primer. In the TFO-LAMP assay, a FAM-labeled TFO is added to target the TTS. This TFO can be captured by an anti-FAM antibody on lateral flow test strips, thus creating a nucleic acid testing biosensor. The efficacy of the TFO-LAMP assay was confirmed through experiments with specimens spiked with varying concentrations of GBS, demonstrating 85% sensitivity at 300 copies and 100% sensitivity at 30,000 copies. In conclusion, this study has successfully developed a TFO-LAMP technology that offers applicability in lateral flow biosensors and potentially other biosensor platforms.


Assuntos
Técnicas Biossensoriais , Técnicas de Amplificação de Ácido Nucleico , Oligonucleotídeos , Streptococcus/genética , Streptococcus/isolamento & purificação , Humanos , DNA Bacteriano/análise , Técnicas de Diagnóstico Molecular
6.
BMC Res Notes ; 17(1): 138, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750516

RESUMO

OBJECTIVE: The purpose of this study was to identify the M protein trans-acting positive regulator (Mga) orthologue and its adjacent M-like protein (SCM) alleles in Streptococcus canis. RESULTS: Using the 39 SCM allele isolates and polymerase chain reaction-based amplification and sequencing, we obtained the deduced Mga amino acid (AA) sequences. The 22 Mga sequences in whole-genome sequences were obtained by searching the National Collection of Type Cultures 12,191(T) Mga sequence into the database. The percentage identity to the type-strain Mga sequence was examined along with its size. The presence of the Mga-specific motifs was confirmed. Of the 62 strains, we identified 59 Mga sequences with an AA size of 509 (except for four different sizes). Percentage identity ranged from 96.66 to 100% with the confirmed Mga-specific motifs and diverse SCM allele populations. Our findings support the presence of an Mga orthologue and diverse SCM allele populations.


Assuntos
Alelos , Proteínas de Bactérias , Streptococcus , Streptococcus/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Aminoácidos
7.
BMC Vet Res ; 20(1): 193, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734661

RESUMO

BACKGROUND: Bovine mastitis is a widespread disease affecting dairy cattle worldwide and it generates substantial losses for dairy farmers. Mastitis may be caused by bacteria, fungi or algae. The most common species isolated from infected milk are, among others, Streptococcus spp., Escherichia coli, Staphylococcus aureus and non-aureus staphylococci and mammaliicocci. The aim of this paper is to determine the frequency of occurrence of bacterial species in milk samples from cows with mastitis from three regions of Poland: the north-east, the south-west and the south. To this end 203 milk samples taken from cows with a clinical form (CM) of mastitis (n = 100) and healthy animals (n = 103) were examined, which included culture on an appropriate medium followed by molecular detection of E. coli, S. aureus, Streptococcus agalactiae and Streptococcus uberis, as one of the most common species isolated from mastitis milk. RESULTS: The results obtained indicated that S. uberis was the most commonly cultivated CM species (38%, n = 38), followed by S. aureus (22%, n = 22), E. coli (21%, n = 21) and S. agalactiae (18%, n = 18). Similar frequencies in molecular methods were obtained for S. uberis (35.1%) and S. aureus (28.0%). The variation of sensitivity of both methods may be responsible for the differences in the E. coli (41.0%, p = 0.002) and S. agalactiae (5.0%, p = 0.004) detection rates. Significant differences in composition of species between three regions of Poland were noted for E. coli incidence (p < 0.001), in both the culture and molecular methods, but data obtained by the PCR method indicated that this species was the least common in north-eastern Poland, while the culture method showed that in north-eastern Poland E. coli was the most common species. Significant differences for the molecular method were also observed for S. uberis (p < 0.001) and S. aureus (p < 0.001). Both species were most common in southern and south-western Poland. CONCLUSIONS: The results obtained confirm the need to introduce rapid molecular tests for veterinary diagnostics, as well as providing important epidemiological data, to the best of our knowledge data on Polish cows in selected areas of Poland is lacking.


Assuntos
Mastite Bovina , Leite , Streptococcus , Animais , Bovinos , Mastite Bovina/microbiologia , Mastite Bovina/epidemiologia , Polônia/epidemiologia , Feminino , Leite/microbiologia , Streptococcus/isolamento & purificação , Streptococcus/genética , Streptococcus/classificação , Escherichia coli/isolamento & purificação , Escherichia coli/genética , Escherichia coli/classificação , Staphylococcus aureus/isolamento & purificação , Staphylococcus aureus/genética , Streptococcus agalactiae/isolamento & purificação , Streptococcus agalactiae/genética , Bactérias/isolamento & purificação , Bactérias/classificação , Bactérias/genética
8.
Artigo em Inglês | MEDLINE | ID: mdl-38695863

RESUMO

Human breast milk contains lactic acid bacteria (LAB), which have an important influence on the composition of the intestinal microbia of infants. In this study, one strain of an α-hemolytic species of the genus Streptococcus, IMAU99199T, isolated from the breast milk of a healthy nursing mother in Hohhot city PR China, was studied to characterise its taxonomic status using phenotypic and molecular taxonomic methods. The results indicated that it represented a member of the mitis-suis clade, pneumoniae subclade of the genus Streptococcus. It is a Gram-stain-positive, catalase-negative and oxidase-negative bacterium, and the cells are globular, paired or arranged in short chains. The results of a phylogenetic analysis of its 16S rRNA gene and two housekeeping genes (gyrB and rpoB) placed it in the genus Streptococcus. A phylogenetic tree based on 135 single-copy genes sequences indicated that IMAU99199T formed a closely related branch well separated from 'Streptococcus humanilactis' IMAU99125, 'Streptococcus bouchesdurhonensis' Marseille Q6994, Streptococcus mitis NCTC 12261T, 'Streptococcus vulneris' DM3B3, Streptococcus toyakuensis TP1632T, Streptococcus pseudopneumoniae ATCC BAA-960T and Streptococcus pneumoniae NCTC 7465T. IMAU99199T and 'S. humanilactis' IMAU99125 had the highest average nucleotide identity (93.7 %) and digital DNA-DNA hybridisation (55.3 %) values, which were below the accepted thresholds for novel species. The DNA G+C content of the draft genome of IMAU99199T was 39.8 %. The main cellular fatty acids components of IMAU99199T were C16 : 0 and C16 : 1ω7. It grew at a temperature range of 25-45 °C (the optimum growth temperature was 37 °C) and a pH range of 5.0-8.0 (the optimum growth pH was 7.0). These data indicate that strain IMAU99199T represents a novel species in the genus Streptococcus, for which the name Streptococcus hohhotensis sp. nov. is proposed. The type strain is IMAU99199T (=GDMCC 1.1874T=KCTC 21155T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Leite Humano , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Streptococcus , RNA Ribossômico 16S/genética , Humanos , Feminino , China , DNA Bacteriano/genética , Leite Humano/microbiologia , Streptococcus/genética , Streptococcus/isolamento & purificação , Streptococcus/classificação , Ácidos Graxos/análise , Hibridização de Ácido Nucleico , Genes Bacterianos
9.
Nat Commun ; 15(1): 3477, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658529

RESUMO

Streptococcus dysgalactiae subspecies equisimilis (SDSE) and Streptococcus pyogenes share skin and throat niches with extensive genomic homology and horizontal gene transfer (HGT) possibly underlying shared disease phenotypes. It is unknown if cross-species transmission interaction occurs. Here, we conduct a genomic analysis of a longitudinal household survey in remote Australian First Nations communities for patterns of cross-species transmission interaction and HGT. Collected from 4547 person-consultations, we analyse 294 SDSE and 315 S. pyogenes genomes. We find SDSE and S. pyogenes transmission intersects extensively among households and show that patterns of co-occurrence and transmission links are consistent with independent transmission without inter-species interference. We identify at least one of three near-identical cross-species mobile genetic elements (MGEs) carrying antimicrobial resistance or streptodornase virulence genes in 55 (19%) SDSE and 23 (7%) S. pyogenes isolates. These findings demonstrate co-circulation of both pathogens and HGT in communities with a high burden of streptococcal disease, supporting a need to integrate SDSE and S. pyogenes surveillance and control efforts.


Assuntos
Transferência Genética Horizontal , Sequências Repetitivas Dispersas , Infecções Estreptocócicas , Streptococcus pyogenes , Streptococcus , Streptococcus pyogenes/genética , Streptococcus pyogenes/isolamento & purificação , Streptococcus pyogenes/classificação , Infecções Estreptocócicas/transmissão , Infecções Estreptocócicas/microbiologia , Humanos , Streptococcus/genética , Streptococcus/isolamento & purificação , Sequências Repetitivas Dispersas/genética , Austrália , Genoma Bacteriano/genética , Feminino , Masculino , Criança , Características da Família , Adulto , Pré-Escolar , Adolescente , Estudos Longitudinais , Farmacorresistência Bacteriana/genética , Adulto Jovem
10.
J Vet Med Sci ; 86(5): 468-473, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38569837

RESUMO

Streptococcus uberis is one of major pathogens causing bovine mastitis. However, there is poor information on antimicrobial resistance (AMR) among the Japanese isolates. To provide treatment information for the mastitis caused by S. uberis in Japan, we aimed to clarify AMR patterns of the isolates from bovine milk mainly in Chiba. AMR phenotyping/genotyping [blaZ-erm(A)-erm(B)-mef(A)-linB-lnuD-tet(M)-tet(O)-tet(K)-tet(L)-tet(S)] and multilocus sequence typing were performed to analyze relationships between AMR patterns and clonal complexes (CCs). Resistance to tetracycline-, macrolide-, and lincosamide-classes was mainly associated with possession of tet(O), tet(S), erm(B), linB, and lnuD genes. CC996 was significantly associated with multidrug resistance (P<0.0001). These findings will aid Chiba farm animal clinics in treating bovine mastitis.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Mastite Bovina , Leite , Infecções Estreptocócicas , Streptococcus , Animais , Bovinos , Streptococcus/efeitos dos fármacos , Streptococcus/genética , Streptococcus/isolamento & purificação , Japão , Leite/microbiologia , Mastite Bovina/microbiologia , Feminino , Antibacterianos/farmacologia , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/tratamento farmacológico , Tipagem de Sequências Multilocus , Genótipo , Testes de Sensibilidade Microbiana
11.
Microbiol Spectr ; 12(6): e0051724, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38687019

RESUMO

There is a growing interest in the use of probiotic bacteria as biosensors for the detection of disease. However, there is a lack of bacterial receptors developed for specific disease biomarkers. Here, we have investigated the use of the peptide-regulated transcription factor ComR from Streptococcus spp. for specific peptide biomarker detection. ComR exhibits a number of attractive features that are potentially exploitable to create a biomolecular switch for engineered biosensor circuitry within the probiotic organism Lactiplantibacillus plantarum WCFS1. Through iterative design-build-test cycles, we developed a genomically integrated, ComR-based biosensor circuit that allowed WCFS1 to detect low nanomolar concentrations of ComR's cognate peptide XIP. By screening a library of ComR proteins with mutant residues substituted at the K100 position, we identified mutations that increased the specificity of ComR toward an amidated version of its cognate peptide, demonstrating the potential for ComR to detect this important class of biomarker.IMPORTANCEUsing bacteria to detect disease is an exciting possibility under active study. Detecting extracellular peptides with specific amino acid sequences would be particularly useful as these are important markers of health and disease (biomarkers). In this work, we show that a probiotic bacteria (Lactiplantibacillus plantarum) can be genetically engineered to detect specific extracellular peptides using the protein ComR from Streptococcus bacteria. In its natural form, ComR allowed the probiotic bacteria to detect a specific peptide, XIP. We then modified XIP to be more like the peptide biomarkers found in humans and engineered ComR so that it activated with this modified XIP and not the original XIP. This newly engineered ComR also worked in the probiotic bacteria, as expected. This suggests that with additional engineering, ComR might be able to activate with human peptide biomarkers and be used by genetically engineered probiotic bacteria to better detect disease.


Assuntos
Proteínas de Bactérias , Peptídeos , Fatores de Transcrição , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peptídeos/metabolismo , Peptídeos/genética , Probióticos/metabolismo , Mutação , Técnicas Biossensoriais , Lactobacillus plantarum/genética , Lactobacillus plantarum/metabolismo , Regulação Bacteriana da Expressão Gênica , Streptococcus/genética , Streptococcus/metabolismo
12.
Vet Res ; 55(1): 51, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622639

RESUMO

Lyophilized Streptococcus spp. isolates (n = 50) from animal samples submitted to the diagnostic laboratory at the University of Connecticut in the 1940s were revivified to investigate the genetic characteristics using whole-genome sequencing (WGS). The Streptococcus spp. isolates were identified as follows; S. agalactiae (n = 14), S. dysgalactiae subsp. dysgalactiae (n = 10), S. dysgalactiae subsp. equisimils (n = 5), S. uberis (n = 8), S. pyogenes (n = 7), S. equi subsp. zooepidemicus (n = 4), S. oralis (n = 1), and S. pseudoporcinus (n = 1). We identified sequence types (ST) of S. agalactiae, S. dysgalactiae, S. uberis, S. pyogenes, and S. equi subsp. zooepidemicus and reported ten novel sequence types of those species. WGS analysis revealed that none of Streptococcus spp. carried antibiotic resistance genes. However, tetracycline resistance was observed in four out of 15 S. dysgalactiae isolates and in one out of four S. equi subsp. zooepidemicus isolate. This data highlights that antimicrobial resistance is pre-existed in nature before the use of antibiotics. The draft genome sequences of isolates from this study and 426 complete genome sequences of Streptococcus spp. downloaded from BV-BRC and NCBI GenBank database were analyzed for virulence gene profiles and phylogenetic relationships. Different Streptococcus species demonstrated distinct virulence gene profiles, with no time-related variations observed. Phylogenetic analysis revealed high genetic diversity of Streptococcus spp. isolates from the 1940s, and no clear spatio-temporal clustering patterns were observed among Streptococcus spp. analyzed in this study. This study provides an invaluable resource for studying the evolutionary aspects of antibiotic resistance acquisition and virulence in Streptococcus spp.


Assuntos
Antibacterianos , Infecções Estreptocócicas , Animais , Antibacterianos/farmacologia , Virulência/genética , Infecções Estreptocócicas/veterinária , Filogenia , Streptococcus/genética
13.
Res Vet Sci ; 173: 105242, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38640833

RESUMO

Streptococcus equi subsp. zooepidemicus (S. zooepidemicus) is a mucosal commensal of the lower genital tract in horses and is the most isolated bacterium causing endometritis in mares. The aim of this study was to determine the molecular diversity of S. zooepidemicus obtained from endometritis in mares in Buenos Aires province, Argentina. Thirty isolates obtained from the uterus of mares in 2005 and 2017 were studied. The MLST scheme was applied to identify the Argentinian genotypes and the clonal relationships and patterns of evolutionary descent were identified using the eBURST algorithm - goeBURST. Twenty six different Sequence types (STs) were identified, being only 11 of them previously reported in horses and also, from several host species and tissues. The other 15 STs were reported in Argentinian reproductive strains of mares in our study for the first time. The genotypes obtained from uterus in Argentina were not evenly distributed when all the published S. zooepidemicus STs were analysed, thus, it was not possible to establish that the same lineage circulates in our equine population. The fact that the identified genotypes were also reported in other countries, diverse samples and host species suggest that there is not a host, and an anatomical niche adaptation. Finally, the isolation of the same genotype in the vagina/clitoris and the uterus of the same mare highlights the versatility of S. zooepidemicus and its role as an opportunistic pathogen.


Assuntos
Endometrite , Genótipo , Doenças dos Cavalos , Infecções Estreptocócicas , Animais , Cavalos/microbiologia , Doenças dos Cavalos/microbiologia , Feminino , Argentina , Endometrite/veterinária , Endometrite/microbiologia , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/microbiologia , Variação Genética , Tipagem de Sequências Multilocus/veterinária , Útero/microbiologia , Streptococcus/genética , Streptococcus/isolamento & purificação , Streptococcus/classificação , Streptococcus equi/genética , Streptococcus equi/isolamento & purificação , Streptococcus equi/classificação
14.
Nucleic Acids Res ; 52(7): 4079-4097, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38499498

RESUMO

Genome-wide screens have become powerful tools for elucidating genotype-to-phenotype relationships in bacteria. Of the varying techniques to achieve knockout and knockdown, CRISPR base editors are emerging as promising options. However, the limited number of available, efficient target sites hampers their use for high-throughput screening. Here, we make multiple advances to enable flexible base editing as part of high-throughput genetic screening in bacteria. We first co-opt the Streptococcus canis Cas9 that exhibits more flexible protospacer-adjacent motif recognition than the traditional Streptococcus pyogenes Cas9. We then expand beyond introducing premature stop codons by mutating start codons. Next, we derive guide design rules by applying machine learning to an essentiality screen conducted in Escherichia coli. Finally, we rescue poorly edited sites by combining base editing with Cas9-induced cleavage of unedited cells, thereby enriching for intended edits. The efficiency of this dual system was validated through a conditional essentiality screen based on growth in minimal media. Overall, expanding the scope of genome-wide knockout screens with base editors could further facilitate the investigation of new gene functions and interactions in bacteria.


Assuntos
Sistemas CRISPR-Cas , Escherichia coli , Edição de Genes , Edição de Genes/métodos , Escherichia coli/genética , Ensaios de Triagem em Larga Escala/métodos , Genoma Bacteriano/genética , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Streptococcus/genética , Streptococcus pyogenes/genética , Streptococcus pyogenes/enzimologia , Aprendizado de Máquina , RNA Guia de Sistemas CRISPR-Cas/genética
15.
Genes Genomics ; 46(4): 499-510, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453815

RESUMO

BACKGROUND: The skin microbiome is essential in guarding against harmful pathogens and responding to environmental changes by generating substances useful in the cosmetic and pharmaceutical industries. Among these microorganisms, Streptococcus is a bacterial species identified in various isolation sources. In 2021, a strain of Streptococcus infantis, CX-4, was identified from facial skin and found to be linked to skin structure and elasticity. As the skin-derived strain differs from other S. infantis strains, which are usually of oral origin, it emphasizes the significance of bacterial variation by the environment. OBJECTIVE: This study aims to explore the unique characteristics of the CX-4 compared to seven oral-derived Streptococcus strains based on the Whole-Genome Sequencing data, focusing on its potential role in skin health and its possible application in cosmetic strategies. METHODS: The genome of the CX-4 strain was constructed using PacBio Sequencing, with the assembly performed using the SMRT protocol. Comparative whole-genome analysis was then performed with seven closely related strains, utilizing web-based tools like PATRIC, OrthoVenn3, and EggNOG-mapper, for various analyses, including protein association analysis using STRING. RESULTS: Our analysis unveiled a substantial number of Clusters of Orthologous Groups in diverse functional categories in CX-4, among which sphingosine kinase (SphK) emerged as a unique product, exclusively present in the CX-4 strain. SphK is a critical enzyme in the sphingolipid metabolic pathway, generating sphingosine-1-phosphate. The study also brought potential associations with isoprene formation and retinoic acid synthesis, the latter being a metabolite of vitamin A, renowned for its crucial function in promoting skin cell growth, differentiation, and maintaining of skin barrier integrity. These findings collectively suggest the potential of the CX-4 strain in enhancing of skin barrier functionality. CONCLUSION: Our research underscores the potential of the skin-derived S. infantis CX-4 strain by revealing unique bacterial compounds and their potential roles on human skin.


Assuntos
Genoma Bacteriano , Streptococcus , Humanos , Filogenia , Streptococcus/genética , Sequenciamento Completo do Genoma
16.
Microb Genom ; 10(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38512314

RESUMO

Streptococcus uberis is a globally endemic and poorly controlled cause of bovine mastitis impacting the sustainability of the modern dairy industry. A core genome was derived from 579 newly sequenced S. uberis isolates, along with 305 publicly available genome sequences of S. uberis isolated from 11 countries around the world and used to develop a core genome multi-locus sequence typing (cgMLST) scheme. The S. uberis core genome comprised 1475 genes, and these were used to identify 1447 curated loci that were indexed into the cgMLST scheme. This was able to type 1012 of 1037 (>97  %) isolates used and differentiated the associated sequences into 932 discrete core genome sequence types (cgSTs). Analysis of the phylogenetic relationships of cgSTs revealed no clear clustering of isolates based on metadata such as disease status or year of isolation. Geographical clustering of cgSTs was limited to identification of a UK-centric clade, but cgSTs from UK isolates were also dispersed with those originating from other geographical regions across the entire phylogenetic topology. The cgMLST scheme offers a new tool for the detailed analysis of this globally important pathogen of dairy cattle. Initial analysis has re-emphasized and exemplified the genetically diverse nature of the global population of this opportunistic pathogen.


Assuntos
Streptococcus , Animais , Bovinos , Feminino , Tipagem de Sequências Multilocus , Filogenia , Streptococcus/genética , Análise por Conglomerados
17.
Arch Microbiol ; 206(4): 168, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489085

RESUMO

One Gram stain-positive, catalase-negative, α-hemolytic, chain-forming or paired cocci, designated ST22-14T, was isolated from a blood culture of a child with suspected infection. The results of 16S rRNA gene sequences analyses showed that the most closely related species to strain ST22-14T were "Streptococcus vulneris" DM3B3T (99.2%), Streptococcus mitis NCTC 12261T (99.0%), "Streptococcus gwangjuense" ChDC B345T, (99.0%), Streptococcus oralis subsp. dentisani 7747T (99.0%), Streptococcus downii CECT 9732T (99.0%), and Streptococcus infantis ATCC 700779T (98.9%). The genome of strain ST22-14T consists of 2,053,261 bp with a G + C content of 39.4%. Average nucleotide identity values between strain ST22-14T and Streptococcus mitis NCTC 12261T or other five species were from 82.2 to 88.0%. In silico DNA-DNA hybridization of ST22-14T showed an estimated DNA reassociation value of 34.6% with the closest species. The main cellular fatty acids of strain ST22-14T were 16:0, 18:0, 14:0, 18:1ω7c and 18:1ω6c. Based on these results, strain ST22-14T should be classified as a novel species of genus Streptococcus, for which the name Streptococcus taonis sp. nov. is proposed (type strain ST22-14T = NBRC 116002T = BCRC 81402T).


Assuntos
Hemocultura , Streptococcus , Criança , Humanos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Streptococcus/genética , DNA Bacteriano/genética , Filogenia , Ácidos Graxos , Técnicas de Tipagem Bacteriana , Hibridização de Ácido Nucleico
18.
Microbiol Spectr ; 12(4): e0188523, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38488366

RESUMO

Capsular polysaccharides (CPS) in Streptococcus pneumoniae are pivotal for bacterial virulence and present extensive diversity. While oral streptococci show pronounced antigenicity toward pneumococcal capsule-specific sera, insights into evolution of capsule diversity remain limited. This study reports a pneumococcal CPS-like genetic locus in Streptococcus parasanguinis, a predominant oral Streptococcus. The discovered locus comprises 15 genes, mirroring high similarity to those from the Wzy-dependent CPS locus of S. pneumoniae. Notably, S. parasanguinis elicited a reaction with pneumococcal 19B antiserum. Through nuclear magnetic resonance analysis, we ascertained that its CPS structure matches the chemical composition of the pneumococcal 19B capsule. By introducing the glucosyltransferase gene cps19cS from a pneumococcal serotype 19C, we successfully transformed S. parasanguinis antigenicity from 19B to 19C. Furthermore, substituting serotype-specific genes, cpsI and cpsJ, with their counterparts from pneumococcal serotype 19A and 19F enabled S. parasanguinis to generate 19A- and 19F-specific CPS, respectively. These findings underscore that S. parasanguinis harbors a versatile 19B-like CPS adaptable to other serotypes. Remarkably, after deleting the locus's initial gene, cpsE, responsible for sugar transfer, we noted halted CPS production, elongated bacterial chains, and diminished biofilm formation. A similar phenotype emerged with the removal of the distinct gene cpsZ, which encodes a putative autolysin. These data highlight the importance of S. parasanguinis CPS for biofilm formation and propose a potential shared ancestry of its CPS locus with S. pneumoniae. IMPORTANCE: Diverse capsules from Streptococcus pneumoniae are vital for bacterial virulence and pathogenesis. Oral streptococci show strong responses to a wide range of pneumococcal capsule-specific sera. Yet, the evolution of this capsule diversity in relation to microbe-host interactions remains underexplored. Our research delves into the connection between commensal oral streptococcal and pneumococcal capsules, highlighting the potential for gene transfer and evolution of various capsule types. Understanding the genetic and evolutionary factors that drive capsule diversity in S. pneumoniae and its related oral species is essential for the development of effective pneumococcal vaccines. The present findings provide fresh perspectives on the cross-reactivity between commensal streptococci and S. pneumoniae, its influence on bacteria-host interactions, and the development of new strategies to manage and prevent pneumococcal illnesses by targeting and modulating commensal streptococci.


Assuntos
Streptococcus pneumoniae , Streptococcus , Streptococcus pneumoniae/genética , Streptococcus/genética , Polissacarídeos , Sorogrupo , Vacinas Pneumocócicas , Engenharia Genética , Cápsulas Bacterianas , Polissacarídeos Bacterianos
19.
mSphere ; 9(2): e0077123, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38319113

RESUMO

The bacteria within supragingival biofilms participate in complex exchanges with other microbes inhabiting the same niche. One example is the mutans group streptococci (Streptococcus mutans), implicated in the development of tooth decay, and other health-associated commensal streptococci species. Previously, our group transcriptomically characterized intermicrobial interactions between S. mutans and several species of oral bacteria. However, these experiments were carried out in a medium without human saliva. To better mimic their natural environment, we first evaluated how inclusion of saliva affected growth and biofilm formation of eight Streptococcus species individually and found saliva to positively benefit growth rates while negatively influencing biofilm biomass accumulation and altering spatial arrangement. These results carried over during evaluation of 29 saliva-derived isolates of various species. Surprisingly, we also found that addition of saliva increased the competitive behaviors of S. mutans in coculture competitions against commensal streptococci that led to increases in biofilm microcolony volumes. Through transcriptomically characterizing mono- and cocultures of S. mutans and Streptococcus oralis with and without saliva, we determined that each species developed a nutritional niche under mixed-species growth, with S. mutans upregulating carbohydrate uptake and utilization pathways while S. oralis upregulated genome features related to peptide uptake and glycan foraging. S. mutans also upregulated genes involved in oxidative stress tolerance, particularly manganese uptake, which we could artificially manipulate by supplementing in manganese leading to an advantage over its opponent. Our report highlights observable changes in microbial behaviors through leveraging environmental- and host-supplied resources over their competitors. IMPORTANCE: Dental caries (tooth decay) is the most prevalent disease for both children and adults nationwide. Caries are initiated from demineralization of the enamel due to organic acid production through the metabolic activity of oral bacteria growing in biofilm communities attached to the tooth's surface. Mutans group streptococci are closely associated with caries development and initiation of the cariogenic cycle, which decreases the amount of acid-sensitive, health-associated commensal bacteria while selecting for aciduric and acidogenic species that then further drives the disease process. Defining the exchanges that occur between mutans group streptococci and oral commensals in a condition that closely mimics their natural environment is of critical need toward identifying factors that can influence odontopathogen establishment, persistence, and outgrowth. The goal of our research is to develop strategies, potentially through manipulation of microbial interactions characterized here, that prevent the emergence of mutans group streptococci while keeping the protective flora intact.


Assuntos
Cárie Dentária , Saliva , Criança , Humanos , Saliva/microbiologia , Comportamento Competitivo , Manganês/metabolismo , Streptococcus/genética , Streptococcus mutans/genética , Streptococcus mutans/metabolismo , Biofilmes
20.
Microbiol Spectr ; 12(3): e0300923, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38289047

RESUMO

The relationship between COVID-19 and nasopharyngeal (NP) microbiota has been investigated mainly in the adult population. We explored the NP profile of children affected by COVID-19, compared to healthy controls (CTRLs). NP swabs of children with COVID-19, collected between March and September 2020, were investigated at the admission (T0), 72 h to 7 days (T1), and at the discharge (T2) of the patients. NP microbiota was analyzed by 16S rRNA targeted-metagenomics. Data from sequencing were investigated by QIIME 2.0 and PICRUSt 2. Multiple machine learning (ML) models were exploited to classify patients compared to CTRLs. The NP microbiota of COVID-19 patients (N = 71) was characterized by reduction of α-diversity compared to CTRLs (N = 59). The NP microbiota of COVID-19 cohort appeared significantly enriched in Streptococcus, Haemophilus, Staphylococcus, Veillonella, Enterococcus, Neisseria, Moraxella, Enterobacteriaceae, Gemella, Bacillus, and reduced in Faecalibacterium, Akkermansia, Blautia, Bifidobacterium, Ruminococcus, and Bacteroides, compared to CTRLs (FDR < 0.001). Exploiting ML models, Enterococcus, Pseudomonas, Streptococcus, Capnocytopagha, Tepidiphilus, Porphyromonas, Staphylococcus, and Veillonella resulted as NP microbiota biomarkers, in COVID-19 patients. No statistically significant differences were found comparing the NP microbiota profile of COVID-19 patients during the time-points or grouping patients on the basis of high, medium, and low viral load (VL). This evidence provides specific pathobiont signatures of the NP microbiota in pediatric COVID-19 patients, and the reduction of anaerobic protective commensals. Our data suggest that the NP microbiota may have a specific disease-related signature since infection onset without changes during disease progression, regardless of the SARS-CoV-2 VL. IMPORTANCE: Since the beginning of pandemic, we know that children are less susceptible to severe COVID-19 disease. A potential role of the nasopharyngeal (NP) microbiota has been hypothesized but to date, most of the studies have been focused on adults. We studied the NP microbiota modifications in children affected by SARS-CoV-2 infection showing a specific NP microbiome profile, mainly composed by pathobionts and almost missing protective anaerobic commensals. Moreover, in our study, specific microbial signatures appear since the first days of infection independently from SARS-CoV-2 viral load.


Assuntos
COVID-19 , Microbiota , Adulto , Humanos , Criança , RNA Ribossômico 16S/genética , SARS-CoV-2/genética , Microbiota/genética , Nasofaringe , Streptococcus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA