Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Science ; 385(6715): eadd8947, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39298586

RESUMO

Humans with monogenic inborn errors responsible for extreme disease phenotypes can reveal essential physiological pathways. We investigated germline mutations in GNAI2, which encodes Gαi2, a key component in heterotrimeric G protein signal transduction usually thought to regulate adenylyl cyclase-mediated cyclic adenosine monophosphate (cAMP) production. Patients with activating Gαi2 mutations had clinical presentations that included impaired immunity. Mutant Gαi2 impaired cell migration and augmented responses to T cell receptor (TCR) stimulation. We found that mutant Gαi2 influenced TCR signaling by sequestering the guanosine triphosphatase (GTPase)-activating protein RASA2, thereby promoting RAS activation and increasing downstream extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)-AKT S6 signaling to drive cellular growth and proliferation.


Assuntos
Subunidade alfa Gi2 de Proteína de Ligação ao GTP , Mutação em Linhagem Germinativa , Receptores de Antígenos de Linfócitos T , Linfócitos T , Proteínas Ativadoras de ras GTPase , Humanos , Movimento Celular/genética , Proliferação de Células , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/genética , Imunidade/genética , Sistema de Sinalização das MAP Quinases , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Ativadoras de ras GTPase/genética , Proteínas ras/metabolismo , Proteínas ras/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linhagem
2.
Basic Res Cardiol ; 119(5): 717-732, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-38811421

RESUMO

Neutrophils are not only involved in immune defense against infection but also contribute to the exacerbation of tissue damage after ischemia and reperfusion. We have previously shown that genetic ablation of regulatory Gαi proteins in mice has both protective and deleterious effects on myocardial ischemia reperfusion injury (mIRI), depending on which isoform is deleted. To deepen and analyze these findings in more detail the contribution of Gαi2 proteins in resident cardiac vs circulating blood cells for mIRI was first studied in bone marrow chimeras. In fact, the absence of Gαi2 in all blood cells reduced the extent of mIRI (22,9% infarct size of area at risk (AAR) Gnai2-/- → wt vs 44.0% wt → wt; p < 0.001) whereas the absence of Gαi2 in non-hematopoietic cells increased the infarct damage (66.5% wt → Gnai2-/- vs 44.0% wt → wt; p < 0.001). Previously we have reported the impact of platelet Gαi2 for mIRI. Here, we show that infarct size was substantially reduced when Gαi2 signaling was either genetically ablated in neutrophils/macrophages using LysM-driven Cre recombinase (AAR: 17.9% Gnai2fl/fl LysM-Cre+/tg vs 42.0% Gnai2fl/fl; p < 0.01) or selectively blocked with specific antibodies directed against Gαi2 (AAR: 19.0% (anti-Gαi2) vs 49.0% (IgG); p < 0.001). In addition, the number of platelet-neutrophil complexes (PNCs) in the infarcted area were reduced in both, genetically modified (PNCs: 18 (Gnai2fl/fl; LysM-Cre+/tg) vs 31 (Gnai2fl/fl); p < 0.001) and in anti-Gαi2 antibody-treated (PNCs: 9 (anti-Gαi2) vs 33 (IgG); p < 0.001) mice. Of note, significant infarct-limiting effects were achieved with a single anti-Gαi2 antibody challenge immediately prior to vessel reperfusion without affecting bleeding time, heart rate or cellular distribution of neutrophils. Finally, anti-Gαi2 antibody treatment also inhibited transendothelial migration of human neutrophils (25,885 (IgG) vs 13,225 (anti-Gαi2) neutrophils; p < 0.001), collectively suggesting that a therapeutic concept of functional Gαi2 inhibition during thrombolysis and reperfusion in patients with myocardial infarction should be further considered.


Assuntos
Subunidade alfa Gi2 de Proteína de Ligação ao GTP , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica , Neutrófilos , Animais , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/imunologia , Traumatismo por Reperfusão Miocárdica/genética , Neutrófilos/metabolismo , Neutrófilos/imunologia , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/genética , Camundongos , Camundongos Endogâmicos C57BL , Masculino , Humanos , Modelos Animais de Doenças , Transdução de Sinais
3.
Elife ; 122024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651641

RESUMO

Inhibitory G alpha (GNAI or Gαi) proteins are critical for the polarized morphogenesis of sensory hair cells and for hearing. The extent and nature of their actual contributions remains unclear, however, as previous studies did not investigate all GNAI proteins and included non-physiological approaches. Pertussis toxin can downregulate functionally redundant GNAI1, GNAI2, GNAI3, and GNAO proteins, but may also induce unrelated defects. Here, we directly and systematically determine the role(s) of each individual GNAI protein in mouse auditory hair cells. GNAI2 and GNAI3 are similarly polarized at the hair cell apex with their binding partner G protein signaling modulator 2 (GPSM2), whereas GNAI1 and GNAO are not detected. In Gnai3 mutants, GNAI2 progressively fails to fully occupy the sub-cellular compartments where GNAI3 is missing. In contrast, GNAI3 can fully compensate for the loss of GNAI2 and is essential for hair bundle morphogenesis and auditory function. Simultaneous inactivation of Gnai2 and Gnai3 recapitulates for the first time two distinct types of defects only observed so far with pertussis toxin: (1) a delay or failure of the basal body to migrate off-center in prospective hair cells, and (2) a reversal in the orientation of some hair cell types. We conclude that GNAI proteins are critical for hair cells to break planar symmetry and to orient properly before GNAI2/3 regulate hair bundle morphogenesis with GPSM2.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP , Células Ciliadas Auditivas , Morfogênese , Animais , Camundongos , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/fisiologia , Polaridade Celular , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/genética
4.
J Biol Chem ; 300(5): 107211, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522511

RESUMO

Highly homologous members of the Gαi family, Gαi1-3, have distinct tissue distributions and physiological functions, yet their biochemical and functional properties are very similar. We recently identified PDZ-RhoGEF (PRG) as a novel Gαi1 effector that is poorly activated by Gαi2. In a proteomic proximity labeling screen we observed a strong preference for Gαi1 relative to Gαi2 with respect to engagement of a broad range of potential targets. We investigated the mechanistic basis for this selectivity using PRG as a representative target. Substitution of either the helical domain (HD) from Gαi1 into Gαi2 or substitution of a single amino acid, A230 in Gαi2 with the corresponding D in Gαi1, largely rescues PRG activation and interactions with other potential Gαi targets. Molecular dynamics simulations combined with Bayesian network models revealed that in the GTP bound state, separation at the HD-Ras-like domain (RLD) interface is more pronounced in Gαi2 than Gαi1. Mutation of A230 to D in Gαi2 stabilizes HD-RLD interactions via ionic interactions with R145 in the HD which in turn modify the conformation of Switch III. These data support a model where D229 in Gαi1 interacts with R144 and stabilizes a network of interactions between HD and RLD to promote protein target recognition. The corresponding A230 in Gαi2 is unable to stabilize this network leading to an overall lower efficacy with respect to target interactions. This study reveals distinct mechanistic properties that could underly differential biological and physiological consequences of activation of Gαi1 or Gαi2 by G protein-coupled receptors.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP , Transdução de Sinais , Humanos , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Simulação de Dinâmica Molecular , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/genética , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/química , Células HEK293 , Domínios Proteicos , Estabilidade Proteica , Ligação Proteica
5.
Appl Biochem Biotechnol ; 196(8): 5235-5248, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38153649

RESUMO

MiRNAs are related to neuronal proliferation and apoptosis following cerebral ischemia-reperfusion injury (CIRI). This study focused on miR-30c-5p in the disease. An oxygen-glucose deprivation/re-oxygenation (OGD/R) model was prepared in HT22 cells and transfected to overexpress miR-30c-5p and G Protein Subunit Alpha I2 (GNAI2) respectively or co-transfected to silence miR-30c-5p and GNAI2. Meanwhile, a middle cerebral artery occlusion (MCAO) model was constructed in mice, and miR-30c-5p and GNAI2 were silenced in vivo simultaneously. The mice were evaluated for neurological damage, apoptosis, and inflammation. HT22 cells were tested for cytotoxicity, proliferation, apoptosis, and inflammatory factors. The interaction between miR-30c-5p and GNAI2 was predicted, analyzed, and confirmed. MiR-30c-5p was found to be downregulated in both experimental models. miR-30c-5p reduced lactate dehydrogenase production, inflammatory response, inhibit apoptosis, and enhanced neuronal proliferation, while GNAI2 overexpression showed the opposite results. Downregulated miR-30c-5p worsened neurological function, apoptosis, and inflammation of MCAO mice while silencing GNAI2 attenuated the influence of downregulated miR-30c-5p. MiR-30c-5p can improve neuronal apoptosis and inflammatory response caused by CIRI and is neuroprotective by targeting GNAI2, providing a new target for treating CIRI.


Assuntos
Inflamação , MicroRNAs , Traumatismo por Reperfusão , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Camundongos , Masculino , Apoptose , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/genética , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/genética , Linhagem Celular , Neurônios/metabolismo , Camundongos Endogâmicos C57BL , Proliferação de Células
6.
Oxid Med Cell Longev ; 2022: 1254367, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275898

RESUMO

Purpose: Although the G protein subunit α i2 (GNAI2) is upregulated in multiple cancers, its prognostic value and exact role in the development of gastric cancer (GC) remain largely unknown. Methods: This study evaluated the effect of GNAI2 on the tumor microenvironment (TME) in GC, constructed an immune risk score (IRS) model based on differentially-expressed immune genes, and systematically correlated GNAI2 and epigenetic factor expression patterns with TME and IRS. Also, RT-qPCR, flow cytometry, Western blotting (WB), and transwell assays were carried out to explore the regulatory mechanism of GNAI2 in GC. Results: High GNAI2 expression was associated with poor prognosis. Cytokine activation, an increase in tumor-infiltrating immune cells (TIIC), and the accumulation of regulatory T cells in the tumor immune cycle were all promoted by the TME, which was significantly associated with GNAI2 expression. Two different differentially expressed mRNA (DER) modification patterns were determined. These two DERs-clusters had significantly different TME cell infiltrations and were classified as either noninflamed or immune-inflamed phenotypes. The IRS model constructed using differentially expressed genes (DEGs) had great potential in predicting GC prognosis. The IRS model was also used in assessing clinicopathological features, such as microsatellite instability (MSI) status, epithelial-mesenchymal transition (EMT) status, clinical stages, tumor mutational burden (TMB), and tumor immune dysfunction and exclusion (TIDE) scores. Low IRS scores were associated with high immune checkpoint gene expression. Cell and animal studies confirmed that GNAI2 activated PI3K/AKT pathway and promoted the growth and migration of GC cells. Conclusion: The IRS model can be used for survival prediction and GNAI2 serves as a candidate therapeutic target for GC patients.


Assuntos
Neoplasias Gástricas , Animais , Neoplasias Gástricas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Microambiente Tumoral/genética , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/genética , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Regulação Neoplásica da Expressão Gênica , RNA Mensageiro , Fatores de Risco , Citocinas/metabolismo
7.
Nat Commun ; 13(1): 674, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115535

RESUMO

Conductin/axin2 is a scaffold protein negatively regulating the pro-proliferative Wnt/ß-catenin signaling pathway. Accumulation of scaffold proteins in condensates frequently increases their activity, but whether condensation contributes to Wnt pathway inhibition by conductin remains unclear. Here, we show that the Gαi2 subunit of trimeric G-proteins induces conductin condensation by targeting a polymerization-inhibiting aggregon in its RGS domain, thereby promoting conductin-mediated ß-catenin degradation. Consistently, transient Gαi2 expression inhibited, whereas knockdown activated Wnt signaling via conductin. Colorectal cancers appear to evade Gαi2-induced Wnt pathway suppression by decreased Gαi2 expression and inactivating mutations, associated with shorter patient survival. Notably, the Gαi2-activating drug guanabenz inhibited Wnt signaling via conductin, consequently reducing colorectal cancer growth in vitro and in mouse models. In summary, we demonstrate Wnt pathway inhibition via Gαi2-triggered conductin condensation, suggesting a tumor suppressor function for Gαi2 in colorectal cancer, and pointing to the FDA-approved drug guanabenz for targeted cancer therapy.


Assuntos
Proteína Axina/genética , Neoplasias Colorretais/genética , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/genética , Via de Sinalização Wnt/genética , beta Catenina/genética , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Animais , Proteína Axina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Feminino , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Regulação Neoplásica da Expressão Gênica , Guanabenzo/farmacologia , Células HEK293 , Humanos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Mutação , Via de Sinalização Wnt/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , beta Catenina/metabolismo
8.
Genes (Basel) ; 12(8)2021 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-34440304

RESUMO

GNAI2 (G protein subunit alpha i2) is a signaling modulator or transducer, involved in several transmembrane signaling systems, that plays a vital role in the melanogenesis signaling pathway. However, whether GNAI2 regulates cell proliferation and apoptosis in rabbit melanocytes is not known. We found that GNAI2 was differentially expressed in rabbits with different coat colors using qRT-PCR and Wes assays. Furthermore, it was observed that the rabbits with black skin had the highest GNAI2 levels, and those with white skin had the lowest expression. The coding sequence of GNAI2 was successfully cloned and inserted into pcDNA3.1 and pcDNA3.1-Myc vectors. It was observed that the GNAI2 protein was mainly localized in the cytoplasm using the indirect immunofluorescence staining assay. Overexpression of GNAI2 significantly increased melanin content, promoted melanocyte proliferation, and inhibited melanocyte apoptosis. On the contrary, the knockdown of GNAI2 using siRNA had the opposite effect. In addition, GNAI2 significantly increased the mRNA expression levels of the melanin-related genes TYR, GPNMB, PMEL, and DCT in rabbit melanocytes. The results suggested that GNAI2 regulated melanocyte development by promoting melanocyte proliferation and inhibiting apoptosis.


Assuntos
Apoptose/fisiologia , Proliferação de Células/fisiologia , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/fisiologia , Melanócitos/citologia , Animais , Citoplasma/metabolismo , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/genética , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Técnicas de Silenciamento de Genes , Cor de Cabelo , Melaninas/biossíntese , Melanócitos/metabolismo , Coelhos
9.
Hepatology ; 74(6): 3110-3126, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34322898

RESUMO

BACKGROUND AND AIMS: NASH is an advanced stage of liver disease accompanied by lipid accumulation, inflammation, and liver fibrosis. Guanine nucleotide-binding protein G(i) subunit alpha-2 (GNAI2) is a member of the "inhibitory" class of α-subunits, and recent studies showed that Gnai2 deficiency is known to cause reduced weight in mice. However, the role of GNAI2 in hepatocytes, particularly in the context of liver inflammation and lipid metabolism, remains to be elucidated. Herein, we aim to ascertain the function of GNAI2 in hepatocytes and its impact on the development of NASH. APPROACH AND RESULTS: Human liver tissues were obtained from NASH patients and healthy persons to evaluate the expression and clinical relevance of GNAI2. In addition, hepatocyte-specific Gnai2-deficient mice (Gnai2hep-/- ) were fed either a Western diet supplemented with fructose in drinking water (WDF) for 16 weeks or a methionine/choline-deficient diet (MCD) for 6 weeks to investigate the regulatory role and underlying mechanism of Gnai2 in NASH. GNAI2 was significantly up-regulated in liver tissues of patients with NASH. Following feeding with WDF or MCD diets, livers from Gnai2hep-/- mice had reduced steatohepatitis with suppression of markers of inflammation and an increase in lipophagy compared to Gnai2flox/flox mice. Toll-like receptor 4 signals through nuclear factor kappa B to trigger p65-dependent transcription of Gnai2. Intriguingly, immunoprecipitation, immunofluorescence, and mass spectrometry identified peroxiredoxin 1 (PRDX1) as a binding partner of GNAI2. Moreover, the function of PRDX1 in the suppression of TNF receptor-associated factor 6 ubiquitin-ligase activity and glycerophosphodiester phosphodiesterase domain-containing 5-related phosphatidylcholine metabolism was inhibited by GNAI2. Suppression of GNAI2 combined with overexpression of PRDX1 reversed the development of steatosis and fibrosis in vivo. CONCLUSIONS: GNAI2 is a major regulator that leads to the development of NASH. Thus, inhibition of GNAI2 could be an effective therapeutic target for the treatment of NASH.


Assuntos
Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Hepatopatia Gordurosa não Alcoólica/imunologia , Peroxirredoxinas/metabolismo , Adulto , Animais , Autofagia/imunologia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Feminino , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/genética , Hepatócitos , Humanos , Fígado/imunologia , Fígado/patologia , Masculino , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Ligação Proteica/imunologia , Transdução de Sinais/imunologia , Adulto Jovem
10.
Nat Commun ; 12(1): 4452, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294713

RESUMO

Atherosclerosis-associated cardiovascular disease is one of the main causes of death and disability among patients with diabetes mellitus. However, little is known about the impact of S-nitrosylation in diabetes-accelerated atherosclerosis. Here, we show increased levels of S-nitrosylation of guanine nucleotide-binding protein G(i) subunit alpha-2 (SNO-GNAI2) at Cysteine 66 in coronary artery samples from diabetic patients with atherosclerosis, consistently with results from mice. Mechanistically, SNO-GNAI2 acted by coupling with CXCR5 to dephosphorylate the Hippo pathway kinase LATS1, thereby leading to nuclear translocation of YAP and promoting an inflammatory response in endothelial cells. Furthermore, Cys-mutant GNAI2 refractory to S-nitrosylation abrogated GNAI2-CXCR5 coupling, alleviated atherosclerosis in diabetic mice, restored Hippo activity, and reduced endothelial inflammation. In addition, we showed that melatonin treatment restored endothelial function and protected against diabetes-accelerated atherosclerosis by preventing GNAI2 S-nitrosylation. In conclusion, SNO-GNAI2 drives diabetes-accelerated atherosclerosis by coupling with CXCR5 and activating YAP-dependent endothelial inflammation, and reducing SNO-GNAI2 is an efficient strategy for alleviating diabetes-accelerated atherosclerosis.


Assuntos
Aterosclerose/etiologia , Aterosclerose/metabolismo , Angiopatias Diabéticas/etiologia , Angiopatias Diabéticas/metabolismo , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células Cultivadas , Cisteína/química , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/química , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/genética , Via de Sinalização Hippo , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Melatonina/farmacologia , Camundongos , Camundongos Knockout , Mutagênese Sítio-Dirigida , Óxido Nítrico Sintase Tipo II/metabolismo , Compostos Nitrosos/química , Compostos Nitrosos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores CXCR5/deficiência , Receptores CXCR5/genética , Receptores CXCR5/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP
11.
Front Immunol ; 12: 679856, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34135907

RESUMO

Neutrophil trafficking, homeostatic and pathogen elicited, depends upon chemoattractant receptors triggering heterotrimeric G-protein Gαißγ signaling, whose magnitude and kinetics are governed by RGS protein/Gαi interactions. RGS proteins typically limit Gαi signaling by reducing the duration that Gαi subunits remain GTP bound and able to activate downstream effectors. Yet how in totality RGS proteins shape neutrophil chemoattractant receptor activated responses remains unclear. Here, we show that C57Bl/6 mouse neutrophils containing a genomic knock-in of a mutation that disables all RGS protein-Gαi2 interactions (G184S) cannot properly balance chemoattractant receptor signaling, nor appropriately respond to inflammatory insults. Mutant neutrophils accumulate in mouse bone marrow, spleen, lung, and liver; despite neutropenia and an intrinsic inability to properly mobilize from the bone marrow. In vitro they rapidly adhere to ICAM-1 coated plates, but in vivo they poorly adhere to blood vessel endothelium. Those few neutrophils that cross blood vessels and enter tissues migrate haphazardly. Following Concanavalin-A administration fragmented G184S neutrophils accumulate in liver sinusoids leading to thrombo-inflammation and perivasculitis. Thus, neutrophil Gαi2/RGS protein interactions both limit and facilitate Gαi2 signaling thereby promoting normal neutrophil trafficking, aging, and clearance.


Assuntos
Senescência Celular , Quimiotaxia de Leucócito , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/genética , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Transdução de Sinais , Animais , Transplante de Medula Óssea , Senescência Celular/genética , Senescência Celular/imunologia , Quimiotaxia de Leucócito/efeitos dos fármacos , Quimiotaxia de Leucócito/genética , Quimiotaxia de Leucócito/imunologia , Humanos , Imunofenotipagem , Masculino , Camundongos , Neutropenia/etiologia , Neutrófilos/efeitos dos fármacos , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/metabolismo , Receptores de Interleucina-8B/antagonistas & inibidores , Receptores de Interleucina-8B/metabolismo
12.
Mol Biol Rep ; 48(1): 435-449, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33386590

RESUMO

Plant microRNAs have shown the capacity to regulate mammalian systems. The potential bioactivity of miR171vr, an isoform of the plant miR171, on human embryonic kidney 293 (HEK293) cells was investigated. Bioinformatics simulations revealed that human G protein subunit alpha 12 (GNA12) transcript could represent an excellent target for miR171vr. To confirm this prediction, in vitro experiments were performed using a synthetic microRNA designed on miR171vr sequence. MiR-treated cells showed a significant decrease of GNA12 mRNA and protein levels, confirming the putative cross-kingdom interaction. In addition, miR171vr determined the modulation of GNA12 downstream signaling factors, including mTOR, as expected. Finally, the effect of the plant miRNA on HEK293 cell growth and its stability in presence of several stressors, such as those miming digestive processes and procedures for preparing food, were evaluated. All this preliminary evidence would suggest that miR171vr, introduced by diet or as supplement in gene therapies, could potentially influence human gene expression, especially for treating disorders where GNA12 is over-expressed (i.e. oral cancer, breast and prostate adenocarcinoma) or mTOR kinase is down-regulated (e.g. obesity, type 2 diabetes, neurodegeneration).


Assuntos
Subunidade alfa Gi2 de Proteína de Ligação ao GTP/genética , MicroRNAs/genética , Mapas de Interação de Proteínas/genética , Serina-Treonina Quinases TOR/genética , Proliferação de Células/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/terapia , Regulação Neoplásica da Expressão Gênica/genética , Células HEK293 , Humanos , MicroRNAs/farmacologia , Neoplasias/genética , Neoplasias/terapia , Obesidade/genética , Obesidade/terapia , Transdução de Sinais/genética
13.
Mol Cell Endocrinol ; 521: 111098, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33278490

RESUMO

Mice carrying an RGS-insensitive Gαi2 mutation display growth retardation early after birth. Although the growth hormone (GH)-axis is a key endocrine modulator of postnatal growth, its functional state in these mice has not been characterized. The present study was undertaken to address this issue. Results revealed that pituitary mRNA levels for GH, prolactin (PRL), somatostatin (SST), GH-releasing-hormone receptor (GHRH-R) and GH secretagogue receptor (GHS-R) were decreased in mutants compared to controls. These changes were reflected by a significant decrease in plasma levels of GH, IGF-1 and IGF-binding protein-3 (IGFBP-3). Mutants were also less responsive to GHRH and ghrelin (GhL) on GH stimulation of release from pituitary primary cell cultures. In contrast, they were more sensitive to the inhibitory effect of SST. These data provide the first evidence for an alteration of the functional state of the GH-axis in Gαi2G184S mice that likely contributes to their growth retardation.


Assuntos
Subunidade alfa Gi2 de Proteína de Ligação ao GTP/genética , Transtornos do Crescimento/genética , Transtornos do Crescimento/metabolismo , Proteínas RGS/metabolismo , Transdução de Sinais/genética , Animais , Células Cultivadas , Feminino , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Grelina/farmacologia , Hormônio do Crescimento/sangue , Hormônio do Crescimento/genética , Hormônio do Crescimento/metabolismo , Hormônio Liberador de Hormônio do Crescimento/sangue , Hormônio Liberador de Hormônio do Crescimento/genética , Hormônio Liberador de Hormônio do Crescimento/farmacologia , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/sangue , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Hipófise/efeitos dos fármacos , Hipófise/metabolismo , Prolactina/genética , Prolactina/metabolismo , Proteínas RGS/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Grelina/metabolismo , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo , Receptores de Hormônios Reguladores de Hormônio Hipofisário/genética , Receptores de Hormônios Reguladores de Hormônio Hipofisário/metabolismo , Transdução de Sinais/efeitos dos fármacos , Somatostatina/genética , Somatostatina/metabolismo , Somatostatina/farmacologia
14.
Sci Rep ; 10(1): 894, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31965032

RESUMO

Pheromone detection by the vomeronasal organ (VNO) mediates important social behaviors across different species, including aggression and sexual behavior. However, the relationship between vomeronasal function and social hierarchy has not been analyzed reliably. We evaluated the role of pheromone detection by receptors expressed in the apical layer of the VNO such as vomeronasal type 1 receptors (V1R) in dominance behavior by using a conditional knockout mouse for G protein subunit Gαi2, which is essential for V1R signaling. We used the tube test as a model to analyze the within-a-cage hierarchy in male mice, but also as a paradigm of novel territorial competition in animals from different cages. In absence of prior social experience, Gαi2 deletion promotes winning a novel social competition with an unfamiliar control mouse but had no effect on an established hierarchy in cages with mixed genotypes, both Gαi2-/- and controls. To further dissect social behavior of Gαi2-/- mice, we performed a 3-chamber sociability assay and found that mutants had a slightly altered social investigation. Finally, gene expression analysis in the medial prefrontal cortex (mPFC) for a subset of genes previously linked to social status revealed no differences between group-housed Gαi2-/- and controls. Our results reveal a direct influence of pheromone detection on territorial dominance, indicating that olfactory communication involving apical VNO receptors like V1R is important for the outcome of an initial social competition between two unfamiliar male mice, whereas final social status acquired within a cage remains unaffected. These results support the idea that previous social context is relevant for the development of social hierarchy of a group. Overall, our data identify two context-dependent forms of dominance, acute and chronic, and that pheromone signaling through V1R receptors is involved in the first stages of a social competition but in the long term is not predictive for high social ranks on a hierarchy.


Assuntos
Comportamento Competitivo/fisiologia , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/genética , Córtex Pré-Frontal/fisiologia , Órgão Vomeronasal/citologia , Animais , Comportamento Animal , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/fisiologia , Feromônios , Predomínio Social , Órgão Vomeronasal/fisiologia
15.
FASEB J ; 33(6): 7049-7060, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30840837

RESUMO

Hepatic ischemia-reperfusion (I/R) injury is a major challenge in liver resection and transplantation surgeries. Previous studies have revealed that guanine nucleotide-binding protein G(i)α2 (GNAI2) was involved in the progression of myocardial and cerebral I/R injury, but the role and function of GNAI2 in hepatic I/R have not been elucidated. The hepatocyte-specific GNAI2 knockout (GNAI2hep-/-) mice were generated and subjected to hepatic I/R injury. Primary hepatocytes isolated from GNAI2hep-/- and GNAI2flox/flox mice were cultured and challenged to hypoxia-reoxygenation insult. The specific function of GNAI2 in I/R-triggered hepatic injury and the underlying molecular mechanism were explored by various phenotypic analyses and molecular biology methods. In this study, we demonstrated that hepatic GNAI2 expression was significantly increased in liver transplantation patients and wild-type mice after hepatic I/R. Interestingly, hepatocyte-specific GNAI2 deficiency attenuated I/R-induced liver damage, inflammation cytokine expression, macrophage/neutrophil infiltration, and hepatocyte apoptosis in vivo and in vitro. Mechanistically, up-regulation of GNAI2 phosphorylates mixed-lineage protein kinase 3 (MLK3) through direct binding, which exacerbated hepatic I/R damage via MAPK and NF-κB pathway activation. Furthermore, blocking MLK3 signaling reversed GNAI2-mediated hepatic I/R injury. Our study firstly identifies GNAI2 as a promising target for prevention of hepatic I/R-induced injury and related liver diseases.-Sun, Q., He, Q., Xu, J., Liu, Q., Lu, Y., Zhang, Z., Xu, X., Sun, B. Guanine nucleotide-binding protein G(i)α2 aggravates hepatic ischemia-reperfusion injury in mice by regulating MLK3 signaling.


Assuntos
Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Hepatopatias/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Traumatismo por Reperfusão/fisiopatologia , Animais , Apoptose , Células Cultivadas , Regulação para Baixo , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/genética , Regulação da Expressão Gênica , Hepatócitos/metabolismo , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , MAP Quinase Quinase Quinases/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Transdução de Sinais , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
16.
Curr Biol ; 29(6): 921-934.e4, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30827920

RESUMO

The transduction compartment of inner ear hair cells, the hair bundle, is composed of stereocilia rows of graded height, a property essential for sensory function that remains poorly understood at the molecular level. We previously showed that GPSM2-GNAI is enriched at stereocilia distal tips and required for their postnatal elongation and bundle morphogenesis-two characteristics shared with MYO15A (short isoform), WHRN, and EPS8 proteins. Here we first performed a comprehensive genetic analysis of the mouse auditory epithelium to show that GPSM2, GNAI, MYO15A, and WHRN operate in series within the same pathway. To understand how these functionally disparate proteins act as an obligate complex, we then systematically analyzed their distribution in normal and mutant bundles over time. We discovered that WHRN-GPSM2-GNAI is an extra module recruited by and added to a pre-existing MYO15A-EPS8 stereocilia tip complex. This extended complex is only present in the first, tallest row, and is required to stabilize larger amounts of MYO15A-EPS8 than in shorter rows, which at tips harbor only MYO15A-EPS8. In the absence of GPSM2 or GNAI function, including in the epistatic Myo15a and Whrn mutants, bundles retain an embryonic-like organization that coincides with generic stereocilia at the molecular level. We propose that GPSM2-GNAI confers on the first row its unique tallest identity and participates in generating differential row identity across the hair bundle.


Assuntos
Proteínas de Ciclo Celular/genética , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/genética , Células Ciliadas Auditivas Internas/fisiologia , Estereocílios/fisiologia , Animais , Proteínas de Ciclo Celular/metabolismo , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Camundongos
17.
Neuropharmacology ; 141: 296-304, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30189184

RESUMO

A single base mutation in the Gαi2 protein (G184S) renders this Gα subunit insensitive to the negative modulatory effects of Regulator of G-protein Signaling (RGS) proteins. Mice expressing this RGS insensitive (RGSi) variant of Gαi2 (RGSi Gαi2) display a spontaneous antidepressant-like phenotype that is reversible by treatment with the 5-HT1A receptor (5-HT1AR) antagonist WAY100635. Here we test the hypothesis that increased activity of 5-HT1ARs in the hippocampus of RGSi Gαi2 knock-in mice is responsible for the expression of the observed antidepressant-like behavior. We administered the 5-HT1AR antagonist WAY100635 or the agonist 8-OH-DPAT via bilateral intra-hippocampal infusion cannulae and evaluated antidepressant-like behavior using the tail suspension test (TST). WAY100635 reversed the antidepressant-like phenotype of the RGSi Gαi2 knock-in mice and 8-OH-DPAT produced an antidepressant-like response in wild type mice that was blocked by systemic WAY100635. Furthermore, intra-hippocampal infusion of the RGS19/4 inhibitor CCG-203769 produced an antidepressant-like effect in female mice. Ex-vivo slice recording confirmed the 5-HT1AR-mediated decrease in hippocampal CA1 pyramidal neuron excitability was enhanced in the RGSi Gαi2 knock-in mice. There was no change in hippocampal 5-HT1AR expression as measured by ligand binding but there was a compensatory reduction in Gαi proteins. The findings demonstrate that RGS protein control of hippocampal 5-HT1AR signaling is necessary and sufficient to account for the antidepressant-like phenotype in the RGSi Gαi2 knock-in mice and that RGS proteins highly expressed in the hippocampus should be investigated as targets for novel antidepressant therapies.


Assuntos
Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Hipocampo/metabolismo , Resposta de Imobilidade Tônica/fisiologia , Proteínas RGS/antagonistas & inibidores , Receptor 5-HT1A de Serotonina/fisiologia , 8-Hidroxi-2-(di-n-propilamino)tetralina/antagonistas & inibidores , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/metabolismo , Feminino , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/genética , Técnicas de Introdução de Genes , Hipocampo/efeitos dos fármacos , Masculino , Camundongos , Microinjeções , Fenótipo , Piperazinas/farmacologia , Células Piramidais/fisiologia , Piridinas/farmacologia , Receptor 5-HT1A de Serotonina/biossíntese , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia
18.
Physiol Genomics ; 50(9): 724-725, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29906209

RESUMO

Salt sensitivity of blood pressure (BP) increases hypertension risk and associated adverse cardiovascular outcomes. At present, there are no validated rapid tests or diagnostic markers to identify salt sensitivity of BP in clinical practice. Based on our prior animal studies that report a role for brain Gαi2 proteins in the salt sensitivity of BP and evidence that GNAI2 single nucleotide polymorphisms (SNPs) associate with hypertension risk, we investigated the hypothesis that GNAI2 SNPs associate with salt sensitivity of BP in humans. Our data provide the first evidence that a GNAI2 SNP ( rs10510755 ) positively associates with salt sensitivity of BP in the Genetic Epidemiology of Salt Sensitivity data set (continuous phenotype P = 0.049, case-control phenotype P = 0.039; n = 968), independently of subject sex or age. These observations suggest that genotyping at GNAI2 may be a useful biomarker in identifying individuals at risk for developing salt-sensitive BP and related complications or in identifying salt sensitivity within the hypertensive population.


Assuntos
Pressão Sanguínea/genética , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/genética , Polimorfismo de Nucleotídeo Único/genética , Cloreto de Sódio na Dieta/efeitos adversos , Adulto , Feminino , Humanos , Masculino , Epidemiologia Molecular
19.
Cell Physiol Biochem ; 47(4): 1509-1532, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29940568

RESUMO

BACKGROUND/AIMS: From invertebrates to mammals, Gαi proteins act together with their common binding partner Gpsm2 to govern cell polarization and planar organization in virtually any polarized cell. Recently, we demonstrated that Gαi3-deficiency in pre-hearing murine cochleae pointed to a role of Gαi3 for asymmetric migration of the kinocilium as well as the orientation and shape of the stereociliary ("hair") bundle, a requirement for the progression of mature hearing. We found that the lack of Gαi3 impairs stereociliary elongation and hair bundle shape in high-frequency cochlear regions, linked to elevated hearing thresholds for high-frequency sound. How these morphological defects translate into hearing phenotypes is not clear. METHODS: Here, we studied global and conditional Gnai3 and Gnai2 mouse mutants deficient for either one or both Gαi proteins. Comparative analyses of global versus Foxg1-driven conditional mutants that mainly delete in the inner ear and telencephalon in combination with functional tests were applied to dissect essential and redundant functions of different Gαi isoforms and to assign specific defects to outer or inner hair cells, the auditory nerve, satellite cells or central auditory neurons. RESULTS: Here we report that lack of Gαi3 but not of the ubiquitously expressed Gαi2 elevates hearing threshold, accompanied by impaired hair bundle elongation and shape in high-frequency cochlear regions. During the crucial reprogramming of the immature inner hair cell (IHC) synapse into a functional sensory synapse of the mature IHC deficiency for Gαi2 or Gαi3 had no impact. In contrast, double-deficiency for Gαi2 and Gαi3 isoforms results in abnormalities along the entire tonotopic axis including profound deafness associated with stereocilia defects. In these mice, postnatal IHC synapse maturation is also impaired. In addition, the analysis of conditional versus global Gαi3-deficient mice revealed that the amplitude of ABR wave IV was disproportionally elevated in comparison to ABR wave I indicating that Gαi3 is selectively involved in generation of neural gain during auditory processing. CONCLUSION: We propose a so far unrecognized complexity of isoform-specific and overlapping Gαi protein functions particular during final differentiation processes.


Assuntos
Proteínas de Transporte/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Audição/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Ciclo Celular , Fatores de Transcrição Forkhead/genética , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Células Ciliadas Auditivas Internas/citologia , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética
20.
J Neurochem ; 146(4): 374-389, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29747224

RESUMO

The heterotrimeric G-protein Go with its splice variants, Go1α and Go2α, seems to be involved in the regulation of motor function but isoform-specific effects are still unclear. We found that Go1α-/- knockouts performed worse on the rota-rod than Go2α-/- and wild-type (WT) mice. In Go1+2α-/- mice motor function was partially recovered. Furthermore, Go1+2α-/- mice showed an increased spontaneous motor activity. Compared to wild types or Go2α-/- mice, Go1+2α-/- mice developed increased behavioural sensitization following repetitive cocaine treatment, but failed to develop conditioned place preference. Analysis of dopamine concentration and expression of D1 and D2 receptors unravelled splice-variant-specific imbalances in the striatal dopaminergic system: In Go1α-/- mice dopamine concentration and vesicular monoamine uptake were increased compared to wild types. The expression of the D2 receptor was higher in Go1α-/- compared to wild type littermates, but unchanged in Go2α-/- mice. Deletion of both Go1α and Go2α re-established both dopamine and D2 receptor levels comparable to those in the wild-type. Cocaine treatment had no effect on the ratio of D1 receptor to D2 receptor in Go1+2α-/- mutants, but decreased this ratio in Go2α-/- mice. Finally, we observed that the deletion of Go1α led to a threefold higher striatal expression of Go2α. Taken together our data suggest that a balance in the expression of Go1α and Go2α sustains normal motor function. Deletion of either splice variant results in divergent behavioural and molecular alterations in the striatal dopaminergic system. Deletion of both splice variants partially restores the behavioural and molecular changes. Open Data: Materials are available on https://cos.io/our-services/open-science-badges/ https://osf.io/93n6m/.


Assuntos
Corpo Estriado/metabolismo , Dopamina/metabolismo , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Atividade Motora/genética , Animais , Animais Recém-Nascidos , Monoaminas Biogênicas/metabolismo , Cocaína/administração & dosagem , Condicionamento Operante/fisiologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/ultraestrutura , Inibidores da Captação de Dopamina/administração & dosagem , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/genética , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Masculino , Camundongos , Camundongos Transgênicos , Monoaminoxidase/metabolismo , Atividade Motora/fisiologia , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Sinapses/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...