Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 227: 116425, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39004233

RESUMO

Hemorrhagic shock (HS), a leading cause of preventable death, is characterized by severe blood loss and inadequate tissue perfusion. Reoxygenation of ischemic tissues exacerbates organ damage through ischemia-reperfusion injury. SUMOylation has been shown to protect neurons after stroke and is upregulated in response to cellular stress. However, the role of SUMOylation in organ protection after HS is unknown. This study aimed to investigate SUMOylation-mediated organ protection following HS. Male Wistar rats were subjected to HS (blood pressure of 40 ± 2 mmHg, for 90 min) followed by reperfusion. Blood, kidney, and liver samples were collected at various time points after reperfusion to assess organ damage and investigate the profile of SUMO1 and SUMO2/3 conjugation. In addition, human kidney cells (HK-2), treated with the SUMOylation inhibitor TAK-981 or overexpressing SUMO proteins, were subjected to oxygen and glucose deprivation to investigate the role of SUMOylation in hypoxia/reoxygenation injury. The animals presented progressive multiorgan dysfunction, except for the renal system, which showed improvement over time. Compared to the liver, the kidneys displayed distinct patterns in terms of oxidative stress, apoptosis activation, and tissue damage. The global level of SUMO2/3 in renal tissue was also distinct, suggesting a differential role. Pharmacological inhibition of SUMOylation reduced cell viability after hypoxia-reoxygenation damage, while overexpression of SUMO1 or SUMO2 protected the cells. These findings suggest that SUMOylation might play a critical role in cellular protection during ischemia-reperfusion injury in the kidneys, a role not observed in the liver. This difference potentially explains the renal resilience observed in HS animals when compared to other systems.


Assuntos
Ratos Wistar , Choque Hemorrágico , Sumoilação , Animais , Masculino , Choque Hemorrágico/metabolismo , Sumoilação/efeitos dos fármacos , Sumoilação/fisiologia , Ratos , Humanos , Rim/metabolismo , Rim/patologia , Rim/efeitos dos fármacos , Traumatismo por Reperfusão/metabolismo , Linhagem Celular
2.
Nat Commun ; 15(1): 6059, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39025847

RESUMO

Synthetic lethality provides an attractive strategy for developing targeted cancer therapies. For example, cancer cells with high levels of microsatellite instability (MSI-H) are dependent on the Werner (WRN) helicase for survival. However, the mechanisms that regulate WRN spatiotemporal dynamics remain poorly understood. Here, we used single-molecule tracking (SMT) in combination with a WRN inhibitor to examine WRN dynamics within the nuclei of living cancer cells. WRN inhibition traps the helicase on chromatin, requiring p97/VCP for extraction and proteasomal degradation in a MSI-H dependent manner. Using a phenotypic screen, we identify the PIAS4-RNF4 axis as the pathway responsible for WRN degradation. Finally, we show that co-inhibition of WRN and SUMOylation has an additive toxic effect in MSI-H cells and confirm the in vivo activity of WRN inhibition using an MSI-H mouse xenograft model. This work elucidates a regulatory mechanism for WRN that may facilitate identification of new therapeutic modalities, and highlights the use of SMT as a tool for drug discovery and mechanism-of-action studies.


Assuntos
Cromatina , Proteínas Inibidoras de STAT Ativados , Proteína com Valosina , Helicase da Síndrome de Werner , Helicase da Síndrome de Werner/metabolismo , Helicase da Síndrome de Werner/genética , Humanos , Animais , Cromatina/metabolismo , Proteína com Valosina/metabolismo , Proteína com Valosina/genética , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas Inibidoras de STAT Ativados/genética , Camundongos , Linhagem Celular Tumoral , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Instabilidade de Microssatélites , Proteólise/efeitos dos fármacos , Sumoilação/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Feminino
3.
J Biomed Sci ; 31(1): 68, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992694

RESUMO

BACKGROUND: KRAS mutations frequently occur in cancers, particularly pancreatic ductal adenocarcinoma, colorectal cancer, and non-small cell lung cancer. Although KRASG12C inhibitors have recently been approved, effective precision therapies have not yet been established for all KRAS-mutant cancers. Many treatments for KRAS-mutant cancers, including epigenome-targeted drugs, are currently under investigation. Small ubiquitin-like modifier (SUMO) proteins are a family of small proteins covalently attached to and detached from other proteins in cells via the processes called SUMOylation and de-SUMOylation. We assessed whether SUMOylation inhibition was effective in KRAS-mutant cancer cells. METHODS: The efficacy of the first-in-class SUMO-activating enzyme E inhibitor TAK-981 (subasumstat) was assessed in multiple human and mouse KRAS-mutated cancer cell lines. A gene expression assay using a TaqMan array was used to identify biomarkers of TAK-981 efficacy. The biological roles of SUMOylation inhibition and subsequent regulatory mechanisms were investigated using immunoblot analysis, immunofluorescence assays, and mouse models. RESULTS: We discovered that TAK-981 downregulated the expression of the currently undruggable MYC and effectively suppressed the growth of MYC-expressing KRAS-mutant cancers across different tissue types. Moreover, TAK-981-resistant cells were sensitized to SUMOylation inhibition via MYC-overexpression. TAK-981 induced proteasomal degradation of MYC by altering the balance between SUMOylation and ubiquitination and promoting the binding of MYC and Fbxw7, a key factor in the ubiquitin-proteasome system. The efficacy of TAK-981 monotherapy in immunocompetent and immunodeficient mouse models using a mouse-derived CMT167 cell line was significant but modest. Since MAPK inhibition of the KRAS downstream pathway is crucial in KRAS-mutant cancer, we expected that co-inhibition of SUMOylation and MEK might be a good option. Surprisingly, combination treatment with TAK-981 and trametinib dramatically induced apoptosis in multiple cell lines and gene-engineered mouse-derived organoids. Moreover, combination therapy resulted in long-term tumor regression in mouse models using cell lines of different tissue types. Finally, we revealed that combination therapy complementally inhibited Rad51 and BRCA1 and accumulated DNA damage. CONCLUSIONS: We found that MYC downregulation occurred via SUMOylation inhibition in KRAS-mutant cancer cells. Our findings indicate that dual inhibition of SUMOylation and MEK may be a promising treatment for MYC-expressing KRAS-mutant cancers by enhancing DNA damage accumulation.


Assuntos
Dano ao DNA , Proteínas Proto-Oncogênicas p21(ras) , Sumoilação , Sumoilação/efeitos dos fármacos , Animais , Camundongos , Humanos , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Mutação , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética
4.
J Nanobiotechnology ; 22(1): 338, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890737

RESUMO

BACKGROUND: Incomplete radiofrequency ablation (iRFA) in hepatocellular carcinoma (HCC) often leads to local recurrence and distant metastasis of the residual tumor. This is closely linked to the development of a tumor immunosuppressive environment (TIME). In this study, underlying mechanisms and potential therapeutic targets involved in the formation of TIME in residual tumors following iRFA were explored. Then, TAK-981-loaded nanocomposite hydrogel was constructed, and its therapeutic effects on residual tumors were investigated. RESULTS: This study reveals that the upregulation of small ubiquitin-like modifier 2 (Sumo2) and activated SUMOylation is intricately tied to immunosuppression in residual tumors post-iRFA. Both knockdown of Sumo2 and inhibiting SUMOylation with TAK-981 activate IFN-1 signaling in HCC cells, thereby promoting dendritic cell maturation. Herein, we propose an injectable PDLLA-PEG-PDLLA (PLEL) nanocomposite hydrogel which incorporates self-assembled TAK-981 and BSA nanoparticles for complementary localized treatment of residual tumor after iRFA. The sustained release of TAK-981 from this hydrogel curbs the expansion of residual tumors and notably stimulates the dendritic cell and cytotoxic lymphocyte-mediated antitumor immune response in residual tumors while maintaining biosafety. Furthermore, the treatment with TAK-981 nanocomposite hydrogel resulted in a widespread elevation in PD-L1 levels. Combining TAK-981 nanocomposite hydrogel with PD-L1 blockade therapy synergistically eradicates residual tumors and suppresses distant tumors. CONCLUSIONS: These findings underscore the potential of the TAK-981-based strategy as an effective therapy to enhance RFA therapy for HCC.


Assuntos
Carcinoma Hepatocelular , Hidrogéis , Neoplasias Hepáticas , Nanocompostos , Ablação por Radiofrequência , Sumoilação , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Animais , Hidrogéis/química , Nanocompostos/química , Nanocompostos/uso terapêutico , Humanos , Camundongos , Ablação por Radiofrequência/métodos , Sumoilação/efeitos dos fármacos , Linhagem Celular Tumoral , Masculino
5.
Eur J Pharmacol ; 978: 176761, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38908669

RESUMO

Sentrin/small ubiquitin-like modifier (SUMO)-specific proteases (SENPs) perform pivotal roles in SUMO maturation and recycling, which modulate the balance of SUMOylation/de-SUMOylation and spatiotemporal functions of SUMOylation targets. The malfunction of SENPs often results in cellular dysfunction and various diseases. However, studies rarely investigated the correlation between SENP2 and lung cancer. This study revealed that SENP2 is a required contributor to lung cancer-cell growth and targets nuclear Dbf2-related 2 (NDR2, also known as serine/threonine kinase 38L or STK38L) for de-SUMOylation, which improves NDR2 kinase activity. This condition leads to the instability of downstream target p21 in accelerating the G1/S cell cycle transition and suggests SENP2 as a promising therapeutic target for lung cancer in the future. Specifically, astragaloside IV, an active ingredient of Jinfukang Oral Liquid (JOL, a clinical combination antilung cancer drug approved by the National Food and Drug Administration (FDA) of China), can repress lung cancer-cell growth via the SENP2-NDR2-p21 axis, which provides new insights into the molecular mechanism of JOL for lung cancer treatment.


Assuntos
Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21 , Cisteína Endopeptidases , Neoplasias Pulmonares , Sumoilação , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Cisteína Endopeptidases/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Proliferação de Células/efeitos dos fármacos , Sumoilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais/efeitos dos fármacos , Animais , Células A549
6.
EMBO J ; 43(12): 2397-2423, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38760575

RESUMO

The nucleoside analogue decitabine (or 5-aza-dC) is used to treat several haematological cancers. Upon its triphosphorylation and incorporation into DNA, 5-aza-dC induces covalent DNA methyltransferase 1 DNA-protein crosslinks (DNMT1-DPCs), leading to DNA hypomethylation. However, 5-aza-dC's clinical outcomes vary, and relapse is common. Using genome-scale CRISPR/Cas9 screens, we map factors determining 5-aza-dC sensitivity. Unexpectedly, we find that loss of the dCMP deaminase DCTD causes 5-aza-dC resistance, suggesting that 5-aza-dUMP generation is cytotoxic. Combining results from a subsequent genetic screen in DCTD-deficient cells with the identification of the DNMT1-DPC-proximal proteome, we uncover the ubiquitin and SUMO1 E3 ligase, TOPORS, as a new DPC repair factor. TOPORS is recruited to SUMOylated DNMT1-DPCs and promotes their degradation. Our study suggests that 5-aza-dC-induced DPCs cause cytotoxicity when DPC repair is compromised, while cytotoxicity in wild-type cells arises from perturbed nucleotide metabolism, potentially laying the foundations for future identification of predictive biomarkers for decitabine treatment.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1 , Decitabina , Ubiquitina-Proteína Ligases , Decitabina/farmacologia , Humanos , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Metilação de DNA/efeitos dos fármacos , Antimetabólitos Antineoplásicos/farmacologia , Animais , Sumoilação/efeitos dos fármacos
7.
Environ Toxicol ; 39(8): 4207-4220, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38727079

RESUMO

The discovery of ferroptosis has unveiled new perspectives for cervical cancer (CC) management. We elucidated the functional mechanism of hypoxia-like conditions in CC cell ferroptosis resistance. CC cells were subjected to normoxia or hypoxia-like conditions, followed by erastin treatment to induce ferroptosis. The assessment of cell viability/ferroptosis resistance was performed by MTT assay/Fe2+, MDA, and glutathione measurement by colorimetry. KDM4A/SUMO1/Ubc9/SENP1 protein levels were determined by Western blot. Interaction and binding sites between KDM4A and SUMO1 were analyzed and predicted by immunofluorescence/co-immunoprecipitation and GPS-SUMO 1.0 software, with the target relationship verified by mutation experiment. SLC7A11/GPX4/H3K9me3 protein levels, and H3K9me3 level in the SLC7A11 gene promoter region were determined by RT-qPCR and Western blot/chromatin immunoprecipitation. H3H9me3/SLC7A11/GPX4 level alterations, and ferroptosis resistance after KDM4A silencing or KDM4A K471 mutation were assessed. Hypoxia-like conditions increased CC cell ferroptosis resistance and KDM4A, SUMO1, and Ubc9 protein levels, while it decreased SENP1 protein level. KDM4A and SUMO1 were co-localized in the nucleus, and hypoxia-like conditions promoted their interaction. Specifically, the K471 locus of KDM4A was the main locus for SUMO1ylation. Hypoxia-like conditions up-regulated SLC7A11 and GPX4 expression levels and decreased H3K9me3 protein level and H3K9me3 abundance in the SLC7A11 promoter region. KDM4A silencing or K471 locus mutation resulted in weakened interaction between KDM4A and SUMO1, elevated H3K9me3 levels, decreased SLC7A11 expression, ultimately, a reduced CC cell ferroptosis resistance. CoCl2-stimulated hypoxia-like conditions enhanced SUMO1 modification of KDM4A at the K471 locus specifically, repressed H3K9me3 levels, and up-regulated SLC7A11/GPX4 to enhance CC cell ferroptosis resistance.


Assuntos
Sistema y+ de Transporte de Aminoácidos , Ferroptose , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Sumoilação , Neoplasias do Colo do Útero , Humanos , Ferroptose/efeitos dos fármacos , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Sumoilação/efeitos dos fármacos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Feminino , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Linhagem Celular Tumoral , Hipóxia Celular , Proteína SUMO-1/metabolismo , Proteína SUMO-1/genética
8.
Phytomedicine ; 130: 155556, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38810552

RESUMO

BACKGROUND: Systemic lupus erythematosus (SLE) is a multi-system autoimmune disease that affects multiple organs and cause a wide range of severe clinical manifestations, including lupus nephritis (LN), which is a major risk factor for morbidity and mortality in individual with SLE. Ursolic acid (UA) is a natural compound with favorable anti-inflammatory properties and has been employed to treat multiple disease, including inflammatory diseases, diabetes, and Parkinson's disease. However, its therapeutic potential on LN and the underlying mechanisms remains unclear. PURPOSE: This aim of this study was to investigate the impact of UA on LN and its underlying mechanism. METHODS: MRL/lpr lupus-prone mouse model was used and UA was administered orally for 8 weeks. Dexamethasone was used as a positive control. After 8 weeks of administration, the spleen-to-body-weight ratio, renal function, urine albumin excretion, cytokines levels, and the deposition of immune complex were measured. The primary mouse glomerular mesangial cells (GMCs) and SV40-MES-13 were stimulated by lipopolysaccharide (LPS), either alone or in combination with nigericin, to establish an in vitro model. The activation of NLRP3 inflammasome were investigated both in vivo and in vitro using qRT-PCR, immunoblotting, and immunofluorescence. RESULTS: Our results revealed that UA prominently alleviated LN in MRL/lpr lupus-prone mice, leading to a significant reduction in proteinuria production, infiltration of immune cells infiltration, and histopathological damage in the renal tissue. In addition, UA exerted inhibitory effects on the secretion of IL-1ß, IL-18, and caspase-1, pyroptosis, and ASC speck formation in primary mouse GMCs and SV40-MES-13 cells. Furthermore, UA facilitated the degradation of NLRP3 by suppressing SUMO1-mediated SUMOylation of NLRP3. CONCLUSION: UA possess a therapeutical effect on LN in MRL/lpr mice by enhancing the degradation of NLRP3 through inhibition of SUMO1-mediated SUMOylation of NLRP3. Our findings provide a basis for proposing UA as a potential candidate for the treatment of LN.


Assuntos
Inflamassomos , Nefrite Lúpica , Camundongos Endogâmicos MRL lpr , Proteína 3 que Contém Domínio de Pirina da Família NLR , Triterpenos , Ácido Ursólico , Animais , Triterpenos/farmacologia , Nefrite Lúpica/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Camundongos , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Células Mesangiais/efeitos dos fármacos , Células Mesangiais/metabolismo , Anti-Inflamatórios/farmacologia , Sumoilação/efeitos dos fármacos
9.
J Neuroimmunol ; 392: 578371, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38788318

RESUMO

SUMO (small ubiquitin like modifier) conjugated proteins have emerged as an important post translational modifier of cellular function. SUMOylation modulates several cellular processes involved in transcriptional regulation of genes, protein-protein interactions and DNA damage and repair. Since abnormalities in SUMOylation has been observed in neoplastic and neurodegenerative disorders, the SUMO pathway has become an attractive site for targeting of new therapies to regulate SUMOylation and reduce disease burden. Conjugation of SUMO to their respective substrates is orchestrated by an enzymatic cascade involving three main enzymes, E1, activation enzyme, E2, conjugating enzyme and E3, a protein ligase. Each of these enzymes are therefore potential "druggable" sites for future therapeutics. SUMOylation is a well-known mechanism by which the innate immune response is regulated in response to viral infections and in the adaptive immune response to tumor immunity. We have shown that small molecules which inhibit the SUMO activation pathway are also capable of inhibiting autoimmune response. TAK981 which forms adducts with SUMO and anacardic acid which inhibits the E1 enzyme of the SUMO pathway were effective in preventing the development of experimental allergic encephalitis (EAE), a mouse model of multiple sclerosis. Anacardic acid and TAK981 inhibited activation of TH17 cells and reduced clinical and pathological injury in IL-17 mediated myelin oligodendrocyte glycoprotein (MOG) induced EAE. Ginkgolic acid, another known inhibitor of SUMO pathway, was also shown to be effective in reducing the severity of inflammatory arthropathies which is also IL-17 mediated. In addition, the increase in the transcription of myelin genes with TAK981 and anacardic acid improved remyelination in experimental models of demyelination. In the present review paper, we examine the mechanism of action of inhibitors of the SUMO pathway on regulating the immune response and the possibility of the use of these agents as therapeutics for MS.


Assuntos
Esclerose Múltipla , Sumoilação , Animais , Humanos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/imunologia , Esclerose Múltipla/terapia , Esclerose Múltipla/metabolismo , Sumoilação/efeitos dos fármacos , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo
10.
J Hazard Mater ; 472: 134440, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38723480

RESUMO

N6-methyladenosine (m6A) is the most common form of internal post-transcriptional methylation observed in eukaryotic mRNAs. The abnormally increased level of m6A within the cells can be catalyzed by specific demethylase fat mass and obesity-associated protein (FTO) and stay in a dynamic and reversible state. However, whether and how FTO regulates oxidative damage via m6A modification remain largely unclear. Herein, by using both in vitro and in vivo models of oxidative damage induced by arsenic, we demonstrated for the first time that exposure to arsenic caused a significant increase in SUMOylation of FTO protein, and FTO SUMOylation at lysine (K)- 216 site promoted the down-regulation of FTO expression in arsenic target organ lung, and therefore, remarkably elevating the oxidative damage via an m6A-dependent pathway by its specific m6A reader insulin-like growth factor-2 mRNA-binding protein-3 (IGF2BP3). Consequently, these findings not only reveal a novel mechanism underlying FTO-mediated oxidative damage from the perspective of m6A, but also imply that regulation of FTO SUMOylation may serve as potential approach for treatment of oxidative damage.


Assuntos
Adenosina , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Arsênio , Proteínas de Ligação a RNA , Sumoilação , Animais , Humanos , Masculino , Camundongos , Adenosina/análogos & derivados , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Arsênio/toxicidade , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Sumoilação/efeitos dos fármacos
11.
Microbiol Spectr ; 12(5): e0378823, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38567974

RESUMO

The key to a curative treatment of hepatitis B virus (HBV) infection is the eradication of the intranuclear episomal covalently closed circular DNA (cccDNA), the stable persistence reservoir of HBV. Currently, established therapies can only limit HBV replication but fail to tackle the cccDNA. Thus, novel therapeutic approaches toward curative treatment are urgently needed. Recent publications indicated a strong association between the HBV core protein SUMOylation and the association with promyelocytic leukemia nuclear bodies (PML-NBs) on relaxed circular DNA to cccDNA conversion. We propose that interference with the cellular SUMOylation system and PML-NB integrity using arsenic trioxide provides a useful tool in the treatment of HBV infection. Our study showed a significant reduction in HBV-infected cells, core protein levels, HBV mRNA, and total DNA. Additionally, a reduction, albeit to a limited extent, of HBV cccDNA could be observed. Furthermore, this interference was also applied for the treatment of an established HBV infection, characterized by a stably present nuclear pool of cccDNA. Arsenic trioxide (ATO) treatment not only changed the amount of expressed HBV core protein but also induced a distinct relocalization to an extranuclear phenotype during infection. Moreover, ATO treatment resulted in the redistribution of transfected HBV core protein away from PML-NBs, a phenotype similar to that previously observed with SUMOylation-deficient HBV core. Taken together, these findings revealed the inhibition of HBV replication by ATO treatment during several steps of the viral replication cycle, including viral entry into the nucleus as well as cccDNA formation and maintenance. We propose ATO as a novel prospective treatment option for further pre-clinical and clinical studies against HBV infection. IMPORTANCE: The main challenge for the achievement of a functional cure for hepatitis B virus (HBV) is the covalently closed circular DNA (cccDNA), the highly stable persistence reservoir of HBV, which is maintained by further rounds of infection with newly generated progeny viruses or by intracellular recycling of mature nucleocapsids. Eradication of the cccDNA is considered to be the holy grail for HBV curative treatment; however, current therapeutic approaches fail to directly tackle this HBV persistence reservoir. The molecular effect of arsenic trioxide (ATO) on HBV infection, protein expression, and cccDNA formation and maintenance, however, has not been characterized and understood until now. In this study, we reveal ATO treatment as a novel and innovative therapeutic approach against HBV infections, repressing viral gene expression and replication as well as the stable cccDNA pool at low micromolar concentrations by affecting the cellular function of promyelocytic leukemia nuclear bodies.


Assuntos
Trióxido de Arsênio , Núcleo Celular , DNA Circular , DNA Viral , Vírus da Hepatite B , Hepatite B , Sumoilação , Replicação Viral , Trióxido de Arsênio/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/genética , Vírus da Hepatite B/fisiologia , Humanos , Replicação Viral/efeitos dos fármacos , Hepatite B/virologia , Hepatite B/tratamento farmacológico , Hepatite B/metabolismo , Sumoilação/efeitos dos fármacos , DNA Circular/genética , DNA Circular/metabolismo , Núcleo Celular/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , Antivirais/farmacologia , Proteínas do Core Viral/metabolismo , Proteínas do Core Viral/genética , Células Hep G2
12.
Int J Mol Sci ; 25(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38396982

RESUMO

Cystic fibrosis (CF) is a genetic disorder caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR), a selective anion channel expressed in the epithelium of various organs. The most frequent mutation is F508del. This mutation leads to a misfolded CFTR protein quickly degraded via ubiquitination in the endoplasmic reticulum. Although preventing ubiquitination stabilizes the protein, functionality is not restored due to impaired plasma membrane transport. However, inhibiting the ubiquitination process can improve the effectiveness of correctors which act as chemical chaperones, facilitating F508del CFTR trafficking to the plasma membrane. Previous studies indicate a crosstalk between SUMOylation and ubiquitination in the regulation of CFTR. In this study, we investigated the potential of inhibiting SUMOylation to increase the effects of correctors and enhance the rescue of the F508del mutant across various cell models. In the widely used CFBE41o-cell line expressing F508del-CFTR, inhibiting SUMOylation substantially boosted F508del expression, thereby increasing the efficacy of correctors. Interestingly, this outcome did not result from enhanced stability of the mutant channel, but rather from augmented cytomegalovirus (CMV) promoter-mediated gene expression of F508del-CFTR. Notably, CFTR regulated by endogenous promoters in multiple cell lines or patient cells was not influenced by SUMOylation inhibitors.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Sumoilação , Humanos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Citomegalovirus , Mutação , Sumoilação/efeitos dos fármacos , Regiões Promotoras Genéticas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...