Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 368
Filtrar
1.
J Biol Chem ; 300(7): 107436, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38838775

RESUMO

Hearing crucially depends on cochlear ion homeostasis as evident from deafness elicited by mutations in various genes encoding cation or anion channels and transporters. Ablation of ClC­K/barttin chloride channels causes deafness by interfering with the positive electrical potential of the endolymph, but roles of other anion channels in the inner ear have not been studied. Here we report the intracochlear distribution of all five LRRC8 subunits of VRAC, a volume-regulated anion channel that transports chloride, metabolites, and drugs such as the ototoxic anti-cancer drug cisplatin, and explore its physiological role by ablating its subunits. Sensory hair cells express all LRRC8 isoforms, whereas only LRRC8A, D and E were found in the potassium-secreting epithelium of the stria vascularis. Cochlear disruption of the essential LRRC8A subunit, or combined ablation of LRRC8D and E, resulted in cochlear degeneration and congenital deafness of Lrrc8a-/- mice. It was associated with a progressive degeneration of the organ of Corti and its innervating spiral ganglion. Like disruption of ClC-K/barttin, loss of VRAC severely reduced the endocochlear potential. However, the mechanism underlying this reduction seems different. Disruption of VRAC, but not ClC-K/barttin, led to an almost complete loss of Kir4.1 (KCNJ10), a strial K+ channel crucial for the generation of the endocochlear potential. The strong downregulation of Kir4.1 might be secondary to a loss of VRAC-mediated transport of metabolites regulating inner ear redox potential such as glutathione. Our study extends the knowledge of the role of cochlear ion transport in hearing and ototoxicity.


Assuntos
Proteínas de Membrana , Camundongos Knockout , Animais , Camundongos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Audição , Cóclea/metabolismo , Cóclea/patologia , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patologia , Estria Vascular/metabolismo , Estria Vascular/patologia , Surdez/metabolismo , Surdez/patologia , Surdez/genética , Canais de Ânion Dependentes de Voltagem/metabolismo , Canais de Ânion Dependentes de Voltagem/genética
2.
J Biol Chem ; 300(7): 107474, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38879011

RESUMO

Hearing, the ability to sense sounds, and the processing of auditory information are important for perception of the world. Mice lacking expression of neuroplastin (Np), a type-1 transmembrane glycoprotein, display deafness, multiple cognitive deficiencies, and reduced expression of plasma membrane calcium (Ca2+) ATPases (PMCAs) in cochlear hair cells and brain neurons. In this study, we transferred the deafness causing missense mutations pitch (C315S) and audio-1 (I122N) into human Np (hNp) constructs and investigated their effects at the molecular and cellular levels. Computational molecular dynamics show that loss of the disulfide bridge in hNppitch causes structural destabilization of immunoglobulin-like domain (Ig) III and that the novel asparagine in hNpaudio-1 results in steric constraints and an additional N-glycosylation site in IgII. Additional N-glycosylation of hNpaudio-1 was confirmed by PNGaseF treatment. In comparison to hNpWT, transfection of hNppitch and hNpaudio-1 into HEK293T cells resulted in normal mRNA levels but reduced the Np protein levels and their cell surface expression due to proteasomal/lysosomal degradation. Furthermore, hNppitch and hNpaudio-1 failed to promote exogenous PMCA levels in HEK293T cells. In hippocampal neurons, expression of additional hNppitch or hNpaudio-1 was less efficient than hNpWT to elevate endogenous PMCA levels and to accelerate the restoration of basal Ca2+ levels after electrically evoked Ca2+ transients. We propose that mutations leading to pathological Np variants, as exemplified here by the deafness causing Np mutants, can affect Np-dependent Ca2+ regulatory mechanisms and may potentially cause intellectual and cognitive deficits in humans.


Assuntos
Encéfalo , Cálcio , Surdez , Glicoproteínas de Membrana , Mutação de Sentido Incorreto , Neurônios , ATPases Transportadoras de Cálcio da Membrana Plasmática , Humanos , Surdez/metabolismo , Surdez/genética , Surdez/patologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Neurônios/metabolismo , Células HEK293 , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Cálcio/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Membrana Celular/metabolismo , Camundongos , Glicosilação
3.
J Biol Chem ; 300(5): 107235, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552739

RESUMO

Defects in mitochondrial RNA metabolism have been linked to sensorineural deafness that often occurs as a consequence of damaged or deficient inner ear hair cells. In this report, we investigated the molecular mechanism underlying a deafness-associated tRNAPhe 593T > C mutation that changed a highly conserved uracil to cytosine at position 17 of the DHU-loop. The m.593T > C mutation altered tRNAPhe structure and function, including increased melting temperature, resistance to S1 nuclease-mediated digestion, and conformational changes. The aberrant tRNA metabolism impaired mitochondrial translation, which was especially pronounced by decreases in levels of ND1, ND5, CYTB, CO1, and CO3 harboring higher numbers of phenylalanine. These alterations resulted in aberrant assembly, instability, and reduced activities of respiratory chain enzyme complexes I, III, IV, and intact supercomplexes overall. Furthermore, we found that the m.593T > C mutation caused markedly diminished membrane potential, and increased the production of reactive oxygen species in the mutant cell lines carrying the m.593T > C mutation. These mitochondrial dysfunctions led to the mitochondrial dynamic imbalance via increasing fission with abnormal mitochondrial morphology. Excessive fission impaired the process of autophagy including the initiation phase, formation, and maturation of the autophagosome. In particular, the m.593T > C mutation upregulated the PARKIN-dependent mitophagy pathway. These alterations promoted an intrinsic apoptotic process for the removal of damaged cells. Our findings provide critical insights into the pathophysiology of maternally inherited deafness arising from tRNA mutation-induced defects in mitochondrial and cellular integrity.


Assuntos
Surdez , Mitocôndrias , RNA de Transferência de Fenilalanina , Humanos , Autofagia , Surdez/genética , Surdez/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Mitocôndrias/genética , Mitocôndrias/patologia , Dinâmica Mitocondrial , Mutação , Espécies Reativas de Oxigênio/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , RNA de Transferência de Fenilalanina/genética
4.
Neurosci Res ; 200: 8-19, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37926219

RESUMO

Spiral ganglion neurons (SGNs) transmit sound signals received by hair cells to the auditory center to produce hearing. The quantity and function are important for maintaining normal hearing function. Limited by the regenerative capacity, SGNs are unable to regenerate spontaneously after injury. Various neurotrophic factors play an important role in the regeneration process. Neuritin is a neurite growth factor that plays an important role in neural plasticity and nerve injury repair. In this study, we used bioinformatics analysis to show that neuritin was negatively correlated with cochlear damage. Then, we aimed to establish a cochlear spiral ganglion-specific sensorineural deafness model in gerbils using ouabain and determine the effects of exogenous neuritin protein in protecting damaged cochlear SGNs and repairing damaged auditory nerve function. The provides a new research strategy and scientific basis for the prevention and treatment of sensorineural deafness caused by the loss of SGNs. We were discovered that neuritin is expressed throughout the development of the gerbil cochlea, primarily in the SGNs and Corti regions. The expression of neuritin was negatively correlated with the sensorineural deafness induced by ouabain. In vitro and in vivo revealed that neuritin significantly maintained the number and arrangement of SGNs and nerve fibers in the damaged cochlea and effectively protected the high-frequency listening function of gerbils.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Animais , Gânglio Espiral da Cóclea/metabolismo , Gerbillinae , Ouabaína/farmacologia , Cóclea , Neurônios , Surdez/induzido quimicamente , Surdez/metabolismo , Denervação
5.
Matrix Biol ; 125: 40-58, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38070832

RESUMO

The extracellular matrix (ECM) consists in a complex meshwork of collagens, glycoproteins, and proteoglycans, which serves a scaffolding function and provides viscoelastic properties to the tissues. ECM acts as a biomechanical support, and actively participates in cell signaling to induce tissular changes in response to environmental forces and soluble cues. Given the remarkable complexity of the inner ear architecture, its exquisite structure-function relationship, and the importance of vibration-induced stimulation of its sensory cells, ECM is instrumental to hearing. Many factors of the matrisome are involved in cochlea development, function and maintenance, as evidenced by the variety of ECM proteins associated with hereditary deafness. This review describes the structural and functional ECM components in the auditory organ and how they are modulated over time and following injury.


Assuntos
Surdez , Audição , Humanos , Audição/genética , Cóclea/metabolismo , Surdez/genética , Surdez/metabolismo , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo
6.
Tissue Eng Part B Rev ; 30(1): 15-28, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37440318

RESUMO

The incidence and prevalence of hearing loss is increasing globally at an accelerated pace. Hair cells represent the sensory receptors of auditory and vestibular systems. Hair cell absence, loss or degeneration due to congenital diseases, trauma, toxicity, infection or advancing age, results in disabling hearing loss. Regenerative medicine approaches consisting in stem cell-based hair cell rescue or regeneration, gene therapy, as well as cell and tissue engineering are expected to dramatically improve the therapeutic arsenal available for addressing hearing loss. Current strategies that are using different stem cell types to rescue or to induce hair cell proliferation and regeneration are presented. Gene and cell therapy methods that modulates transdifferentiation of surrounding cell types into hair cells are presented, together with their specific advantages and limitations. Several modalities for improving therapeutic targeting to the inner ear such as nanoparticle-mediated cell and gene delivery are introduced. Further steps in building more relevant high-throughput models for testing novel drugs and advanced therapies are proposed as a modality to accelerate translation to clinical settings.


Assuntos
Surdez , Perda Auditiva , Humanos , Regeneração , Perda Auditiva/terapia , Perda Auditiva/metabolismo , Surdez/metabolismo , Surdez/terapia , Células Ciliadas Auditivas/metabolismo , Células-Tronco
7.
Biochem Biophys Res Commun ; 693: 149396, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38118309

RESUMO

Zinc plays a vital role in our metabolism, encompassing antioxidant regulation, immune response, and auditory function. Several studies have reported that zinc levels correlate with hearing loss. We have previously demonstrated that the auditory brainstem response (ABR) threshold increased in mice fed a zinc-deficient diet. However, the effects of zinc deficiency on hearing were not fully elucidated. The present study investigated whether zinc deficiency affects hearing in association with neuronal components or cochlear structures. CBA/N mice were fed a normal or zinc-deficient diet for 8 weeks and assessed for ABR and distortion product otoacoustic emissions (DPOAE). The cochlear sections were stained with hematoxylin and eosin solution. Also, we observed the expression of synaptic ribbons, neurofilaments, and alpha-synuclein (α-Syn). The 8-week zinc-deficient diet mice had an elevated ABR threshold but no changed DPOAE threshold or cochlear structures. A reduced number of synaptic ribbons of inner hair cells (IHCs) and impaired efferent nerve fibers were observed in the zinc-deficient diet mice. The number of outer hair cells (OHCs) and expression of α-Syn remained unchanged. Our results suggest that zinc-mediated hearing loss is associated with the loss of neuronal components of IHCs.


Assuntos
Surdez , Perda Auditiva , Animais , Camundongos , Células Ciliadas Auditivas Internas/metabolismo , Camundongos Endogâmicos CBA , Cóclea/metabolismo , Sinapses/metabolismo , Surdez/metabolismo , Zinco/metabolismo , Potenciais Evocados Auditivos do Tronco Encefálico , Limiar Auditivo
8.
Gene Ther ; 31(3-4): 154-164, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38097651

RESUMO

The adeno-associated virus (AAV) gene therapy has been widely applied to mouse models for deafness. But, AAVs could transduce non-targeted organs after inner ear delivery due to their low cell-type specificity. This study compares transgene expression and biodistribution of AAV1, AAV2, Anc80L65, AAV9, AAV-PHP.B, and AAV-PHP.eB after round window membrane (RWM) injection in neonatal mice. The highest virus concentration was detected in the injected cochlea. AAV2, Anc80L65, AAV9, AAV-PHP.B, and AAV-PHP.eB transduced both inner hair cells (IHCs) and outer hair cells (OHCs) with high efficiency, while AAV1 transduced IHCs with high efficiency but OHCs with low efficiency. All AAV subtypes finitely transduced contralateral inner ear, brain, heart, and liver compared with the injected cochlea. In most brain regions, the enhanced green fluorescent protein (eGFP) expression of AAV1 and AAV2 was lower than that of other four subtypes. We suggested the cochlear aqueduct might be one of routes for vectors instantaneously infiltrating into the brain from the cochlea through a dye tracking test. In summary, our results provide available data for further investigating the biodistribution of vectors through local inner ear injection and afford a reference for selecting AAV serotypes for gene therapy toward deafness.


Assuntos
Surdez , Vetores Genéticos , Animais , Camundongos , Distribuição Tecidual , Vetores Genéticos/genética , Cóclea/metabolismo , Terapia Genética/métodos , Surdez/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Transdução Genética
9.
Biochem Biophys Res Commun ; 687: 149172, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-37931421

RESUMO

OBJECTIVE: The study aimed to observe the effects of noise exposure on the pericytes of the cochlear stria vascularis (SV) in mice and to investigate its molecular mechanism. METHOD: Male C57BL/6J mice aged 6-8 weeks were used as the subjects. Auditory Brainstem Response (ABR) was used to assess hearing loss. Hematoxylin and Eosin (HE) staining was conducted to observe morphological alterations in the SV. Immunofluorescence combined with transmission electron microscopy (TEM) was used to scrutinize changes in pericytes following acoustic injury. Western blotting (WB) was used to assess the expression variations of the migration-related protein Osteopontin (OPN). Evans Blue assay was performed to evaluate the permeability of the blood labyrinth barrier (BLB). 4-Hydroxynonenal (4-HNE) staining, in conjunction with measurements of Superoxide Dismutase (SOD), Malondialdehyde (MDA), and Catalase (CAT) content, was used to ascertain whether oxidative stress injury occurred in the SV. WB, combined with immunofluorescence, was used to examine alterations in the expression of proliferator-activated receptor-gamma coactivator 1α (PGC-1α) in the SV and pericytes. RESULTS: Noise exposure resulted in permanent hearing loss in C57BL/6J mice, accompanied by SV swelling, migration of pericytes from their vascular attachments, BLB leakage, elevated oxidative stress levels in the SV, and reduced expression of PGC-1α on both the SV and migrating pericytes. CONCLUSION: Noise exposure may potentially increase oxidative stress levels in the SV, downregulate the expression levels of PGC-1α, promote pericytes migration, and subsequently lead to an elevation in BLB permeability.


Assuntos
Surdez , Orelha Interna , Perda Auditiva Provocada por Ruído , Animais , Humanos , Masculino , Camundongos , Cóclea/metabolismo , Surdez/metabolismo , Orelha Interna/metabolismo , Perda Auditiva Provocada por Ruído/metabolismo , Camundongos Endogâmicos C57BL , Pericitos/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
10.
Proc Natl Acad Sci U S A ; 120(26): e2221744120, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37339214

RESUMO

Functional molecular characterization of the cochlea has mainly been driven by the deciphering of the genetic architecture of sensorineural deafness. As a result, the search for curative treatments, which are sorely lacking in the hearing field, has become a potentially achievable objective, particularly via cochlear gene and cell therapies. To this end, a complete inventory of cochlear cell types, with an in-depth characterization of their gene expression profiles right up to their final differentiation, is indispensable. We therefore generated a single-cell transcriptomic atlas of the mouse cochlea based on an analysis of more than 120,000 cells on postnatal day 8 (P8), during the prehearing period, P12, corresponding to hearing onset, and P20, when cochlear maturation is almost complete. By combining whole-cell and nuclear transcript analyses with extensive in situ RNA hybridization assays, we characterized the transcriptomic signatures covering nearly all cochlear cell types and developed cell type-specific markers. Three cell types were discovered; two of them contribute to the modiolus which houses the primary auditory neurons and blood vessels, and the third one consists in cells lining the scala vestibuli. The results also shed light on the molecular basis of the tonotopic gradient of the biophysical characteristics of the basilar membrane that critically underlies cochlear passive sound frequency analysis. Finally, overlooked expression of deafness genes in several cochlear cell types was also unveiled. This atlas paves the way for the deciphering of the gene regulatory networks controlling cochlear cell differentiation and maturation, essential for the development of effective targeted treatments.


Assuntos
Surdez , Transcriptoma , Animais , Camundongos , Cóclea/fisiologia , Membrana Basilar , Audição/fisiologia , Surdez/metabolismo
11.
Int J Mol Sci ; 24(12)2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37373150

RESUMO

Damages of sensory hair cells (HCs) are mainly responsible for sensorineural hearing loss, however, its pathological mechanism is not yet fully understood due to the fact that many potential deafness genes remain unidentified. N-myc downstream-regulated gene 2 (ndrg2) is commonly regarded as a tumor suppressor and a cell stress-responsive gene extensively involved in cell proliferation, differentiation, apoptosis and invasion, while its roles in zebrafish HC morphogenesis and hearing remains unclear. Results of this study suggested that ndrg2 was highly expressed in the HCs of the otic vesicle and neuromasts via in situ hybridization and single-cell RNA sequencing. Ndrg2 loss-of-function larvae showed decreased crista HCs, shortened cilia, and reduced neuromasts and functional HCs, which could be rescued by the microinjection of ndrg2 mRNA. Moreover, ndrg2 deficiency induced attenuated startle response behaviors to sound vibration stimuli. Mechanistically, there were no detectable HC apoptosis and supporting cell changes in the ndrg2 mutants, and HCs were capable of recovering by blocking the Notch signaling pathway, suggesting that ndrg2 was implicated in HC differentiation mediated by Notch. Overall, our study demonstrates that ndrg2 plays crucial roles in HC development and auditory sensory function utilizing the zebrafish model, which provides new insights into the identification of potential deafness genes and regulation mechanism of HC development.


Assuntos
Surdez , Proteínas Supressoras de Tumor , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Proliferação de Células , Surdez/metabolismo , Células Ciliadas Auditivas/metabolismo , Audição , Neurogênese/genética , Peixe-Zebra/genética , Proteínas Supressoras de Tumor/genética , Proteínas de Peixe-Zebra/genética
12.
Int J Mol Sci ; 24(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37373495

RESUMO

The connexin gene family is the most prevalent gene that contributes to hearing loss. Connexins 26 and 30, encoded by GJB2 and GJB6, respectively, are the most abundantly expressed connexins in the inner ear. Connexin 43, which is encoded by GJA1, appears to be widely expressed in various organs, including the heart, skin, the brain, and the inner ear. The mutations that arise in GJB2, GJB6, and GJA1 can all result in comprehensive or non-comprehensive genetic deafness in newborns. As it is predicted that connexins include at least 20 isoforms in humans, the biosynthesis, structural composition, and degradation of connexins must be precisely regulated so that the gap junctions can properly operate. Certain mutations result in connexins possessing a faulty subcellular localization, failing to transport to the cell membrane and preventing gap junction formation, ultimately leading to connexin dysfunction and hearing loss. In this review, we provide a discussion of the transport models for connexin 43, connexins 30 and 26, mutations affecting trafficking pathways of these connexins, the existing controversies in the trafficking pathways of connexins, and the molecules involved in connexin trafficking and their functions. This review can contribute to a new way of understanding the etiological principles of connexin mutations and finding therapeutic strategies for hereditary deafness.


Assuntos
Surdez , Perda Auditiva , Recém-Nascido , Humanos , Conexina 26/metabolismo , Conexina 43/metabolismo , Conexinas/genética , Conexinas/metabolismo , Surdez/metabolismo , Perda Auditiva/metabolismo , Junções Comunicantes/metabolismo , Mutação
13.
Hear Res ; 436: 108821, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37295280

RESUMO

Orchestration of protein production and degradation and the regulation of protein lifetimes play a central role in many basic biological processes. Nearly all mammalian proteins are replenished by protein turnover in waves of synthesis and degradation. Protein lifetimes in vivo are typically measured in days, but a small number of extremely long-lived proteins (ELLPs) persist for months or even years. ELLPs are rare in all tissues but are enriched in tissues containing terminally differentiated post-mitotic cells and extracellular matrix. Consistently, emerging evidence suggests that the cochlea may be particularly enriched in ELLPs. Damage to ELLPs in specialized cell types, such as crystallin in the lens cells of the eye, causes organ failure such as cataracts. Similarly, damage to cochlear ELLPs is likely to occur with many insults, including acoustic overstimulation, drugs, anoxia, and antibiotics, and may play an underappreciated role in hearing loss. Furthermore, hampered protein degradation may contribute to acquired hearing loss. In this review, I highlight our knowledge of the lifetimes of cochlear proteins with an emphasis on ELLPs and the potential contribution that impaired cochlear protein degradation has on acquired hearing loss and the emerging relevance of ELLPs.


Assuntos
Surdez , Perda Auditiva Provocada por Ruído , Animais , Perda Auditiva Provocada por Ruído/etiologia , Cóclea/metabolismo , Surdez/metabolismo , Mamíferos
14.
Hear Res ; 436: 108817, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37300948

RESUMO

Inner ear hair cells assemble mechanosensitive hair bundles on their apical surface that transduce sounds and accelerations. Each hair bundle is comprised of ∼ 100 individual stereocilia that are arranged into rows of increasing height and width; their specific and precise architecture being necessary for mechanoelectrical transduction (MET). The actin cytoskeleton is fundamental to establishing this architecture, not only by forming the structural scaffold shaping each stereocilium, but also by composing rootlets and the cuticular plate that together provide a stable foundation supporting each stereocilium. In concert with the actin cytoskeleton, a large assortment of actin-binding proteins (ABPs) function to cross-link actin filaments into specific topologies, as well as control actin filament growth, severing, and capping. These processes are individually critical for sensory transduction and are all disrupted in hereditary forms of human hearing loss. In this review, we provide an overview of actin-based structures in the hair bundle and the molecules contributing to their assembly and functional properties. We also highlight recent advances in mechanisms driving stereocilia elongation and how these processes are tuned by MET.


Assuntos
Surdez , Células Ciliadas Auditivas , Humanos , Células Ciliadas Auditivas/metabolismo , Citoesqueleto de Actina/metabolismo , Surdez/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Actinas/metabolismo , Estereocílios
15.
J Transl Med ; 21(1): 279, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37101210

RESUMO

BACKGROUND: Auditory neuropathy is an unusual type of hearing loss. At least 40% of patients with this disease have underlying genetic causes. However, in many hereditary auditory neuropathy cases, etiology remains undetermined. METHODS: We collected data and blood samples from a four-generation Chinese family. After excluding relevant variants in known deafness-related genes, exome sequencing was conducted. Candidate genes were verified by pedigree segregation, transcript/protein expression in the mouse cochlea, and plasmid expression studies in HEK 293T cells. Moreover, a mutant mouse model was generated and underwent hearing evaluations; protein localization in the inner ear was also assessed. RESULTS: The clinical features of the family were diagnosed as auditory neuropathy. A novel variant c.710G > A (p.W237X) in apoptosis-related gene XKR8 was identified. Genotyping of 16 family members confirmed the segregation of this variant with the deafness phenotype. Both XKR8 mRNA and XKR8 protein were expressed in the mouse inner ear, predominantly in regions of spiral ganglion neurons; Moreover, this nonsense variant impaired the surface localization of XKR8 in cells. Transgenic mutant mice exhibited late-onset auditory neuropathy, and their altered XKR8 protein localization in the inner ear confirmed the damaging effects of this variant. CONCLUSIONS: We identified a variant in the XKR8 gene that is relevant to auditory neuropathy. The essential role of XKR8 in inner ear development and neural homeostasis should be explored.


Assuntos
Surdez , Perda Auditiva Central , Perda Auditiva , Camundongos , Animais , Perda Auditiva Central/genética , Perda Auditiva/genética , Linhagem , Surdez/genética , Surdez/metabolismo , Apoptose/genética , Proteínas de Membrana/genética , Proteínas Reguladoras de Apoptose/genética
16.
Adv Sci (Weinh) ; 10(16): e2205993, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37066759

RESUMO

The ankle-link complex (ALC) consists of USH2A, WHRN, PDZD7, and ADGRV1 and plays an important role in hair cell development. At present, its architectural organization and signaling role remain unclear. By establishing Adgrv1 Y6236fsX1 mutant mice as a model of the deafness-associated human Y6244fsX1 mutation, the authors show here that the Y6236fsX1 mutation disrupts the interaction between adhesion G protein-coupled receptor V subfamily member 1 (ADGRV1) and other ALC components, resulting in stereocilia disorganization and mechanoelectrical transduction (MET) deficits. Importantly, ADGRV1 inhibits WHRN phosphorylation through regional cAMP-PKA signaling, which in turn regulates the ubiquitination and stability of USH2A via local signaling compartmentalization, whereas ADGRV1 Y6236fsX1 does not. Yeast two-hybrid screening identified the E3 ligase WDSUB1 that binds to WHRN and regulates the ubiquitination of USH2A in a WHRN phosphorylation-dependent manner. Further FlAsH-BRET assay, NMR spectrometry, and mutagenesis analysis provided insights into the architectural organization of ALC and interaction motifs at single-residue resolution. In conclusion, the present data suggest that ALC organization and accompanying local signal transduction play important roles in regulating the stability of the ALC.


Assuntos
Surdez , Animais , Humanos , Camundongos , Proteínas de Transporte/genética , Surdez/genética , Surdez/metabolismo , Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Mutação/genética , Fosforilação
17.
Cell Calcium ; 110: 102702, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36791536

RESUMO

Deafness is a highly heterogeneous disorder which stems, for 50%, from genetic origins. Sensory transduction relies mainly on sensory hair cells of the cochlea, in the inner ear. Calcium is key for the function of these cells and acts as a fundamental signal transduction. Its homeostasis depends on three factors: the calcium influx, through the mechanotransduction channel at the apical pole of the hair cell as well as the voltage-gated calcium channel at the base of the cells; the calcium buffering via Ca2+-binding proteins in the cytoplasm, but also in organelles such as mitochondria and the reticulum endoplasmic mitochondria-associated membranes with specialized proteins; and the calcium extrusion through the Ca-ATPase pump, located all over the plasma membrane. In addition, the synaptic transmission to the central nervous system is also controlled by calcium. Genetic studies of inherited deafness have tremendously helped understand the underlying molecular pathways of calcium signaling. In this review, we discuss these different factors in light of the associated genetic diseases (syndromic and non-syndromic deafness) and the causative genes.


Assuntos
Sinalização do Cálcio , Surdez , Humanos , Sinalização do Cálcio/fisiologia , Mecanotransdução Celular , Cálcio/metabolismo , Doenças Raras , Surdez/genética , Surdez/metabolismo
18.
Altern Ther Health Med ; 29(3): 224-229, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36795524

RESUMO

Context: Sudden deafness (SSHL) belongs to the category of diseases causing neurological hearing loss with a sudden and unknown etiology. The pathogenesis and mechanism of SSHL aren't clear at present. Gene polymorphisms may be associated with increased or reduced risk of hearing impairment. Objective: The study intended to investigate the association between susceptibility to SSHL and single nucleotide polymorphisms (SNPs) at the rs2228612 locus of the DNA methyltransferase (DNMT1) gene and at the rs5570459 locus of the gap junction protein Beta 2 (GJB2) gene, to provide a basis for the prevention and treatment of the SSHL. Design: The research team performed a case-control study. Setting: The study took place at Tangshan Gongren Hospital in Tangshan, China. Participants: Participants were 200 SSHL patients admitted to the hospital between January 2020 and June 2022, the study group, and 200 people with normal hearing, the control group. Outcome Measures: The research team: (1) performed the Hardy-Weinberg Balance Test to determine the frequency distribution of the data for the rs2228612 locus of the DNMT1 gene and for the RS5570459 locus of the GJB2 gene for the groups, (2) analyzed the relationships between the genotypes and SSHL susceptibility, (3) determined the relationship between gene frequencies and gender and the SSHL susceptibility of males and females with different genotypes, (4) determined the relationship between gene frequencies and smoking and the SSHL susceptibility of smokers and nonsmokers with different genotypes, and (5) determined the relationship between gene frequencies and drinking alcohol and the SSHL susceptibility of drinkers and nondrinkers with different genotypes. Results: The numbers of participants in the study group with the CC genotype and the C allele at the rs2228612 locus of the DNMT1 gene were significantly lower than the numbers in the control group (P < .05). The CC and C alleles were significant protective factors against SSHL (P < .05).The numbers of participants in the study group with the GG genotype and the G allele at the rs5570459 locus of the GJB2 gene were significantly higher than the numbers in the control group (P < .05), and the GG genotype and the G allele significantly increased SSHL susceptibility (P < .05). The TC+CC genotype at the rs2228612 locus of the DNMT1 gene was a protective factor against SSHL in male and smoking participants (P < .05). The AG+GG genotype at the rs5570459 locus of the GJB2 gene increased the susceptibility of females, smokers, and drinkers to SSHL (P < .05). Conclusions: The TC+CC genotypes at the rs2228612 locus of the DNMT1 gene were significant protective factors against SSHL. The SSHL susceptibility was higher in participants carrying the AG+GG genotype at the rs5570459 locus of the GJB2 gene. In addition, gender and drinking can affect SSHL susceptibility.


Assuntos
Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Feminino , Humanos , Masculino , Estudos de Casos e Controles , China , DNA , Genótipo , Surdez/metabolismo
19.
Hum Mol Genet ; 32(10): 1622-1633, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-36617157

RESUMO

As the auditory and balance receptor cells in the inner ear, hair cells are responsible for converting mechanical stimuli into electrical signals, a process referred to as mechano-electrical transduction. Hair cell development and function are tightly regulated, and hair cell deficits are the main reasons for hearing loss and balance disorders. TMCC2 is an endoplasmic reticulum (ER)-residing transmembrane protein whose physiological function largely remains unknown. In the present work, we show that Tmcc2 is specifically expressed in the auditory hair cells of mouse inner ear. Tmcc2 knockout mice were then established to investigate its physiological role in hearing. Auditory brainstem responses measurements show that Tmcc2 knockout mice suffer from congenital hearing loss. Further investigations reveal progressive auditory hair cell loss in the Tmcc2 knockout mice. The general morphology and function of ER are unaffected in Tmcc2 knockout hair cells. However, increased ER stress was observed in Tmcc2 knockout mice and knockdown cells, suggesting that loss of TMCC2 leads to auditory hair cell death through elevated ER stress.


Assuntos
Surdez , Perda Auditiva , Animais , Camundongos , Surdez/metabolismo , Estresse do Retículo Endoplasmático/genética , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas Internas , Audição , Perda Auditiva/metabolismo , Camundongos Knockout
20.
Neurosci Lett ; 793: 136990, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36455693

RESUMO

Cytomegalovirus (CMV)-induced sensorineural hearing loss (SNHL) is a worldwide epidemic. Recent studies have shown that the degree of spiral ganglion neuron (SGN) loss is correlated with hearing loss after CMV infection. We aimed to better understand the pathological mechanisms of CMV-related SGN death and to search for intervention measures. We found that both apoptosis and pyroptosis are involved in CMV-induced SGN death, which may be caused by the simultaneous activation of the p53/JNK and NLRP3/caspase-1 signaling pathways, respectively. Moreover, considering that mixed lineage kinase family (MLK1/2/3) are host restriction factors against viral infection and upstream regulators of the p53/JNK and inflammatory (including NLRP3-caspase1) signaling pathways, we further demonstrated that the MLKs inhibitor URMC-099 exhibited a protective effect against CMV-induced SGN death and hearing loss. These results indicate that MLKs signaling may be a key regulator and promising novel target for preventing apoptosis and even pyroptosis during the CMV infection of SGN cells and for treating hearing loss.


Assuntos
Infecções por Citomegalovirus , Surdez , Perda Auditiva Neurossensorial , MAP Quinase Quinase Quinases , Muromegalovirus , Animais , Camundongos , Apoptose , Citomegalovirus , Infecções por Citomegalovirus/metabolismo , Infecções por Citomegalovirus/patologia , Surdez/metabolismo , Surdez/patologia , Perda Auditiva/metabolismo , Perda Auditiva/patologia , Perda Auditiva Neurossensorial/metabolismo , Perda Auditiva Neurossensorial/patologia , Neurônios , Proteína 3 que Contém Domínio de Pirina da Família NLR , Gânglio Espiral da Cóclea/patologia , Proteína Supressora de Tumor p53 , MAP Quinase Quinase Quinases/metabolismo , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...