Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.264
Filtrar
1.
J Comp Neurol ; 532(7): e25652, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38962882

RESUMO

Although the mammalian cerebral cortex is most often described as a hexalaminar structure, there are cortical areas (primary motor cortex) and species (elephants, cetaceans, and hippopotami), where a cytoarchitecturally indistinct, or absent, layer 4 is noted. Thalamocortical projections from the core, or first order, thalamic system terminate primarily in layers 4/inner 3. We explored the termination sites of core thalamocortical projections in cortical areas and in species where there is no cytoarchitecturally distinct layer 4 using the immunolocalization of vesicular glutamate transporter 2, a known marker of core thalamocortical axon terminals, in 31 mammal species spanning the eutherian radiation. Several variations from the canonical cortical column outline of layer 4 and core thalamocortical inputs were noted. In shrews/microchiropterans, layer 4 was present, but many core thalamocortical projections terminated in layer 1 in addition to layers 4 and inner 3. In primate primary visual cortex, the sublaminated layer 4 was associated with a specialized core thalamocortical projection pattern. In primate primary motor cortex, no cytoarchitecturally distinct layer 4 was evident and the core thalamocortical projections terminated throughout layer 3. In the African elephant, cetaceans, and river hippopotamus, no cytoarchitecturally distinct layer 4 was observed and core thalamocortical projections terminated primarily in inner layer 3 and less densely in outer layer 3. These findings are contextualized in terms of cortical processing, perception, and the evolutionary trajectory leading to an indistinct or absent cortical layer 4.


Assuntos
Axônios , Neocórtex , Vias Neurais , Tálamo , Animais , Tálamo/citologia , Tálamo/anatomia & histologia , Neocórtex/citologia , Neocórtex/anatomia & histologia , Vias Neurais/citologia , Vias Neurais/anatomia & histologia , Axônios/fisiologia , Mamíferos/anatomia & histologia , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Especificidade da Espécie
2.
Neuron ; 112(14): 2259-2261, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39024916

RESUMO

In this issue of Neuron, Wang et al.1 demonstrate that parvalbumin interneurons in the sensory thalamic reticular nucleus are necessary and sufficient for regulating social memory in mice, identify a novel cortico-reticular thalamic-parafascicular pathway for social cognition, and highlight an essential role of GABAergic inhibitory neurons in social memory engrams.


Assuntos
Memória , Tálamo , Animais , Memória/fisiologia , Camundongos , Tálamo/fisiologia , Tálamo/citologia , Interneurônios/fisiologia , Vias Neurais/fisiologia , Parvalbuminas/metabolismo , Neurônios GABAérgicos/fisiologia , Comportamento Social
3.
Nat Commun ; 15(1): 5883, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003286

RESUMO

Rodents continuously move their heads and whiskers in a coordinated manner while perceiving objects through whisker-touch. Studies in head-fixed rodents showed that the ventroposterior medial (VPM) and posterior medial (POm) thalamic nuclei code for whisker kinematics, with POm involvement reduced in awake animals. To examine VPM and POm involvement in coding head and whisker kinematics in awake, head-free conditions, we recorded thalamic neuronal activity and tracked head and whisker movements in male mice exploring an open arena. Using optogenetic tagging, we found that in freely moving mice, both nuclei equally coded whisker kinematics and robustly coded head kinematics. The fraction of neurons coding head kinematics increased after whisker trimming, ruling out whisker-mediated coding. Optogenetic activation of thalamic neurons evoked overt kinematic changes and increased the fraction of neurons leading changes in head kinematics. Our data suggest that VPM and POm integrate head and whisker information and can influence head kinematics during tactile perception.


Assuntos
Neurônios , Optogenética , Vibrissas , Animais , Vibrissas/fisiologia , Masculino , Neurônios/fisiologia , Camundongos , Fenômenos Biomecânicos , Movimentos da Cabeça/fisiologia , Cabeça/fisiologia , Camundongos Endogâmicos C57BL , Percepção do Tato/fisiologia , Tálamo/fisiologia , Tálamo/citologia
4.
J Comp Neurol ; 532(6): e25627, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38813969

RESUMO

During development, cell-intrinsic and cell-extrinsic factors play important roles in neuronal differentiation; however, the underlying mechanisms in nonmammalian species remain largely unknown. We here investigated the mechanisms responsible for the differentiation of sensory input neurons in the chick entopallium, which receives its primary visual input via the tectofugal pathway from the nucleus rotundus. The results obtained revealed that input neurons in the entopallium expressed Potassium Voltage-Gated Channel Subfamily H Member 5 (KCNH5/EAG2) mRNA from embryonic day (E) 11. On the other hand, the onset of protein expression was E20, which was 1 day before hatching. We confirm that entopallium input neurons in chicks were generated during early neurogenesis in the lateral and ventral ventricular zones. Notably, neurons derived from the lateral (LP) and ventral pallium (VP) exhibited a spatially distinct distribution along the rostro-caudal axis. We further demonstrated that the expression of EAG2 was directly regulated by input activity from thalamic axons. Collectively, the present results reveal that thalamic input activity is essential for specifying input neurons among LP- and VP-derived early-generated neurons in the developing chick entopallium.


Assuntos
Neurogênese , Tálamo , Animais , Embrião de Galinha , Neurogênese/fisiologia , Tálamo/embriologia , Tálamo/citologia , Tálamo/metabolismo , Células Receptoras Sensoriais/fisiologia , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/citologia , Galinhas , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia
5.
Cell Rep ; 43(5): 114157, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38678557

RESUMO

The sensory cortex receives synaptic inputs from both first-order and higher-order thalamic nuclei. First-order inputs relay simple stimulus properties from the periphery, whereas higher-order inputs relay more complex response properties, provide contextual feedback, and modulate plasticity. Here, we reveal that a cortical neuron's higher-order input is determined by the type of progenitor from which it is derived during embryonic development. Within layer 4 (L4) of the mouse primary somatosensory cortex, neurons derived from intermediate progenitors receive stronger higher-order thalamic input and exhibit greater higher-order sensory responses. These effects result from differences in dendritic morphology and levels of the transcription factor Lhx2, which are specified by the L4 neuron's progenitor type. When this mechanism is disrupted, cortical circuits exhibit altered higher-order responses and sensory-evoked plasticity. Therefore, by following distinct trajectories, progenitor types generate diversity in thalamocortical circuitry and may provide a general mechanism for differentially routing information through the cortex.


Assuntos
Córtex Somatossensorial , Tálamo , Fatores de Transcrição , Animais , Camundongos , Tálamo/citologia , Tálamo/embriologia , Tálamo/fisiologia , Fatores de Transcrição/metabolismo , Córtex Somatossensorial/citologia , Córtex Somatossensorial/fisiologia , Proteínas com Homeodomínio LIM/metabolismo , Proteínas com Homeodomínio LIM/genética , Neurônios/citologia , Neurônios/fisiologia , Neurônios/metabolismo , Plasticidade Neuronal/fisiologia , Camundongos Endogâmicos C57BL
6.
J Neurosci ; 44(19)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38561224

RESUMO

Coordinated neuronal activity has been identified to play an important role in information processing and transmission in the brain. However, current research predominantly focuses on understanding the properties and functions of neuronal coordination in hippocampal and cortical areas, leaving subcortical regions relatively unexplored. In this study, we use single-unit recordings in female Sprague Dawley rats to investigate the properties and functions of groups of neurons exhibiting coordinated activity in the auditory thalamus-the medial geniculate body (MGB). We reliably identify coordinated neuronal ensembles (cNEs), which are groups of neurons that fire synchronously, in the MGB. cNEs are shown not to be the result of false-positive detections or by-products of slow-state oscillations in anesthetized animals. We demonstrate that cNEs in the MGB have enhanced information-encoding properties over individual neurons. Their neuronal composition is stable between spontaneous and evoked activity, suggesting limited stimulus-induced ensemble dynamics. These MGB cNE properties are similar to what is observed in cNEs in the primary auditory cortex (A1), suggesting that ensembles serve as a ubiquitous mechanism for organizing local networks and play a fundamental role in sensory processing within the brain.


Assuntos
Estimulação Acústica , Corpos Geniculados , Neurônios , Ratos Sprague-Dawley , Animais , Feminino , Ratos , Neurônios/fisiologia , Corpos Geniculados/fisiologia , Estimulação Acústica/métodos , Vias Auditivas/fisiologia , Potenciais de Ação/fisiologia , Córtex Auditivo/fisiologia , Córtex Auditivo/citologia , Tálamo/fisiologia , Tálamo/citologia , Potenciais Evocados Auditivos/fisiologia
7.
J Neurosci ; 44(19)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38485258

RESUMO

The superior colliculus receives powerful synaptic inputs from corticotectal neurons in the visual cortex. The function of these corticotectal neurons remains largely unknown due to a limited understanding of their response properties and connectivity. Here, we use antidromic methods to identify corticotectal neurons in awake male and female rabbits, and measure their axonal conduction times, thalamic inputs and receptive field properties. All corticotectal neurons responded to sinusoidal drifting gratings with a nonlinear (nonsinusoidal) increase in mean firing rate but showed pronounced differences in their ON-OFF receptive field structures that we classified into three groups, Cx, S2, and S1. Cx receptive fields had highly overlapping ON and OFF subfields as classical complex cells, S2 had largely separated ON and OFF subfields as classical simple cells, and S1 had a single ON or OFF subfield. Thus, all corticotectal neurons are homogeneous in their nonlinear spatial summation but very heterogeneous in their spatial integration of ON and OFF inputs. The Cx type had the fastest conducting axons, the highest spontaneous activity, and the strongest and fastest visual responses. The S2 type had the highest orientation selectivity, and the S1 type had the slowest conducting axons. Moreover, our cross-correlation analyses found that a subpopulation of corticotectal neurons with very fast conducting axons and high spontaneous firing rates (largely "Cx" type) receives monosynaptic input from retinotopically aligned thalamic neurons. This previously unrecognized fast-conducting thalamic-mediated corticotectal pathway may provide specialized information to superior colliculus and prime recipient neurons for subsequent corticotectal or retinal synaptic input.


Assuntos
Neurônios , Sinapses , Tálamo , Córtex Visual , Vias Visuais , Vigília , Animais , Coelhos , Masculino , Feminino , Vias Visuais/fisiologia , Vigília/fisiologia , Córtex Visual/fisiologia , Córtex Visual/citologia , Sinapses/fisiologia , Neurônios/fisiologia , Tálamo/fisiologia , Tálamo/citologia , Estimulação Luminosa/métodos , Campos Visuais/fisiologia , Potenciais de Ação/fisiologia , Colículos Superiores/fisiologia , Colículos Superiores/citologia
8.
Nature ; 624(7991): 355-365, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38092919

RESUMO

Single-cell analyses parse the brain's billions of neurons into thousands of 'cell-type' clusters residing in different brain structures1. Many cell types mediate their functions through targeted long-distance projections allowing interactions between specific cell types. Here we used epi-retro-seq2 to link single-cell epigenomes and cell types to long-distance projections for 33,034 neurons dissected from 32 different regions projecting to 24 different targets (225 source-to-target combinations) across the whole mouse brain. We highlight uses of these data for interrogating principles relating projection types to transcriptomics and epigenomics, and for addressing hypotheses about cell types and connections related to genetics. We provide an overall synthesis with 926 statistical comparisons of discriminability of neurons projecting to each target for every source. We integrate this dataset into the larger BRAIN Initiative Cell Census Network atlas, composed of millions of neurons, to link projection cell types to consensus clusters. Integration with spatial transcriptomics further assigns projection-enriched clusters to smaller source regions than the original dissections. We exemplify this by presenting in-depth analyses of projection neurons from the hypothalamus, thalamus, hindbrain, amygdala and midbrain to provide insights into properties of those cell types, including differentially expressed genes, their associated cis-regulatory elements and transcription-factor-binding motifs, and neurotransmitter use.


Assuntos
Encéfalo , Epigenômica , Vias Neurais , Neurônios , Animais , Camundongos , Tonsila do Cerebelo , Encéfalo/citologia , Encéfalo/metabolismo , Sequência Consenso , Conjuntos de Dados como Assunto , Perfilação da Expressão Gênica , Hipotálamo/citologia , Mesencéfalo/citologia , Vias Neurais/citologia , Neurônios/metabolismo , Neurotransmissores/metabolismo , Sequências Reguladoras de Ácido Nucleico , Rombencéfalo/citologia , Análise de Célula Única , Tálamo/citologia , Fatores de Transcrição/metabolismo
9.
Science ; 382(6667): eadf9941, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824646

RESUMO

The thalamus plays a central coordinating role in the brain. Thalamic neurons are organized into spatially distinct nuclei, but the molecular architecture of thalamic development is poorly understood, especially in humans. To begin to delineate the molecular trajectories of cell fate specification and organization in the developing human thalamus, we used single-cell and multiplexed spatial transcriptomics. We show that molecularly defined thalamic neurons differentiate in the second trimester of human development and that these neurons organize into spatially and molecularly distinct nuclei. We identified major subtypes of glutamatergic neuron subtypes that are differentially enriched in anatomically distinct nuclei and six subtypes of γ-aminobutyric acid-mediated (GABAergic) neurons that are shared and distinct across thalamic nuclei.


Assuntos
Neurônios GABAérgicos , Neurogênese , Tálamo , Humanos , Núcleos Talâmicos/citologia , Núcleos Talâmicos/crescimento & desenvolvimento , Tálamo/citologia , Tálamo/crescimento & desenvolvimento , Neurônios GABAérgicos/fisiologia , Feminino , Gravidez , Análise de Célula Única , Segundo Trimestre da Gravidez
10.
Nature ; 621(7977): 138-145, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37587337

RESUMO

Maintaining body temperature is calorically expensive for endothermic animals1. Mammals eat more in the cold to compensate for energy expenditure2, but the neural mechanism underlying this coupling is not well understood. Through behavioural and metabolic analyses, we found that mice dynamically switch between energy-conservation and food-seeking states in the cold, the latter of which are primarily driven by energy expenditure rather than the sensation of cold. To identify the neural mechanisms underlying cold-induced food seeking, we used whole-brain c-Fos mapping and found that the xiphoid (Xi), a small nucleus in the midline thalamus, was selectively activated by prolonged cold associated with elevated energy expenditure but not with acute cold exposure. In vivo calcium imaging showed that Xi activity correlates with food-seeking episodes under cold conditions. Using activity-dependent viral strategies, we found that optogenetic and chemogenetic stimulation of cold-activated Xi neurons selectively recapitulated food seeking under cold conditions whereas their inhibition suppressed it. Mechanistically, Xi encodes a context-dependent valence switch that promotes food-seeking behaviours under cold but not warm conditions. Furthermore, these behaviours are mediated by a Xi-to-nucleus accumbens projection. Our results establish Xi as a key region in the control of cold-induced feeding, which is an important mechanism in the maintenance of energy homeostasis in endothermic animals.


Assuntos
Temperatura Corporal , Temperatura Baixa , Comportamento Alimentar , Tálamo , Animais , Camundongos , Temperatura Corporal/fisiologia , Mapeamento Encefálico , Cálcio/metabolismo , Comportamento Alimentar/fisiologia , Metabolismo Energético/fisiologia , Tálamo/anatomia & histologia , Tálamo/citologia , Tálamo/fisiologia , Optogenética , Neurônios/metabolismo , Núcleo Accumbens/citologia , Núcleo Accumbens/fisiologia , Homeostase/fisiologia , Termogênese/fisiologia
11.
Nature ; 618(7967): 1006-1016, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37286598

RESUMO

In many species, including mice, female animals show markedly different pup-directed behaviours based on their reproductive state1,2. Naive wild female mice often kill pups, while lactating female mice are dedicated to pup caring3,4. The neural mechanisms that mediate infanticide and its switch to maternal behaviours during motherhood remain unclear. Here, on the basis of the hypothesis that maternal and infanticidal behaviours are supported by distinct and competing neural circuits5,6, we use the medial preoptic area (MPOA), a key site for maternal behaviours7-11, as a starting point and identify three MPOA-connected brain regions that drive differential negative pup-directed behaviours. Functional manipulation and in vivo recording reveal that oestrogen receptor α (ESR1)-expressing cells in the principal nucleus of the bed nucleus of stria terminalis (BNSTprESR1) are necessary, sufficient and naturally activated during infanticide in female mice. MPOAESR1 and BNSTprESR1 neurons form reciprocal inhibition to control the balance between positive and negative infant-directed behaviours. During motherhood, MPOAESR1 and BNSTprESR1 cells change their excitability in opposite directions, supporting a marked switch of female behaviours towards the young.


Assuntos
Infanticídio , Comportamento Materno , Área Pré-Óptica , Animais , Feminino , Camundongos , Lactação , Comportamento Materno/fisiologia , Vias Neurais/fisiologia , Área Pré-Óptica/citologia , Área Pré-Óptica/fisiologia , Tálamo/citologia , Tálamo/fisiologia
12.
Nature ; 615(7954): 892-899, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36949190

RESUMO

The head direction (HD) system functions as the brain's internal compass1,2, classically formalized as a one-dimensional ring attractor network3,4. In contrast to a globally consistent magnetic compass, the HD system does not have a universal reference frame. Instead, it anchors to local cues, maintaining a stable offset when cues rotate5-8 and drifting in the absence of referents5,8-10. However, questions about the mechanisms that underlie anchoring and drift remain unresolved and are best addressed at the population level. For example, the extent to which the one-dimensional description of population activity holds under conditions of reorientation and drift is unclear. Here we performed population recordings of thalamic HD cells using calcium imaging during controlled rotations of a visual landmark. Across experiments, population activity varied along a second dimension, which we refer to as network gain, especially under circumstances of cue conflict and ambiguity. Activity along this dimension predicted realignment and drift dynamics, including the speed of network realignment. In the dark, network gain maintained a 'memory trace' of the previously displayed landmark. Further experiments demonstrated that the HD network returned to its baseline orientation after brief, but not longer, exposures to a rotated cue. This experience dependence suggests that memory of previous associations between HD neurons and allocentric cues is maintained and influences the internal HD representation. Building on these results, we show that continuous rotation of a visual landmark induced rotation of the HD representation that persisted in darkness, demonstrating experience-dependent recalibration of the HD system. Finally, we propose a computational model to formalize how the neural compass flexibly adapts to changing environmental cues to maintain a reliable representation of HD. These results challenge classical one-dimensional interpretations of the HD system and provide insights into the interactions between this system and the cues to which it anchors.


Assuntos
Sinais (Psicologia) , Cabeça , Neurônios , Orientação , Tálamo , Sinalização do Cálcio , Cabeça/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Orientação/fisiologia , Orientação Espacial/fisiologia , Rotação , Tálamo/citologia , Tálamo/fisiologia
13.
Nature ; 616(7955): 132-136, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36949189

RESUMO

While motor cortical circuits contain information related to specific movement parameters1, long-range inputs also have a critical role in action execution2,3. Thalamic projections can shape premotor activity2-6 and have been suggested7 to mediate the selection of short, stereotyped actions comprising more complex behaviours8. However, the mechanisms by which thalamus interacts with motor cortical circuits to execute such movement sequences remain unknown. Here we find that thalamic drive engages a specific subpopulation of premotor neurons within the zebra finch song nucleus HVC (proper name) and that these inputs are critical for the progression between vocal motor elements (that is, 'syllables'). In vivo two-photon imaging of thalamic axons in HVC showed robust song-related activity, and online perturbations of thalamic function caused song to be truncated at syllable boundaries. We used thalamic stimulation to identify a sparse set of thalamically driven neurons within HVC, representing ~15% of the premotor neurons within that network. Unexpectedly, this population of putative thalamorecipient neurons is robustly active immediately preceding syllable onset, leading to the possibility that thalamic input can initiate individual song components through selectively targeting these 'starter cells'. Our findings highlight the motor thalamus as a director of cortical dynamics in the context of an ethologically relevant behavioural sequence.


Assuntos
Corte , Tentilhões , Tálamo , Vocalização Animal , Animais , Tentilhões/fisiologia , Neurônios/fisiologia , Tálamo/citologia , Tálamo/fisiologia , Vocalização Animal/fisiologia , Córtex Motor/citologia , Córtex Motor/fisiologia , Vias Neurais/fisiologia , Encéfalo/citologia , Encéfalo/fisiologia , Masculino
14.
Cell Rep ; 41(10): 111768, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36476860

RESUMO

The thalamus is the principal information hub of the vertebrate brain, with essential roles in sensory and motor information processing, attention, and memory. The complex array of thalamic nuclei develops from a restricted pool of neural progenitors. We apply longitudinal single-cell RNA sequencing and regional abrogation of Sonic hedgehog (Shh) to map the developmental trajectories of thalamic progenitors, intermediate progenitors, and post-mitotic neurons as they coalesce into distinct thalamic nuclei. These data reveal that the complex architecture of the thalamus is established early during embryonic brain development through the coordinated action of four cell differentiation lineages derived from Shh-dependent and -independent progenitors. We systematically characterize the gene expression programs that define these thalamic lineages across time and demonstrate how their disruption upon Shh depletion causes pronounced locomotor impairment resembling infantile Parkinson's disease. These results reveal key principles of thalamic development and provide mechanistic insights into neurodevelopmental disorders resulting from thalamic dysfunction.


Assuntos
Tálamo , Tálamo/citologia
15.
Science ; 378(6626): 1336-1343, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36548429

RESUMO

The primary motor cortex (M1) is involved in the control of voluntary movements and is extensively mapped in this capacity. Although the M1 is implicated in modulation of pain, the underlying circuitry and causal underpinnings remain elusive. We unexpectedly unraveled a connection from the M1 to the nucleus accumbens reward circuitry through a M1 layer 6-mediodorsal thalamus pathway, which specifically suppresses negative emotional valence and associated coping behaviors in neuropathic pain. By contrast, layer 5 M1 neurons connect with specific cell populations in zona incerta and periaqueductal gray to suppress sensory hypersensitivity without altering pain affect. Thus, the M1 employs distinct, layer-specific pathways to attune sensory and aversive-emotional components of neuropathic pain, which can be exploited for purposes of pain relief.


Assuntos
Córtex Motor , Vias Neurais , Neuralgia , Córtex Motor/citologia , Córtex Motor/fisiologia , Vias Neurais/citologia , Vias Neurais/fisiologia , Neuralgia/fisiopatologia , Neurônios/fisiologia , Substância Cinzenta Periaquedutal/citologia , Substância Cinzenta Periaquedutal/fisiologia , Tálamo/citologia , Tálamo/fisiologia , Animais , Camundongos
16.
Nature ; 608(7921): 146-152, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35831500

RESUMO

Social affiliation emerges from individual-level behavioural rules that are driven by conspecific signals1-5. Long-distance attraction and short-distance repulsion, for example, are rules that jointly set a preferred interanimal distance in swarms6-8. However, little is known about their perceptual mechanisms and executive neural circuits3. Here we trace the neuronal response to self-like biological motion9,10, a visual trigger for affiliation in developing zebrafish2,11. Unbiased activity mapping and targeted volumetric two-photon calcium imaging revealed 21 activity hotspots distributed throughout the brain as well as clustered biological-motion-tuned neurons in a multimodal, socially activated nucleus of the dorsal thalamus. Individual dorsal thalamus neurons encode local acceleration of visual stimuli mimicking typical fish kinetics but are insensitive to global or continuous motion. Electron microscopic reconstruction of dorsal thalamus neurons revealed synaptic input from the optic tectum and projections into hypothalamic areas with conserved social function12-14. Ablation of the optic tectum or dorsal thalamus selectively disrupted social attraction without affecting short-distance repulsion. This tectothalamic pathway thus serves visual recognition of conspecifics, and dissociates neuronal control of attraction from repulsion during social affiliation, revealing a circuit underpinning collective behaviour.


Assuntos
Aglomeração , Neurônios , Comportamento Social , Colículos Superiores , Tálamo , Vias Visuais , Peixe-Zebra , Animais , Mapeamento Encefálico , Cálcio/análise , Hipotálamo/citologia , Hipotálamo/fisiologia , Locomoção , Microscopia Eletrônica , Neurônios/citologia , Neurônios/fisiologia , Neurônios/ultraestrutura , Reconhecimento Visual de Modelos , Estimulação Luminosa , Colículos Superiores/citologia , Colículos Superiores/fisiologia , Tálamo/citologia , Tálamo/fisiologia , Vias Visuais/citologia , Vias Visuais/fisiologia , Vias Visuais/ultraestrutura , Peixe-Zebra/fisiologia
17.
Nature ; 607(7918): 321-329, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35676479

RESUMO

Although bradykinesia, tremor and rigidity are the hallmark motor defects in patients with Parkinson's disease (PD), patients also experience motor learning impairments and non-motor symptoms such as depression1. The neural circuit basis for these different symptoms of PD are not well understood. Although current treatments are effective for locomotion deficits in PD2,3, therapeutic strategies targeting motor learning deficits and non-motor symptoms are lacking4-6. Here we found that distinct parafascicular (PF) thalamic subpopulations project to caudate putamen (CPu), subthalamic nucleus (STN) and nucleus accumbens (NAc). Whereas PF→CPu and PF→STN circuits are critical for locomotion and motor learning, respectively, inhibition of the PF→NAc circuit induced a depression-like state. Whereas chemogenetically manipulating CPu-projecting PF neurons led to a long-term restoration of locomotion, optogenetic long-term potentiation (LTP) at PF→STN synapses restored motor learning behaviour in an acute mouse model of PD. Furthermore, activation of NAc-projecting PF neurons rescued depression-like phenotypes. Further, we identified nicotinic acetylcholine receptors capable of modulating PF circuits to rescue different PD phenotypes. Thus, targeting PF thalamic circuits may be an effective strategy for treating motor and non-motor deficits in PD.


Assuntos
Afeto , Destreza Motora , Vias Neurais , Doença de Parkinson , Tálamo , Animais , Modelos Animais de Doenças , Aprendizagem , Locomoção , Potenciação de Longa Duração , Camundongos , Neurônios/fisiologia , Núcleo Accumbens , Optogenética , Doença de Parkinson/fisiopatologia , Doença de Parkinson/psicologia , Doença de Parkinson/terapia , Putamen , Receptores Nicotínicos , Núcleo Subtalâmico , Sinapses , Tálamo/citologia , Tálamo/patologia
18.
Science ; 376(6594): 724-730, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35549430

RESUMO

Rapid eye movement (REM) sleep is associated with the consolidation of emotional memories. Yet, the underlying neocortical circuits and synaptic mechanisms remain unclear. We found that REM sleep is associated with a somatodendritic decoupling in pyramidal neurons of the prefrontal cortex. This decoupling reflects a shift of inhibitory balance between parvalbumin neuron-mediated somatic inhibition and vasoactive intestinal peptide-mediated dendritic disinhibition, mostly driven by neurons from the central medial thalamus. REM-specific optogenetic suppression of dendritic activity led to a loss of danger-versus-safety discrimination during associative learning and a lack of synaptic plasticity, whereas optogenetic release of somatic inhibition resulted in enhanced discrimination and synaptic potentiation. Somatodendritic decoupling during REM sleep promotes opposite synaptic plasticity mechanisms that optimize emotional responses to future behavioral stressors.


Assuntos
Dendritos , Plasticidade Neuronal , Córtex Pré-Frontal , Sono REM , Animais , Dendritos/fisiologia , Camundongos , Plasticidade Neuronal/fisiologia , Parvalbuminas/metabolismo , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/fisiologia , Células Piramidais/fisiologia , Sono REM/fisiologia , Tálamo/citologia , Tálamo/fisiologia
19.
Nature ; 598(7879): 188-194, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34616074

RESUMO

The cortico-basal ganglia-thalamo-cortical loop is one of the fundamental network motifs in the brain. Revealing its structural and functional organization is critical to understanding cognition, sensorimotor behaviour, and the natural history of many neurological and neuropsychiatric disorders. Classically, this network is conceptualized to contain three information channels: motor, limbic and associative1-4. Yet this three-channel view cannot explain the myriad functions of the basal ganglia. We previously subdivided the dorsal striatum into 29 functional domains on the basis of the topography of inputs from the entire cortex5. Here we map the multi-synaptic output pathways of these striatal domains through the globus pallidus external part (GPe), substantia nigra reticular part (SNr), thalamic nuclei and cortex. Accordingly, we identify 14 SNr and 36 GPe domains and a direct cortico-SNr projection. The striatonigral direct pathway displays a greater convergence of striatal inputs than the more parallel striatopallidal indirect pathway, although direct and indirect pathways originating from the same striatal domain ultimately converge onto the same postsynaptic SNr neurons. Following the SNr outputs, we delineate six domains in the parafascicular and ventromedial thalamic nuclei. Subsequently, we identify six parallel cortico-basal ganglia-thalamic subnetworks that sequentially transduce specific subsets of cortical information through every elemental node of the cortico-basal ganglia-thalamic loop. Thalamic domains relay this output back to the originating corticostriatal neurons of each subnetwork in a bona fide closed loop.


Assuntos
Gânglios da Base/citologia , Córtex Cerebral/citologia , Vias Neurais , Neurônios/citologia , Tálamo/citologia , Animais , Gânglios da Base/anatomia & histologia , Córtex Cerebral/anatomia & histologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tálamo/anatomia & histologia
20.
Nature ; 598(7881): 483-488, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34599305

RESUMO

The prefrontal cortex (PFC) and its connections with the mediodorsal thalamus are crucial for cognitive flexibility and working memory1 and are thought to be altered in disorders such as autism2,3 and schizophrenia4,5. Although developmental mechanisms that govern the regional patterning of the cerebral cortex have been characterized in rodents6-9, the mechanisms that underlie the development of PFC-mediodorsal thalamus connectivity and the lateral expansion of the PFC with a distinct granular layer 4 in primates10,11 remain unknown. Here we report an anterior (frontal) to posterior (temporal), PFC-enriched gradient of retinoic acid, a signalling molecule that regulates neural development and function12-15, and we identify genes that are regulated by retinoic acid in the neocortex of humans and macaques at the early and middle stages of fetal development. We observed several potential sources of retinoic acid, including the expression and cortical expansion of retinoic-acid-synthesizing enzymes specifically in primates as compared to mice. Furthermore, retinoic acid signalling is largely confined to the prospective PFC by CYP26B1, a retinoic-acid-catabolizing enzyme, which is upregulated in the prospective motor cortex. Genetic deletions in mice revealed that retinoic acid signalling through the retinoic acid receptors RXRG and RARB, as well as CYP26B1-dependent catabolism, are involved in proper molecular patterning of prefrontal and motor areas, development of PFC-mediodorsal thalamus connectivity, intra-PFC dendritic spinogenesis and expression of the layer 4 marker RORB. Together, these findings show that retinoic acid signalling has a critical role in the development of the PFC and, potentially, in its evolutionary expansion.


Assuntos
Organogênese , Córtex Pré-Frontal/embriologia , Córtex Pré-Frontal/metabolismo , Tretinoína/metabolismo , Animais , Axônios/metabolismo , Córtex Cerebral , Regulação para Baixo , Feminino , Humanos , Macaca mulatta , Masculino , Camundongos , Pan troglodytes , Córtex Pré-Frontal/anatomia & histologia , Córtex Pré-Frontal/citologia , Receptores do Ácido Retinoico/deficiência , Receptor X Retinoide gama/deficiência , Transdução de Sinais , Sinapses/metabolismo , Tálamo/anatomia & histologia , Tálamo/citologia , Tálamo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...