Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.826
Filtrar
1.
Int J Neural Syst ; 34(9): 2450045, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38886870

RESUMO

Parkinsonism is presented as a motor syndrome characterized by rigidity, tremors, and bradykinesia, with Parkinson's disease (PD) being the predominant cause. The discovery that those motor symptoms result from the death of dopaminergic cells in the substantia nigra led to focus most of parkinsonism research on the basal ganglia (BG). However, recent findings point to an active involvement of the cerebellum in this motor syndrome. Here, we have developed a multiscale computational model of the rodent brain's BG-cerebellar network. Simulations showed that a direct effect of dopamine depletion on the cerebellum must be taken into account to reproduce the alterations of neural activity in parkinsonism, particularly the increased beta oscillations widely reported in PD patients. Moreover, dopamine depletion indirectly impacted spike-time-dependent plasticity at the parallel fiber-Purkinje cell synapses, degrading associative motor learning as observed in parkinsonism. Overall, these results suggest a relevant involvement of cerebellum in parkinsonism associative motor symptoms.


Assuntos
Gânglios da Base , Ritmo beta , Cerebelo , Dopamina , Modelos Neurológicos , Cerebelo/metabolismo , Cerebelo/fisiopatologia , Gânglios da Base/metabolismo , Gânglios da Base/fisiopatologia , Ritmo beta/fisiologia , Animais , Dopamina/metabolismo , Tálamo/metabolismo , Tálamo/fisiopatologia , Vias Neurais/fisiopatologia , Simulação por Computador , Humanos , Córtex Cerebral/fisiopatologia , Córtex Cerebral/metabolismo
2.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38928280

RESUMO

The present study examined how P2X7 receptor knockout (KO) modulates central post-stroke pain (CPSP) induced by lesions of the ventrobasal complex (VBC) of the thalamus in behaviors, molecular levels, and electrical recording tests. Following the experimental procedure, the wild-type and P2X7 receptor KO mice were injected with 10 mU/0.2 µL type IV collagenase in the VBC of the thalamus to induce an animal model of stroke-like thalamic hemorrhage. Behavioral data showed that the CPSP group induced thermal and mechanical pain. The P2X7 receptor KO group showed reduced thermal and mechanical pain responses compared to the CPSP group. Molecular assessments revealed that the CPSP group had lower expression of NeuN and KCC2 and higher expression of GFAP, IBA1, and BDNF. The P2X7 KO group showed lower expression of GFAP, IBA1, and BDNF but nonsignificant differences in KCC2 expression than the CPSP group. The expression of NKCC1, GABAa receptor, and TrkB did not differ significantly between the control, CPSP, and P2X7 receptor KO groups. Muscimol, a GABAa agonist, application increased multiunit numbers for monitoring many neurons and [Cl-] outflux in the cytosol in the CPSP group, while P2X7 receptor KO reduced multiunit activity and increased [Cl-] influx compared to the CPSP group. P2X4 receptor expression was significantly decreased in the 100 kDa but not the 50 kDa site in the P2X7 receptor KO group. Altogether, the P2X7 hypothesis of CPSP was proposed, wherein P2X7 receptor KO altered the CPSP pain responses, numbers of astrocytes and microglia, CSD amplitude of the anterior cingulate cortex and the medial dorsal thalamus, BDNF expression, [Cl-] influx, and P2X4 expression in 100 kDa with P2X7 receptors. The present findings have implications for the clinical treatment of CPSP symptoms.


Assuntos
Cotransportadores de K e Cl- , Camundongos Knockout , Receptores Purinérgicos P2X7 , Acidente Vascular Cerebral , Animais , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/genética , Camundongos , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/complicações , Masculino , Dor/metabolismo , Dor/etiologia , Modelos Animais de Doenças , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Simportadores/metabolismo , Simportadores/genética , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Muscimol/farmacologia , Proteína Glial Fibrilar Ácida/metabolismo , Tálamo/metabolismo
3.
Nat Commun ; 15(1): 5421, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926335

RESUMO

During brain development, neural circuits undergo major activity-dependent restructuring. Circuit wiring mainly occurs through synaptic strengthening following the Hebbian "fire together, wire together" precept. However, select connections, essential for circuit development, are transient. They are effectively connected early in development, but strongly diminish during maturation. The mechanisms by which transient connectivity recedes are unknown. To investigate this process, we characterize transient thalamocortical inputs, which depress onto somatostatin inhibitory interneurons during development, by employing optogenetics, chemogenetics, transcriptomics and CRISPR-based strategies in mice. We demonstrate that in contrast to typical activity-dependent mechanisms, transient thalamocortical connectivity onto somatostatin interneurons is non-canonical and involves metabotropic signaling. Specifically, metabotropic-mediated transcription, of guidance molecules in particular, supports the elimination of this connectivity. Remarkably, we found that this process impacts the development of normal exploratory behaviors of adult mice.


Assuntos
Interneurônios , Somatostatina , Tálamo , Animais , Interneurônios/metabolismo , Somatostatina/metabolismo , Somatostatina/genética , Camundongos , Tálamo/metabolismo , Optogenética , Transdução de Sinais , Masculino , Córtex Cerebral/metabolismo , Córtex Cerebral/citologia , Córtex Cerebral/crescimento & desenvolvimento , Feminino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
4.
Neuroscience ; 551: 254-261, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38848776

RESUMO

N-acetylaspartate (NAA), choline (Cho) and creatine (Cr) are brain metabolites involved in some key neuronal functions within the brain, such as cognitive function. The aim of this study was to investigate whether Parkinson's disease (PD) with different cognitive status induces regional brain metabolite differences. 38 diagnosed PD patients, including 18 PD patients with normal cognitive (PDN), 20 PD subjects with cognitive impairment (PDMCI) and 25 healthy controls (HC) participated in this study. All subjects underwent a single-voxel proton MR spectroscopy (1H-MRS) on a 3T scanner. 1H-MRS were obtained from bilateral PCC, left thalamus and PFC regions in all subjects, respectively. Region-specific cerebral metabolic alterations existed in PD patients with different cognitive status. PDMCI patients showed a significant reduction of NAA, Cho and tCr in the PCC and left thalamus, compared to healthy controls; whereas lower levels of NAA and Cho in thalamus were found in PDN patients. Moreover, Cho and tCr levels were positively correlated with MMSE scores. Both NAA and tCr in PCC levels were positively correlated with MMSE and MoCA scores. The combination of thalamic and PCC metabolites showed a 75.6% accuracy in distinguishing PDMCI patients from PDN patients. This study provides preliminary evidence that thalamic, PCC and PFC neurometabolic alterations occur in PD patients with cognition decline. Findings of this study indicate that NAA and tCr abnormalities in PCC and thalamus might be used as a biomarker to track cognitive decline in Parkinson's disease in clinical settings.


Assuntos
Ácido Aspártico , Colina , Disfunção Cognitiva , Creatina , Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Doença de Parkinson/diagnóstico por imagem , Masculino , Feminino , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/diagnóstico por imagem , Creatina/metabolismo , Colina/metabolismo , Pessoa de Meia-Idade , Idoso , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Tálamo/metabolismo , Tálamo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Testes Neuropsicológicos
5.
ACS Chem Neurosci ; 15(14): 2654-2661, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38916752

RESUMO

The extent of changes in functional connectivity (FC) within functional networks as a common feature across hallucinogenic drug classes is under-explored. This work utilized fMRI to assess the dissociative hallucinogens Psilocybin, a classical serotonergic psychedelic, and Salvinorin-A, a kappa-opioid receptor (KOR) agonist, on resting-state FC in nonhuman primates. We highlight overlapping and differing influence of these substances on FC relative to the thalamus, claustrum, prefrontal cortex (PFC), default mode network (DMN), and DMN subcomponents. Analysis was conducted on a within-subject basis. Findings support the cortico-claustro-cortical network model for probing functional effects of hallucinogens regardless of serotonergic potential, with a potential key paradigm centered around the claustrum, PFC, anterior cingulate cortices (ACC), and angular gyrus relationship. Thalamo-cortical networks are implicated but appear dependent on 5-HT2AR activation. Acute desynchronization relative to the DMN for both drugs was also shown. Our findings provide a framework to understand broader mechanisms at which hallucinogens in differing classes may impact subjects regardless of the target receptor.


Assuntos
Diterpenos Clerodânicos , Alucinógenos , Imageamento por Ressonância Magnética , Psilocibina , Alucinógenos/farmacologia , Diterpenos Clerodânicos/farmacologia , Animais , Psilocibina/farmacologia , Masculino , Imageamento por Ressonância Magnética/métodos , Córtex Pré-Frontal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Macaca mulatta , Rede de Modo Padrão/efeitos dos fármacos , Tálamo/efeitos dos fármacos , Tálamo/diagnóstico por imagem , Tálamo/metabolismo , Vias Neurais/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/diagnóstico por imagem
6.
J Comp Neurol ; 532(6): e25627, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38813969

RESUMO

During development, cell-intrinsic and cell-extrinsic factors play important roles in neuronal differentiation; however, the underlying mechanisms in nonmammalian species remain largely unknown. We here investigated the mechanisms responsible for the differentiation of sensory input neurons in the chick entopallium, which receives its primary visual input via the tectofugal pathway from the nucleus rotundus. The results obtained revealed that input neurons in the entopallium expressed Potassium Voltage-Gated Channel Subfamily H Member 5 (KCNH5/EAG2) mRNA from embryonic day (E) 11. On the other hand, the onset of protein expression was E20, which was 1 day before hatching. We confirm that entopallium input neurons in chicks were generated during early neurogenesis in the lateral and ventral ventricular zones. Notably, neurons derived from the lateral (LP) and ventral pallium (VP) exhibited a spatially distinct distribution along the rostro-caudal axis. We further demonstrated that the expression of EAG2 was directly regulated by input activity from thalamic axons. Collectively, the present results reveal that thalamic input activity is essential for specifying input neurons among LP- and VP-derived early-generated neurons in the developing chick entopallium.


Assuntos
Neurogênese , Tálamo , Animais , Embrião de Galinha , Neurogênese/fisiologia , Tálamo/embriologia , Tálamo/citologia , Tálamo/metabolismo , Células Receptoras Sensoriais/fisiologia , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/citologia , Galinhas , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia
7.
Diabetes ; 73(8): 1317-1324, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38776434

RESUMO

Alterations in the structure, function, and microcirculation of the thalamus, a key brain region involved in pain pathways, have previously been demonstrated in patients with painless and painful diabetic peripheral neuropathy (DPN). However, thalamic neurotransmitter levels including γ-aminobutyric acid (GABA) (inhibitory neurotransmitter) and glutamate (excitatory neurotransmitter) in different DPN phenotypes are not known. We performed a magnetic resonance spectroscopy study and quantified GABA and glutamate levels within the thalamus, in a carefully characterized cohort of participants with painless and painful DPN. Participants with DPN (painful and painless combined) had a significantly lower GABA:H2O ratio compared with those without DPN (healthy volunteers [HV] and participants with diabetes without DPN [no DPN]). Participants with painless DPN had the lowest GABA:H2O ratio, which reached significance compared with HV and no DPN, but not painful DPN. There was no difference in GABA:H2O in painful DPN compared with all other groups. A significant correlation with GABA:H2O and neuropathy severity was also seen. This study demonstrates that lower levels of thalamic GABA in participants with painless DPN may reflect neuroplasticity due to reduced afferent pain impulses, whereas partially preserved levels of GABA in painful DPN may indicate that central GABAergic pathways are involved in the mechanisms of neuropathic pain in diabetes.


Assuntos
Neuropatias Diabéticas , Tálamo , Ácido gama-Aminobutírico , Humanos , Neuropatias Diabéticas/metabolismo , Ácido gama-Aminobutírico/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Tálamo/metabolismo , Idoso , Espectroscopia de Ressonância Magnética , Adulto , Ácido Glutâmico/metabolismo
8.
BMC Res Notes ; 17(1): 143, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773625

RESUMO

OBJECTIVES: The G72 mouse model of schizophrenia represents a well-known model that was generated to meet the main translational criteria of isomorphism, homology and predictability of schizophrenia to a maximum extent. In order to get a more detailed view of the complex etiopathogenesis of schizophrenia, whole genome transcriptome studies turn out to be indispensable. Here we carried out microarray data collection based on RNA extracted from the retrosplenial cortex, hippocampus and thalamus of G72 transgenic and wild-type control mice. Experimental animals were age-matched and importantly, both sexes were considered separately. DATA DESCRIPTION: The isolated RNA from all three brain regions was purified, quantified und quality controlled before initiation of the hybridization procedure with SurePrint G3 Mouse Gene Expression v2 8  ×  60 K microarrays. Following immunofluorescent measurement und preprocessing of image data, raw transcriptome data from G72 mice and control animals were extracted and uploaded in a public database. Our data allow insight into significant alterations in gene transcript levels in G72 mice and enable the reader/user to perform further complex analyses to identify potential age-, sex- and brain-region-specific alterations in transcription profiles and related pathways. The latter could facilitate biomarker identification and drug research and development in schizophrenia research.


Assuntos
Córtex Cerebral , Modelos Animais de Doenças , Hipocampo , Esquizofrenia , Tálamo , Transcriptoma , Animais , Esquizofrenia/genética , Esquizofrenia/metabolismo , Hipocampo/metabolismo , Masculino , Feminino , Camundongos , Transcriptoma/genética , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Tálamo/metabolismo , Camundongos Transgênicos , Perfilação da Expressão Gênica/métodos , Fatores Sexuais
9.
Cell Rep ; 43(5): 114197, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38733587

RESUMO

Interneurons (INs), specifically those in disinhibitory circuits like somatostatin (SST) and vasoactive intestinal peptide (VIP)-INs, are strongly modulated by the behavioral context. Yet, the mechanisms by which these INs are recruited during active states and whether their activity is consistent across sensory cortices remain unclear. We now report that in mice, locomotor activity strongly recruits SST-INs in the primary somatosensory (S1) but not the visual (V1) cortex. This diverse engagement of SST-INs cannot be explained by differences in VIP-IN function but is absent in the presence of visual input, suggesting the involvement of feedforward sensory pathways. Accordingly, inactivating the somatosensory thalamus, but not decreasing VIP-IN activity, significantly reduces the modulation of SST-INs by locomotion. Model simulations suggest that the differences in SST-INs across behavioral states can be explained by varying ratios of VIP- and thalamus-driven activity. By integrating feedforward activity with neuromodulation, SST-INs are anticipated to be crucial for adapting sensory processing to behavioral states.


Assuntos
Interneurônios , Somatostatina , Peptídeo Intestinal Vasoativo , Animais , Interneurônios/metabolismo , Interneurônios/fisiologia , Somatostatina/metabolismo , Camundongos , Peptídeo Intestinal Vasoativo/metabolismo , Córtex Somatossensorial/fisiologia , Córtex Somatossensorial/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Locomoção/fisiologia , Comportamento Animal/fisiologia , Córtex Visual/fisiologia , Córtex Visual/metabolismo , Tálamo/fisiologia , Tálamo/metabolismo
10.
Cell Rep Med ; 5(5): 101534, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38670100

RESUMO

Thalamocortical (TC) circuits are essential for sensory information processing. Clinical and preclinical studies of autism spectrum disorders (ASDs) have highlighted abnormal thalamic development and TC circuit dysfunction. However, mechanistic understanding of how TC dysfunction contributes to behavioral abnormalities in ASDs is limited. Here, our study on a Shank3 mouse model of ASD reveals TC neuron hyperexcitability with excessive burst firing and a temporal mismatch relationship with slow cortical rhythms during sleep. These TC electrophysiological alterations and the consequent sensory hypersensitivity and sleep fragmentation in Shank3 mutant mice are causally linked to HCN2 channelopathy. Restoring HCN2 function early in postnatal development via a viral approach or lamotrigine (LTG) ameliorates sensory and sleep problems. A retrospective case series also supports beneficial effects of LTG treatment on sensory behavior in ASD patients. Our study identifies a clinically relevant circuit mechanism and proposes a targeted molecular intervention for ASD-related behavioral impairments.


Assuntos
Transtorno do Espectro Autista , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Proteínas do Tecido Nervoso , Tálamo , Animais , Tálamo/metabolismo , Tálamo/patologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Camundongos , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/fisiopatologia , Transtorno do Espectro Autista/patologia , Lamotrigina/farmacologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Canalopatias/genética , Canalopatias/metabolismo , Canalopatias/patologia , Humanos , Modelos Animais de Doenças , Masculino , Neurônios/metabolismo , Feminino , Camundongos Endogâmicos C57BL , Mutação/genética , Sono/fisiologia , Sono/efeitos dos fármacos , Sono/genética , Canais de Potássio
11.
J Neural Transm (Vienna) ; 131(7): 739-753, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38630191

RESUMO

Diagnosing and treating chronic orofacial pain is challenging due to its complex structure and limited understanding of its causes and mechanisms. In this study, we used RNA sequencing to identify differentially expressed genes (DEGs) in the rostral ventral medulla (RVM) and thalamus of rats with persistent orofacial pain, aiming to explore its development. DEGs were functionally analyzed using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Results showed a significant association between immune response and pain in this model. Key DEG mRNA expression trends were further validated using real-time quantitative polymerase chain reaction (RT-PCR), confirming their crucial roles in chronic orofacial pain. After injecting complete Freund's adjuvant (CFA) into the bilateral temporomandibular joint cavity for 14 days, we observed 293 upregulated genes and 14 downregulated genes in the RVM, and 1086 upregulated genes and 37 downregulated genes in the thalamus. Furthermore, we identified 27 common DEGs with altered expression (upregulation) in both the thalamus and RVM, including Cd74, C3, Cxcl13, C1qb, Itgal, Fcgr2b, C5ar1, and Tlr2, which are pain-associated genes. Protein-protein interaction (PPI) analysis using Cytoscape revealed the involvement of Toll-like receptors, complement system, differentiation clusters, and antigen presentation-related proteins in the interaction between the thalamus and RVM. The results of this study show that the immune system seems to have a more significant influence on chronic orofacial pain. There may be direct or indirect influence between the thalamus and RVM, which may participate in the regulation of chronic orofacial pain.


Assuntos
Dor Crônica , Dor Facial , Bulbo , Ratos Sprague-Dawley , Tálamo , Animais , Dor Facial/genética , Dor Facial/metabolismo , Dor Facial/fisiopatologia , Bulbo/metabolismo , Masculino , Ratos , Dor Crônica/genética , Dor Crônica/metabolismo , Tálamo/metabolismo , Análise de Sequência de RNA , Modelos Animais de Doenças , Transcriptoma
12.
Exp Neurol ; 376: 114775, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604438

RESUMO

OBJECTIVE: Sleep-related hypermotor epilepsy (SHE) is a focal epilepsy syndrome characterized by seizures that predominantly occur during sleep. The pathogenesis of these seizures remains unclear. We previously detected rare variants in GABRG2, which encodes the γ2 subunit of γ-aminobutyric acid type A receptor (GABAAR), in patients with SHE and demonstrated that these variants impaired GABAAR function in vitro. However, the mechanisms by which GABRG2 variants contribute to seizure attacks during sleep remain unclear. METHODS: In this study, we designed a knock-in (KI) mouse expressing the mouse Gabrg2 T316N variant, corresponding to human GABRG2 T317N variant, using CRISPR/Cas9. Continuous video-electroencephalogram monitoring and in vivo multichannel electrophysiological recordings were performed to explore seizure susceptibility to pentylenetetrazol (PTZ), alterations in the sleep-wake cycle, spontaneous seizure patterns, and synchronized activity in the motor thalamic nuclei (MoTN) and secondary motor cortex (M2). Circadian variations in the expression of total, membrane-bound, and synaptic GABAAR subunits were also investigated. RESULTS: No obvious changes in gross morphology were detected in Gabrg2T316N/+ mice compared to their wild-type (Gabrg2+/+) littermates. Gabrg2T316N/+ mice share key phenotypes with patients, including sleep fragmentation and spontaneous seizures during sleep. Gabrg2T316N/+ mice showed increased susceptibility to PTZ-induced seizures and higher mortality after seizures. Synchronization of the local field potentials between the MoTN and M2 was abnormally enhanced in Gabrg2T316N/+ mice during light phase, when sleep dominates, accompanied by increased local activities in the MoTN and M2. Interestingly, in Gabrg2+/+ mice, GABAAR γ2 subunits showed a circadian increase on the neuronal membrane and synaptosomes in the transition from dark phase to light phase, which was absent in Gabrg2T316N/+ mice. CONCLUSION: We generated a new SHE mouse model and provided in vivo evidence that rare variants of GABRG2 contribute to seizure attacks during sleep in SHE.


Assuntos
Córtex Cerebral , Epilepsia , Receptores de GABA-A , Tálamo , Animais , Feminino , Masculino , Camundongos , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Eletroencefalografia , Epilepsia/genética , Epilepsia/fisiopatologia , Técnicas de Introdução de Genes , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Sono/fisiologia , Sono/genética , Tálamo/metabolismo , Tálamo/patologia
13.
J Affect Disord ; 356: 470-476, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608766

RESUMO

Previous large-sample postmortem study revealed that the expression of miR-1202 in brain tissues from Brodmann area 44 (BA44) was dysregulated in patients with major depressive disorder (MDDs). However, the specific in vivo neuropathological mechanism of miR-1202 as well as its interplay with BA44 circuits in the depressed brain are still unclear. Here, we performed a case-control study with imaging-genetic approach based on resting-state functional magnetic resonance imaging (MRI) data and miR-1202 quantification from 110 medication-free MDDs and 102 healthy controls. Serum-derived circulating exosomes that readily cross the blood-brain barrier were isolated to quantify miR-1202. For validation, repeated MR scans were performed after a six-week follow-up of antidepressant treatment on a cohort of MDDs. Voxelwise factorial analysis revealed two brain areas (including the striatal-thalamic region) in which the effect of depression on the functional connectivity with BA44 was significantly dependent on the expression level of exosomal miR-1202. Moreover, longitudinal change of the BA44 connectivity with the striatal-thalamic region in MDDs after antidepressant treatment was found to be significantly related to the level of miR-1202 expression. These findings revealed that the in vivo neuropathological effect of miR-1202 dysregulation in depression is possibly exerted by mediating neural functional abnormalities in BA44-striatal-thalamic circuits.


Assuntos
Transtorno Depressivo Maior , Exossomos , Imageamento por Ressonância Magnética , MicroRNAs , Humanos , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/fisiopatologia , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/genética , Masculino , Feminino , MicroRNAs/genética , Adulto , Exossomos/metabolismo , Exossomos/genética , Estudos de Casos e Controles , Pessoa de Meia-Idade , Antidepressivos/uso terapêutico , Antidepressivos/farmacologia , Tálamo/diagnóstico por imagem , Tálamo/metabolismo , Tálamo/fisiopatologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia
14.
Schizophr Res ; 267: 451-461, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38643726

RESUMO

The methylazoxymethanol acetate (MAM) rodent model is used to study aspects of schizophrenia. However, numerous studies that have employed this model have used only males, resulting in a dearth of knowledge on sex differences in brain function and behaviour. The purpose of this study was to determine whether differences exist between male and female MAM rats in neuronal oscillatory function within and between the prefrontal cortex (PFC), ventral hippocampus (vHIP) and thalamus, behaviour, and in proteins linked to schizophrenia neuropathology. We showed that female MAM animals exhibited region-specific alterations in theta power, elevated low and high gamma power in all regions, and elevated PFC-thalamus high gamma coherence. Male MAM rats had elevated beta and low gamma power in PFC, and elevated vHIP-thalamus coherence. MAM females displayed impaired reversal learning whereas MAM males showed impairments in spatial memory. Glycogen synthase kinase-3 (GSK-3) was altered in the thalamus, with female MAM rats displaying elevated GSK-3α phosphorylation. Male MAM rats showed higher expression and phosphorylation GSK-3α, and higher expression of GSK-ß. Sex-specific changes in phosphorylated Tau levels were observed in a region-specific manner. These findings demonstrate there are notable sex differences in behaviour, oscillatory network function, and GSK-3 signaling in MAM rats, thus highlighting the importance of inclusion of both sexes when using this model to study schizophrenia.


Assuntos
Modelos Animais de Doenças , Acetato de Metilazoximetanol , Esquizofrenia , Caracteres Sexuais , Animais , Acetato de Metilazoximetanol/farmacologia , Esquizofrenia/fisiopatologia , Esquizofrenia/induzido quimicamente , Esquizofrenia/metabolismo , Feminino , Masculino , Ratos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/fisiopatologia , Córtex Pré-Frontal/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Tálamo/efeitos dos fármacos , Tálamo/fisiopatologia , Tálamo/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas tau/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/fisiologia , Neurônios/patologia , Ratos Sprague-Dawley
15.
Eur J Pharmacol ; 972: 176561, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580182

RESUMO

Neuronal depression in the thalamus underlies anesthetic-induced loss of consciousness, while the precise sub-thalamus nuclei and molecular targets involved remain to be elucidated. The present study investigated the role of extrasynaptic GABAA receptors in the central medial thalamic nucleus (CM) in anesthesia induced by gaboxadol (THIP) and diazepam (DZP) in rats. Local lesion of the CM led to a decrease in the duration of loss of righting reflex induced by THIP and DZP. CM microinjection of THIP but not DZP induced anesthesia. The absence of righting reflex in THIP-treated rats was consistent with the increase of low frequency oscillations in the delta band in the medial prefrontal cortex. CM microinjection of GABAA receptor antagonist SR95531 significantly attenuated the anesthesia induced by systemically-administered THIP, but not DZP. Moreover, the rats with declined expression of GABAA receptor δ-subunit in the CM were less responsive to THIP or DZP. These findings explained a novel mechanism of THIP-induced loss of consciousness and highlighted the role of CM extrasynaptic GABAA receptors in mediating anesthesia.


Assuntos
Anestesia , Isoxazóis , Receptores de GABA-A , Animais , Receptores de GABA-A/metabolismo , Masculino , Ratos , Isoxazóis/farmacologia , Diazepam/farmacologia , Ratos Sprague-Dawley , Núcleo Mediodorsal do Tálamo/efeitos dos fármacos , Núcleo Mediodorsal do Tálamo/metabolismo , Núcleo Mediodorsal do Tálamo/fisiologia , Reflexo de Endireitamento/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Tálamo/efeitos dos fármacos , Tálamo/metabolismo
16.
Neurology ; 102(10): e209326, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38669634

RESUMO

BACKGROUND AND OBJECTIVES: Narcolepsy type 1 (NT1) is due to the loss of hypothalamic neurons that produce orexin (ORX), by a suspected immune-mediated process. Rare postmortem studies are available and failed to detect any inflammation in the hypothalamic region, but these brains were collected years after the first symptoms. In vivo studies close to disease onset are lacking. We aimed to explore microglia density in the hypothalamus and thalamus in NT1 compared with controls using [18F]DPA-714 PET and to study in NT1 the relationships between microglia density in the hypothalamus and in other regions of interest (ROIs) with disease duration, severity, and ORX levels. METHODS: Patients with NT1 and controls underwent a standardized clinical evaluation and [18F]DPA-714 PET imaging using a radiolabeled ligand specific to the 18 kDa translocator protein (TSPO). TSPO genotyping determined receptor affinity. Images were processed on peripheral module interface using standard uptake value (SUV) on ROIs: hypothalamus, thalamus, frontal area, cerebellum, and the whole brain. SUV ratios (SUVr) were calculated by normalizing SUV with cerebellum uptake. RESULTS: A total of 41 patients with NT1 (21 adults, 20 children, 10 with recent disease onset <1 year) and 35 controls were included, with no significant difference between groups for [18F]DPA-714 binding (SUV/SUVr) in the hypothalamus and thalamus. Unexpectedly, significantly lower SUVr in the whole brain was found in NT1 compared with controls (0.97 ± 0.06 vs 1.08 ± 0.22, p = 0.04). The same finding between NT1 and controls in the whole brain was observed in those with high or mixed TSPO affinity (p = 0.03 and p = 0.04). Similar trend was observed in the frontal area in NT1 (0.96 ± 0.09 vs 1.09 ± 0.25, p = 0.05). In NT1, no association was found between SUVr in different ROIs and age, disease duration, severity, or ORX levels. DISCUSSION: We found no evidence of in vivo increased microglia density in NT1 compared with controls, even close to disease onset, and even unexpectedly a decrease in the whole brain of these patients. These findings do not support the presence of neuroinflammation in the destruction process of ORX neurons. TRIAL REGISTRATION INFORMATION: ClinicalTrials.org NCT03754348.


Assuntos
Microglia , Narcolepsia , Orexinas , Tomografia por Emissão de Pósitrons , Humanos , Masculino , Feminino , Microglia/metabolismo , Narcolepsia/metabolismo , Narcolepsia/genética , Narcolepsia/diagnóstico por imagem , Orexinas/metabolismo , Adulto , Adulto Jovem , Tálamo/metabolismo , Tálamo/diagnóstico por imagem , Pirazóis , Hipotálamo/metabolismo , Hipotálamo/diagnóstico por imagem , Hipotálamo/patologia , Índice de Gravidade de Doença , Pessoa de Meia-Idade , Pirimidinas , Adolescente , Receptores de GABA/metabolismo , Receptores de GABA/genética
17.
Brain Behav Immun ; 119: 317-332, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38552925

RESUMO

Complement proteins facilitate synaptic elimination during neurodevelopmental pruning, but neural complement regulation is not well understood. CUB and Sushi Multiple Domains 1 (CSMD1) can regulate complement activity in vitro, is expressed in the brain, and is associated with increased schizophrenia risk. Beyond this, little is known about CSMD1 including whether it regulates complement activity in the brain or otherwise plays a role in neurodevelopment. We used biochemical, immunohistochemical, and proteomic techniques to examine the regional, cellular, and subcellular distribution as well as protein interactions of CSMD1 in the brain. To evaluate whether CSMD1 is involved in complement-mediated synapse elimination, we examined Csmd1-knockout mice and CSMD1-knockout human stem cell-derived neurons. We interrogated synapse and circuit development of the mouse visual thalamus, a process that involves complement pathway activity. We also quantified complement deposition on synapses in mouse visual thalamus and on cultured human neurons. Finally, we assessed uptake of synaptosomes by cultured microglia. We found that CSMD1 is present at synapses and interacts with complement proteins in the brain. Mice lacking Csmd1 displayed increased levels of complement component C3, an increased colocalization of C3 with presynaptic terminals, fewer retinogeniculate synapses, and aberrant segregation of eye-specific retinal inputs to the visual thalamus during the critical period of complement-dependent refinement of this circuit. Loss of CSMD1 in vivo enhanced synaptosome engulfment by microglia in vitro, and this effect was dependent on activity of the microglial complement receptor, CR3. Finally, human stem cell-derived neurons lacking CSMD1 were more vulnerable to complement deposition. These data suggest that CSMD1 can function as a regulator of complement-mediated synapse elimination in the brain during development.


Assuntos
Encéfalo , Proteínas de Membrana , Camundongos Knockout , Neurônios , Sinapses , Animais , Humanos , Camundongos , Encéfalo/metabolismo , Células Cultivadas , Complemento C3/metabolismo , Proteínas do Sistema Complemento/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Tálamo/metabolismo
18.
Nat Commun ; 15(1): 2762, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553447

RESUMO

The significance of transient neuropeptide expression during postnatal brain development is unknown. Here, we show that galanin expression in the ventrobasal thalamus of infant mice coincides with whisker map development and modulates subcortical circuit wiring. Time-resolved neuroanatomy and single-nucleus RNA-seq identified complementary galanin (Gal) and galanin receptor 1 (Galr1) expression in the ventrobasal thalamus and the principal sensory nucleus of the trigeminal nerve (Pr5), respectively. Somatodendritic galanin release from the ventrobasal thalamus was time-locked to the first postnatal week, when Gal1R+ Pr5 afferents form glutamatergic (Slc17a6+) synapses for the topographical whisker map to emerge. RNAi-mediated silencing of galanin expression disrupted glutamatergic synaptogenesis, which manifested as impaired whisker-dependent exploratory behaviors in infant mice, with behavioral abnormalities enduring into adulthood. Pharmacological probing of receptor selectivity in vivo corroborated that target recognition and synaptogenesis in the thalamus, at least in part, are reliant on agonist-induced Gal1R activation in inbound excitatory axons. Overall, we suggest a neuropeptide-dependent developmental mechanism to contribute to the topographical specification of a fundamental sensory neurocircuit in mice.


Assuntos
Galanina , Vibrissas , Animais , Humanos , Camundongos , Axônios/metabolismo , Encéfalo/metabolismo , Galanina/metabolismo , Tálamo/metabolismo , Vibrissas/fisiologia
19.
Neurosci Bull ; 40(4): 439-450, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38015349

RESUMO

While somatosensory over-reactivity is a common feature of autism spectrum disorders such as fragile X syndrome (FXS), the thalamic mechanisms underlying this remain unclear. Here, we found that the developmental elimination of synapses formed between the principal nucleus of V (PrV) and the ventral posterior medial nucleus (VPm) of the somatosensory system was delayed in fragile X mental retardation 1 gene knockout (Fmr1 KO) mice, while the developmental strengthening of these synapses was disrupted. Immunohistochemistry showed excessive VGluT2 puncta in mutants at P12-13, but not at P7-8 or P15-16, confirming a delay in somatic pruning of PrV-VPm synapses. Impaired synaptic function was associated with a reduction in the frequency of quantal AMPA events, as well as developmental deficits in presynaptic vesicle size and density. Our results uncovered the developmental impairment of thalamic relay synapses in Fmr1 KO mice and suggest that a thalamic contribution to the somatosensory over-reactivity in FXS should be considered.


Assuntos
Transtorno do Espectro Autista , Síndrome do Cromossomo X Frágil , Camundongos , Animais , Síndrome do Cromossomo X Frágil/genética , Camundongos Knockout , Modelos Animais de Doenças , Tálamo/metabolismo , Sinapses/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo
20.
J Cereb Blood Flow Metab ; 44(2): 224-238, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37898107

RESUMO

Ischemic stroke causes secondary neurodegeneration in the thalamus ipsilateral to the infarction site and impedes neurological recovery. Axonal degeneration of thalamocortical fibers and autophagy overactivation are involved in thalamic neurodegeneration after ischemic stroke. However, the molecular mechanisms underlying thalamic neurodegeneration remain unclear. Sterile /Armadillo/Toll-Interleukin receptor homology domain protein (SARM1) can induce Wallerian degeneration. Herein, we aimed to investigate the role of SARM1 in thalamic neurodegeneration and autophagy activation after photothrombotic infarction. Neurological deficits measured using modified neurological severity scores and adhesive-removal test were ameliorated in Sarm1-/- mice after photothrombotic infarction. Compared with wild-type mice, Sarm1-/- mice exhibited unaltered infarct volume; however, there were markedly reduced neuronal death and gliosis in the ipsilateral thalamus. In parallel, autophagy activation was attenuated in the thalamus of Sarm1-/- mice after cerebral infarction. Thalamic Sarm1 re-expression in Sarm1-/- mice increased thalamic neurodegeneration and promoted autophagy activation. Auotophagic inhibitor 3-methyladenine partially alleviated thalamic damage induced by SARM1. Moreover, autophagic initiation through rapamycin treatment aggravated post-stroke neuronal death and gliosis in Sarm1-/- mice. Taken together, SARM1 contributes to secondary thalamic neurodegeneration after cerebral infarction, at least partly through autophagy inhibition. SARM1 deficiency is a potential therapeutic strategy for secondary thalamic neurodegeneration and functional deficits after stroke.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Camundongos , Animais , Gliose , Infarto Cerebral/metabolismo , Acidente Vascular Cerebral/metabolismo , AVC Isquêmico/metabolismo , Tálamo/metabolismo , Axônios/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...