Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.392
Filtrar
1.
Talanta ; 281: 126860, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39260258

RESUMO

In consideration of deep tissue imaging and signal fidelity, fluorescent-photoacoustic (PA) dual-modal probes are much more desirable. However, dual-modal imaging of gastritis using molecular probes remains a challenge due to the harsh gastric acid environment in the stomach. Based on the positive correlation between gastritis and cell viscosity, stomach acid-stable and viscosity-activated probes could potentially diagnose gastritis. As a proof of concept, herein, a fluorescent and photoacoustic dual-modal probe (named WSP-1) is revealed for the imaging of drug-induced acute gastritis in vivo. WSP-1 exhibits viscosity-dependent fluorescence emission and photoacoustic signals. A rotatable C-C single bond is incorporated into the D-π-A structure of WSP-1, which could facilitate the formation of the twisted intramolecular charge transfer (TICT) state in a low-viscosity environment (weak fluorescence/PA signal) and the intramolecular charge transfer (ICT) state in a high-viscosity environment (strong fluorescence/PA signal). WSP-1 has demonstrated the capability to target mitochondria and can be utilized to monitor the viscosity enhancement of cells during inflammation. Most importantly, WSP-1 exhibits good optical and structural stability in gastric acid. By leveraging these desirable features of WSP-1, we have achieved fluorescent and 3D photoacoustic in situ imaging of drug-induced acute gastritis following oral administration of WSP-1.


Assuntos
Corantes Fluorescentes , Gastrite , Técnicas Fotoacústicas , Gastrite/induzido quimicamente , Gastrite/diagnóstico por imagem , Técnicas Fotoacústicas/métodos , Corantes Fluorescentes/química , Animais , Humanos , Ácido Gástrico/metabolismo , Ácido Gástrico/química , Camundongos , Imagem Óptica , Doença Aguda , Viscosidade
2.
Biomaterials ; 313: 122765, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39244824

RESUMO

Accurate and early detection of atherosclerosis (AS) is imperative for their effective treatment. However, fluorescence probes for efficient diagnosis of AS often encounter insufficient deep tissue penetration, which hinders the reliable assessment of plaque vulnerability. In this work, a reactive oxygen species (ROS) activated near-infrared (NIR) fluorescence and photoacoustic (FL/PA) dual model probe TPA-QO-B is developed by conjugating two chromophores (TPA-QI and O-OH) and ROS-specific group phenylboronic acid ester. The incorporation of ROS-specific group not only induces blue shift in absorbance, but also inhibits the ICT process of TPA-QO-OH, resulting an ignorable initial FL/PA signal. ROS triggers the convertion of TPA-QO-B to TPA-QO-OH, resulting in the concurrent amplification of FL/PA signal. The exceptional selectivity of TPA-QO-B towards ROS makes it effectively distinguish AS mice from the healthy. The NIR emission can achieve a tissue penetration imaging depth of 0.3 cm. Moreover, its PA775 signal possesses the capability to penetrate tissues up to a thickness of 0.8 cm, ensuring deep in vivo imaging of AS model mice in early stage. The ROS-triggered FL/PA dual signal amplification strategy improves the accuracy and addresses the deep tissue penetration problem simultaneously, providing a promising tool for in vivo tracking biomarkers in life science and preclinical applications.


Assuntos
Corantes Fluorescentes , Técnicas Fotoacústicas , Placa Aterosclerótica , Espécies Reativas de Oxigênio , Animais , Espécies Reativas de Oxigênio/metabolismo , Técnicas Fotoacústicas/métodos , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/metabolismo , Corantes Fluorescentes/química , Camundongos , Imagem Óptica/métodos , Camundongos Endogâmicos C57BL , Humanos , Masculino
3.
Cancer Med ; 13(19): e70155, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39387259

RESUMO

BACKGROUND: The tumor microenvironment (TME) plays a critical role in cancer progression and response to immunotherapy. Immunotherapy targeting the immune system has emerged as a promising treatment modality, but challenges in understanding the TME limit its efficacy. Optical imaging strategies offer noninvasive, real-time insights into the interactions between immune cells and the TME. OBJECTIVE: This review assesses the progress of optical imaging technologies in monitoring immunotherapy within the TME and explores their potential applications in clinical trials and personalized cancer treatment. METHODS: This is a comprehensive literature review based on the advances in optical imaging modalities including fluorescence imaging (FLI), bioluminescence imaging (BLI), and photoacoustic imaging (PAI). These modalities were analyzed for their capacity to provide high-resolution, real-time imaging of immune cell dynamics, tumor vasculature, and other critical components of the TME. RESULTS: Optical imaging techniques have shown significant potential in tracking immune cell infiltration, assessing immune checkpoint inhibitors, and visualizing drug delivery within the TME. Technologies like FLI and BLI are pivotal in tracking immune responses in preclinical models, while PAI provides functional imaging with deeper tissue penetration. The integration of these modalities with immunotherapy holds promise for improving treatment monitoring and outcomes. CONCLUSION: Optical imaging is a powerful tool for understanding the complexities of the TME and optimizing immunotherapy. Further advancements in imaging technologies, combined with nanomaterial-based approaches, could pave the way for enhanced diagnostic accuracy and therapeutic efficacy in cancer treatment.


Assuntos
Imunoterapia , Neoplasias , Imagem Óptica , Microambiente Tumoral , Microambiente Tumoral/imunologia , Humanos , Imunoterapia/métodos , Imagem Óptica/métodos , Neoplasias/terapia , Neoplasias/diagnóstico por imagem , Neoplasias/imunologia , Animais , Técnicas Fotoacústicas/métodos
4.
Opt Lett ; 49(20): 5909-5912, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39404569

RESUMO

Long-term and non-narcotic hemodynamic imaging is indispensable for observing factual physiological information of the spinal cord. Unfortunately, achieving label-free, high-resolution, and widefield spinal cord imaging for mice under freely moving conditions is challenging. In this study, we developed a miniaturized photoacoustic microscope along with a corresponding photoacoustic spinal window to realize high-resolution, multi-segmental hemodynamic imaging of the spinal cord for freely moving mice. The microscope has an outer size of 32 mm × 23 mm × 10 mm, a weight of 5.8 g, and a 4.4 µm lateral resolution within an effective field of view (FOV) of 2.6 mm × 1.8 mm. To eliminate the off-focus phenomena during spinal imaging, the microscope is equipped with a miniature motor to adapt the focal plane. Besides, the microscope is slidable along a customized rail on the window to expand the FOV. We evaluated the stability of the microscope and analyzed vascular images of the spinal cord under various physiological states. The results suggest that the microscope is capable of performing stable, multi-segmental spinal cord imaging in freely moving mice, offering new insights into spinal cord hemodynamics and neurovascular coupling research.


Assuntos
Microscopia , Miniaturização , Técnicas Fotoacústicas , Medula Espinal , Animais , Camundongos , Medula Espinal/diagnóstico por imagem , Medula Espinal/fisiologia , Técnicas Fotoacústicas/métodos , Microscopia/métodos , Microscopia/instrumentação , Desenho de Equipamento , Hemodinâmica
5.
PLoS Comput Biol ; 20(10): e1011709, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39436836

RESUMO

SIGNIFICANCE: Three-dimensional photoacoustic imaging (PAM) has emerged as a promising technique for non-invasive label-free visualization and characterization of biological tissues with high spatial resolution and functional contrast. AIM: The application of PAM and ultrasound as a microscopy technique of study for Atlantic salmon skin is presented here. APPROACH: A custom ultrasound and photoacoustic experimental setup was used for conducting this experiment with a sample preparation method where the salmon skin is embedded in agarose and lifted from the bottom of the petridish. RESULTS: The results of C-scan, B-scan, and overlayed images of ultrasound and photoacoustic are presented. The results are then analyzed for understanding the pigment map and its relation to salmon behavior to external stimuli. The photoacoustic images are compared with the optical images and analyzed further. A custom colormap and alpha map is designed and the matrices responsible for PAM and ultrasound are inserted together to overlay the ultrasound image and PAM image on top of each other. CONCLUSIONS: In this study, we propose an approach that combines scanning acoustic microscopy (SAM) images with PAM images for providing a comprehensive understanding of the salmon skin tissue. Overlaying acoustic and photoacoustic images enabled unique visualization of tissue morphology, with respect to identification of structural features in the context of their pigment distribution.


Assuntos
Imageamento Tridimensional , Técnicas Fotoacústicas , Salmo salar , Pele , Ultrassonografia , Animais , Técnicas Fotoacústicas/métodos , Pele/diagnóstico por imagem , Imageamento Tridimensional/métodos , Ultrassonografia/métodos , Microscopia/métodos , Microscopia Acústica/métodos
6.
Opt Lett ; 49(19): 5531-5534, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39352999

RESUMO

Photoacoustic (PA) remote sensing (PARS) microscopy represents a significant advancement by eliminating the need for traditional acoustic coupling media in PA microscopy (PAM), thereby broadening its potential applications. However, current PARS microscopy setups predominantly rely on free-space optical components, which can be cumbersome to implement and limit the scope of imaging applications. In this study, we develop an all-fiber miniature non-contact PA probe based on PARS microscopy, utilizing a 532-nm excitation wavelength, and showcase its effectiveness in in vivo vascular imaging. Our approach integrates various fiber-optic components, including a wavelength division multiplexer, a mode field adaptor, a fiber lens, and an optical circulator, to streamline the implementation of the PARS microscopy system. Additionally, we have successfully developed a miniature PA probe with a diameter of 4 mm. The efficacy of our imaging setup is demonstrated through in vivo imaging of mouse brain vessels. By introducing this all-fiber miniature PA probe, our work may open up new opportunities for non-contact PAM applications.


Assuntos
Microscopia , Fibras Ópticas , Técnicas Fotoacústicas , Técnicas Fotoacústicas/métodos , Técnicas Fotoacústicas/instrumentação , Animais , Camundongos , Microscopia/métodos , Microscopia/instrumentação , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Miniaturização , Tecnologia de Sensoriamento Remoto/instrumentação , Tecnologia de Sensoriamento Remoto/métodos , Desenho de Equipamento , Vasos Sanguíneos/diagnóstico por imagem
7.
J Nanobiotechnology ; 22(1): 615, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39385196

RESUMO

Focused ultrasound ablation surgery (FUAS) is a minimally invasive treatment option that has been utilized in various tumors. However, its clinical advancement has been hindered by issues such as low safety and efficiency, single image guidance mode, and postoperative tumor residue. To address these limitations, this study aimed to develop a novel multi-functional gas-producing engineering bacteria biological targeting cooperative system. Pulse-focused ultrasound (PFUS) could adjust the ratio of thermal effect to non-thermal effect by adjusting the duty cycle, and improve the safety and effectiveness of treatment.The genetic modification of Escherichia coli (E.coli) involved the insertion of an acoustic reporter gene to encode gas vesicles (GVs), resulting in gas-producing E.coli (GVs-E.coli) capable of targeting tumor anoxia. GVs-E.coli colonized and proliferated within the tumor while the GVs facilitated ultrasound imaging and cooperative PFUS. Additionally, multifunctional cationic polyethyleneimine (PEI)-poly (lactic-co-glycolic acid) (PLGA) nanoparticles (PEI-PLGA/EPI/PFH@Fe3O4) containing superparamagnetic iron oxide (SPIO, Fe3O4), perfluorohexane (PFH), and epirubicin (EPI) were developed. These nanoparticles offered synergistic PFUS, supplementary chemotherapy, and multimodal imaging capabilities.GVs-E.coli effectively directed the PEI-PLGA/EPI/PFH@Fe3O4 to accumulate within the tumor target area by means of electrostatic adsorption, resulting in a synergistic therapeutic impact on tumor eradication.In conclusion, GVs-E.coli-mediated multi-functional nanoparticles can synergize with PFUS and chemotherapy to effectively treat tumors, overcoming the limitations of current FUAS therapy and improving safety and efficacy. This approach presents a promising new strategy for tumor therapy.


Assuntos
Escherichia coli , Imagem Multimodal , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Animais , Escherichia coli/efeitos dos fármacos , Camundongos , Imagem Multimodal/métodos , Linhagem Celular Tumoral , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Imageamento por Ressonância Magnética/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Fluorocarbonos/química , Polietilenoimina/química , Humanos , Engenharia Genética/métodos , Camundongos Endogâmicos BALB C , Técnicas Fotoacústicas/métodos , Feminino , Nanopartículas/química , Epirubicina/farmacologia , Epirubicina/uso terapêutico , Epirubicina/química , Ácido Poliglicólico/química , Ácido Láctico/química , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos
8.
Nat Commun ; 15(1): 9228, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39455558

RESUMO

Current malaria diagnostics are invasive, lack sensitivity, and rapid tests are plagued by deletions in target antigens. Here we introduce the Cytophone, an innovative photoacoustic flow cytometer platform with high-pulse-rate lasers and a focused ultrasound transducer array to noninvasively detect and identify malaria-infected red blood cells (iRBCs) using specific wave shapes, widths, and time delays generated from the absorbance of laser energy by hemozoin, a universal biomarker of malaria infection. In a population of Cameroonian adults with uncomplicated malaria, we assess our device for safety in a cross-sectional cohort (n = 10) and conduct a performance assessment in a longitudinal cohort (n = 20) followed for 30 ± 7 days after clearance of parasitemia. Longitudinal cytophone measurements are compared to point-of-care and molecular assays (n = 94). Cytophone is safe with 90% sensitivity, 69% specificity, and a receiver-operator-curve-area-under-the-curve (ROC-AUC) of 0.84, as compared to microscopy. ROC-AUCs of Cytophone, microscopy, and RDT compared to quantitative PCR are not statistically different from one another. The ability to noninvasively detect iRBCs in the bloodstream is a major advancement which offers the potential to rapidly identify both the large asymptomatic reservoir of infection, as well as diagnose symptomatic cases without the need for a blood sample.


Assuntos
Eritrócitos , Citometria de Fluxo , Técnicas Fotoacústicas , Humanos , Camarões , Técnicas Fotoacústicas/métodos , Técnicas Fotoacústicas/instrumentação , Adulto , Eritrócitos/parasitologia , Estudos Transversais , Citometria de Fluxo/métodos , Feminino , Malária/diagnóstico , Masculino , Hemeproteínas/análise , Malária Falciparum/diagnóstico , Malária Falciparum/epidemiologia , Sensibilidade e Especificidade , Estudos Longitudinais , Adulto Jovem , Parasitemia/diagnóstico , Plasmodium falciparum/isolamento & purificação , Plasmodium falciparum/genética , Pessoa de Meia-Idade , Curva ROC , Adolescente
9.
ACS Sens ; 9(10): 5445-5453, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39364916

RESUMO

Cardiovascular disease (CVD) is a chronic disease characterized by the accumulation of lipids and fibrous tissue within the arterial walls, potentially leading to vascular obstruction and an increased risk of heart disease and stroke. Hydroxyl radicals play a significant role in the formation and progression of CVD as they can instigate lipid peroxidation, resulting in cellular damage and inflammatory responses. However, precisely detecting hydroxyl radicals in CVD lesions presents significant challenges due to their high reactivity and short lifespan. Herein, we present the development and application of a novel activatable optical probe, Cy-OH-LP, designed to detect hydroxyl radicals in lipid-rich environments specifically. Built on the Cy7 molecular skeleton, Cy-OH-LP exhibits near-infrared absorption and fluorescence characteristics, and its specific response to hydroxyl radicals enables a turn-on signal in both photoacoustic and fluorescence spectra. The probe demonstrated excellent selectivity and stability in various tests. Furthermore, Cy-OH-LP was successfully applied in an in vivo model to detect hydroxyl radicals in mouse models, providing a potential tool for diagnosing and monitoring AS. The biosafety of Cy-OH-LP was also verified, showing low cytotoxicity and no significant organ damage in mice. The findings suggest that Cy-OH-LP is a promising tool for the specific detection of hydroxyl radicals in lipid-rich environments, providing new possibilities for research and clinical applications in the field of oxidative stress-related diseases.


Assuntos
Radical Hidroxila , Técnicas Fotoacústicas , Animais , Radical Hidroxila/análise , Radical Hidroxila/química , Radical Hidroxila/metabolismo , Técnicas Fotoacústicas/métodos , Humanos , Camundongos , Corantes Fluorescentes/química , Carbocianinas/química , Doenças Cardiovasculares , Masculino
10.
Mol Pharm ; 21(10): 4804-4826, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39225111

RESUMO

Atherosclerosis is a vascular intima condition in which any part of the circulatory system is affected, including the aorta and coronary arteries. Indocyanine green (ICG), a theranostic compound approved by the FDA, has shown promise in the treatment of coronary atherosclerosis after incorporation into nanoplatforms. By integration of ICG with targeting agents such as peptides or antibodies, it is feasible to increase its concentration in damaged arteries, hence increasing atherosclerosis detection. Nanotheranostics offers cutting-edge techniques for the clinical diagnosis and therapy of atherosclerotic plaques. Combining the optical properties of ICG with those of nanocarriers enables the improved imaging of atherosclerotic plaques and targeted therapeutic interventions. Several ICG-based nanotheranostics platforms have been developed such as polymeric nanoparticles, iron oxide nanoparticles, biomimetic systems, liposomes, peptide-based systems, etc. Theranostics for atherosclerosis diagnosis use magnetic resonance imaging (MRI), computed tomography (CT), near-infrared fluorescence (NIRF) imaging, photoacoustic/ultrasound imaging, positron emission tomography (PET), and single photon emission computed tomography (SPECT) imaging techniques. In addition to imaging, there is growing interest in employing ICG to treat atherosclerosis. In this review, we provide a conceptual explanation of ICG-based nanotheranostics for the imaging and therapy of coronary atherosclerosis. Moreover, advancements in imaging modalities such as MRI, CT, PET, SPECT, and ultrasound/photoacoustic have been discussed. Furthermore, we highlight the applications of ICG for coronary atherosclerosis.


Assuntos
Doença da Artéria Coronariana , Verde de Indocianina , Nanomedicina Teranóstica , Verde de Indocianina/administração & dosagem , Verde de Indocianina/química , Humanos , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/terapia , Nanomedicina Teranóstica/métodos , Nanopartículas/química , Animais , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Técnicas Fotoacústicas/métodos
11.
Int J Pharm ; 665: 124736, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39326479

RESUMO

Photoacoustic imaging provides in vivo morphological and functional information about tumors within surrounding tissue. By integrating ultrasound guidance, this technique enables precise localization and characterization of tumors. Moreover, the introduction of targeted contrast agents has further expanded the capabilities of photoacoustic imaging in the realm of in vivo molecular imaging. These contrast agents facilitate enhanced molecular and cellular characterization of cancer, enabling detailed insights into the disease. This review aims to provide a concise summary of the extensive research conducted in the field of Photoacoustic imaging for cancer management. It encompasses the development of the technology, its applications in clinical settings, and the advancements made in molecular imaging. By consolidating and synthesizing the existing knowledge, this review contributes to a better understanding of the potential of photoacoustic imaging in cancer care. In conclusion, photoacoustic imaging has emerged as a non-ionizing and noninvasive modality with the ability to visualize tissue's optical absorption properties while maintaining ultrasound's spatial resolution. Its integration with targeted contrast agents has enhanced molecular and cellular characterization of cancer. This review serves as a succinct overview of the extensive research conducted in the field, shedding light on the potential of photoacoustic imaging in the management of cancer.


Assuntos
Meios de Contraste , Neoplasias , Técnicas Fotoacústicas , Técnicas Fotoacústicas/métodos , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Animais , Imagem Molecular/métodos
12.
Proc Natl Acad Sci U S A ; 121(37): e2411583121, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39236242

RESUMO

Residual nonvisible bladder cancer after proper treatment caused by technological and therapeutic limitations is responsible for tumor relapse and progression. This study aimed to demonstrate the feasibility of a solution for simultaneous detection and treatment of bladder cancer lesions smaller than one millimeter. The α5ß1 integrin was identified as a specific marker in 81% of human high-grade nonmuscle invasive bladder cancers and used as a target for the delivery of targeted gold nanorods (GNRs). In a preclinical model of orthotopic bladder cancer expressing the α5ß1 integrin, the photoacoustic imaging of targeted GNRs visualized lesions smaller than one millimeter, and their irradiation with continuous laser was used to induce GNR-assisted hyperthermia. Necrosis of the tumor mass, improved survival, and computational modeling were applied to demonstrate the efficacy and safety of this solution. Our study highlights the potential of the GNR-assisted theranostic strategy as a complementary solution in clinical practice to reduce the risk of nonvisible residual bladder cancer after current treatment. Further validation through clinical studies will support the findings of the present study.


Assuntos
Ouro , Nanotubos , Nanomedicina Teranóstica , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/terapia , Neoplasias da Bexiga Urinária/diagnóstico por imagem , Neoplasias da Bexiga Urinária/patologia , Ouro/química , Nanotubos/química , Humanos , Animais , Nanomedicina Teranóstica/métodos , Camundongos , Neoplasia Residual , Linhagem Celular Tumoral , Feminino , Técnicas Fotoacústicas/métodos
13.
Theranostics ; 14(12): 4747-4772, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39239513

RESUMO

Molecular imaging has undergone significant development in recent years for its excellent ability to image and quantify biologic processes at cellular and molecular levels. Its application is of significance in cardiovascular diseases, particularly in diagnosing them at early stages. Atherosclerosis is a complex, chronic, and progressive disease that can lead to serious consequences such as heart strokes or infarctions. Attempts have been made to detect atherosclerosis with molecular imaging modalities. Not only do imaging modalities develop rapidly, but research of relevant nanomaterials as imaging probes has also been increasingly studied in recent years. This review focuses on the latest developments in the design and synthesis of probes that can be utilized in computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound imaging, photoacoustic imaging and combined modalities. The challenges and future developments of nanomaterials for molecular imaging modalities are also discussed.


Assuntos
Aterosclerose , Imagem Molecular , Humanos , Aterosclerose/diagnóstico por imagem , Imagem Molecular/métodos , Nanoestruturas , Animais , Tomografia por Emissão de Pósitrons/métodos , Técnicas Fotoacústicas/métodos , Nanopartículas/química
14.
ACS Nano ; 18(39): 26784-26798, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39300974

RESUMO

Accurate imaging and precise treatment are critical to controlling the progression of pancreatic cancer. However, current approaches for pancreatic cancer theranostics suffer from limitations in tumor specificity and invasive surgery. Herein, a pancreatic cancer-specific phototheranostic modulator (AuHQ) dominated by aggregation-induced emission (AIE) luminogens-tethered gold nanoparticles is meticulously designed to facilitate prominent fluorescence-photoacoustic bimodal imaging-guided photothermal immunotherapy. Once reaching the pancreatic tumor microenvironment (TME), the peptide Ala-Gly-Phe-Ser-Leu-Pro-Ala-Gly-Cys (AGFSLPAGC) linkage within AuHQ can be specifically cleaved by the overexpressed enzyme Cathepsin E (CTSE), triggering the dual self-assembly of AuNPs and AIE luminogens. The aggregation of AuNPs mediated by enzymatic cleavage results in potentiated photothermal therapy (PTT) under near-infrared (NIR) laser irradiation, induced immunogenic cell death (ICD), and enhanced photoacoustic imaging. Simultaneously, AIE luminogen aggregates formed by hydrophobic interaction can generate AIE fluorescence, enabling real-time and specific fluorescence imaging of pancreatic cancer. Furthermore, coadministration of an indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor with AuHQ can address the limitations of PTT efficacy imposed by the immunosuppressive TME and leverage the synergistic potential to activate systemic antitumor immunity. Thus, this well-designed phototheranostic modulator AuHQ facilitates the intelligent enzymatic dual self-assembly of imaging and therapeutic agents, providing an efficient and precise approach for pancreatic cancer theranostics.


Assuntos
Ouro , Nanopartículas Metálicas , Neoplasias Pancreáticas , Nanomedicina Teranóstica , Ouro/química , Nanopartículas Metálicas/química , Humanos , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/patologia , Camundongos , Animais , Fototerapia , Antineoplásicos/química , Antineoplásicos/farmacologia , Terapia Fototérmica , Linhagem Celular Tumoral , Imagem Óptica , Técnicas Fotoacústicas , Sobrevivência Celular/efeitos dos fármacos
15.
Transl Vis Sci Technol ; 13(9): 28, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39330984

RESUMO

Purpose: Manual, individual adjustment of the laser power in retinal laser therapies is time-consuming, is inaccurate with respect to uniform effects, and can only prevent over- or undertreatment to a limited extent. Automatic closed-loop temperature control allows for similar temperatures at each irradiated spot despite varying absorption. This is of crucial importance for subdamaging hyperthermal treatments with no visible effects and the safety of photocoagulation with short irradiation times. The aim of this work is to perform extensive experiments on porcine eye explants to demonstrate the benefits of automatic control in retinal laser treatments. Methods: To ensure a safe and reliable temperature rise, we utilize a model predictive controller. For model predictive control, the current state and the spot-dependent absorption coefficients are estimated by an extended Kalman filter (EKF). Therein, optoacoustic measurements are used to determine the temperature rise at the irradiated areas in real time. We use fluorescence vitality stains to measure the lesion size and validate the proposed control strategy. Results: By comparing the lesion size with temperature values for cell death, we found that the EKF accurately estimates the peak temperature. Furthermore, the proposed closed-loop control scheme works reliably with regard to similar lesion sizes despite varying absorption with a smaller spread in lesion size compared to open-loop control. Conclusions: Our closed-loop control approach enables a safe subdamaging treatment and lowers the risk for over- and undertreatment for mild coagulations in retinal laser therapies. Translational Relevance: We demonstrate that modern control strategies have the potential to improve retinal laser treatments for several diseases.


Assuntos
Retina , Animais , Suínos , Retina/cirurgia , Retina/efeitos da radiação , Fotocoagulação a Laser/métodos , Temperatura , Técnicas Fotoacústicas/métodos , Terapia a Laser/métodos
16.
ACS Sens ; 9(9): 4898-4905, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39236153

RESUMO

Copper ions, implicated in processes such as oxidative stress and inflammation, are believed to play a crucial role in cardiovascular disease, a prevalent and deadly disease. Despite this, current diagnostic methods fail to detect early stage cardiovascular disease or track copper ion accumulation, limiting our understanding of the disease's progression. Therefore, the development of noninvasive techniques to image copper ions in cardiovascular disease is urgently needed to enhance diagnostic precision and therapeutic strategies. In this study, we report the successful synthesis and application of a copper ion-activated photoacoustic probe, CS-Cu, which exhibits high sensitivity and selectivity toward copper ions both in vitro and in vivo. CS-Cu was able to noninvasively monitor the changes in copper ion levels and differentiate between different mice based on copper ions in urine. Furthermore, the probe demonstrated good photoacoustic stability and exhibited no significant toxicity in the mice. These findings suggest that CS-Cu could be a promising tool for early detection and monitoring of Cu2+ levels in vivo and urine, providing a new perspective on the role of copper ions in cardiovascular disease.


Assuntos
Doenças Cardiovasculares , Cobre , Técnicas Fotoacústicas , Cobre/química , Cobre/urina , Animais , Técnicas Fotoacústicas/métodos , Camundongos , Humanos , Íons , Raios Infravermelhos
17.
Nat Commun ; 15(1): 7843, 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39245687

RESUMO

Pompe disease (PD) is a rare autosomal recessive glycogen storage disorder that causes proximal muscle weakness and loss of respiratory function. While enzyme replacement therapy (ERT) is the only effective treatment, biomarkers for disease monitoring are scarce. Following ex vivo biomarker validation in phantom studies, we apply multispectral optoacoustic tomography (MSOT), a laser- and ultrasound-based non-invasive imaging approach, in a clinical trial (NCT05083806) to image the biceps muscles of 10 late-onset PD (LOPD) patients and 10 matched healthy controls. MSOT is compared with muscle magnetic resonance imaging (MRI), ultrasound, spirometry, muscle testing and quality of life scores. Next, results are validated in an independent LOPD patient cohort from a second clinical site. Our study demonstrates that MSOT enables imaging of subcellular disease pathology with increases in glycogen/water, collagen and lipid signals, providing higher sensitivity in detecting muscle degeneration than current methods. This translational approach suggests implementation in the complex care of these rare disease patients.


Assuntos
Doença de Depósito de Glicogênio Tipo II , Glicogênio , Imageamento por Ressonância Magnética , Técnicas Fotoacústicas , Humanos , Doença de Depósito de Glicogênio Tipo II/diagnóstico por imagem , Doença de Depósito de Glicogênio Tipo II/metabolismo , Doença de Depósito de Glicogênio Tipo II/patologia , Glicogênio/metabolismo , Técnicas Fotoacústicas/métodos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética/métodos , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Estudos de Casos e Controles , Ultrassonografia/métodos , Imagens de Fantasmas
18.
Int J Nanomedicine ; 19: 9395-9410, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39282572

RESUMO

Objective: To explore the feasibility of using cRGD-GNR-PFP-NPs to assess plaque vulnerability in an atherosclerotic plaque mouse model by dual-modal photoacoustic/ultrasonic imaging. Methods: A nanomolecular probe containing gold nanorods (GNRs) and perfluoropentane (PFP) coated with the cyclic Arg-Gly-Asp (cRGD) peptide were prepared by double emulsion solvent evaporation and carbodiimide methods. The morphology, particle size, potential, cRGD conjugation and absorption features of the nanomolecular probe were characterized, along with its in vitro phase transformation and photoacoustic/ultrasonic dual-modal imaging properties. In vivo fluorescence imaging was used to determine the distribution of cRGD-GNR-PFP-NPs in vivo in apolipoprotein E-deficient (ApoE-/-) atherosclerotic plaque model mice, the optimal imaging time was determined, and photoacoustic/ultrasonic dual-modal molecular imaging of integrin αvß3 expressed in atherosclerotic plaques was performed. Pathological assessments verified the imaging results in terms of integrin αvß3 expression and plaque vulnerability. Results: cRGD-GNR-PFP-NPs were spherical with an appropriate particle size (average of approximately 258.03±6.75 nm), a uniform dispersion, and a potential of approximately -9.36±0.53 mV. The probe had a characteristic absorption peak at 780~790 nm, and the surface conjugation of the cRGD peptide reached 92.79%. cRGD-GNR-PFP-NPs were very stable in the non-excited state but very easily underwent phase transformation under low-intensity focused ultrasound (LIFU) and had excellent photoacoustic/ultrasonic dual-modal imaging capability. Mice fed a high-fat diet for 20 weeks had obvious hyperlipidemia with larger, more vulnerable plaques. These plaques could be specifically targeted by cRGD-GNR-PFP-NPs as determined by in vivo fluorescence imaging, and the enrichment of nanomolecular probe increased with the increasing of plaque vulnerability; the photoacoustic/ultrasound signals of the plaques in the high-fat group were stronger. The pathological assessments were in good agreement with the cRGD-GNR-PFP-NPs plaque accumulation, integrin αvß3 expression and plaque vulnerability results. Conclusion: A phase variant photoacoustic/ultrasonic dual-modal cRGD nanomolecular probe was successfully prepared and can be used to identify plaque vulnerability safely and effectively.


Assuntos
Fluorocarbonos , Ouro , Nanotubos , Peptídeos Cíclicos , Técnicas Fotoacústicas , Placa Aterosclerótica , Animais , Placa Aterosclerótica/diagnóstico por imagem , Técnicas Fotoacústicas/métodos , Ouro/química , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacocinética , Camundongos , Nanotubos/química , Fluorocarbonos/química , Integrina alfaVbeta3/metabolismo , Sondas Moleculares/química , Sondas Moleculares/farmacocinética , Ultrassonografia/métodos , Tamanho da Partícula , Masculino , Camundongos Knockout para ApoE , Modelos Animais de Doenças , Pentanos
19.
J Biophotonics ; 17(10): e202400197, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39092484

RESUMO

Photoacoustic computed tomography (PACT) has centimeter-level imaging ability and can be used to detect the human body. However, strong photoacoustic signals from skin cover deep tissue information, hindering the frontal display and analysis of photoacoustic images of deep regions of interest. Therefore, we propose a 2.5 D deep learning model based on feature pyramid structure and single-type skin annotation to extract the skin region, and design a mask generation algorithm to remove skin automatically. PACT imaging experiments on the human periphery blood vessel verified the correctness our proposed skin-removal method. Compared with previous studies, our method exhibits high robustness to the uneven illumination, irregular skin boundary, and reconstruction artifacts in the images, and the reconstruction errors of PACT images decreased by 20% ~ 90% with a 1.65 dB improvement in the signal-to-noise ratio at the same time. This study may provide a promising way for high-definition PACT imaging of deep tissues.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador , Técnicas Fotoacústicas , Pele , Humanos , Técnicas Fotoacústicas/métodos , Pele/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X , Razão Sinal-Ruído
20.
Acta Biomater ; 187: 381-395, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39209130

RESUMO

Although immunogenic cell death (ICD) induced by lysosomal membrane permeabilization (LMP) evidently enhance the effectiveness of antitumor immunity for triple-negative breast cancer (TNBC) with poor immunogenicity, their potential is increasingly restricted by the development of other death pathways and the repair of lysosomes by endoplasmic reticulum (ER) during LMP induction. Herein, a polydopamine nanocomposite with i-motif DNA modified and BNN6 loaded is prepared toward boosting LMP and immunotherapy of TNBC by synergy of spatially confined photoacoustic (PA) effects and nitric oxide. Combining the high-frequency pulsed laser (4000 kHz) with the intra-lysosomal assembly of nanocomposites produced spatially confined and significantly boosted PA effects (4.8-fold higher than the individually dispersed particles extracellular), suppressing damage to other cellular components and selectively reducing lysosomal integrity to 19.2 %. Simultaneously, the releasing of nitric oxide inhibited the repair of lysosomes by ER stress, causing exacerbated LMP. Consequently, efficient immune activation was achieved, including the abundant releasing of CRT/HMGB1 (5.93-6.8-fold), the increasing maturation of dendritic cells (3.41-fold), and the fostered recruitment of CD4+/CD8+T cells (3.99-3.78-fold) in vivo. The study paves a new avenue for the rational design and synergy of confined energy conversion and responsive nanostructures to achieve the treatment of low immunogenicity tumors. STATEMENT OF SIGNIFICANCE: A strategy of boosting lysosomal membrane permeabilization (LMP) and concomitantly preventing the repair was developed to address the immunotherapy challenge of triple-negative breast cancer. Spatially confined and significantly enhanced photoacoustic (PA) effects were achieved through DNA-guided pH-responsive assembly of polydopamine nanocomposites in lysosomes and application of a high-frequency pulsed laser. Efficient immunogenic cell death was guaranteed by selective and powerful damage of lysosomal membranes through the significant contrast of PA intensities for dispersed/assembled particles and nitric oxide release induced endoplasmic reticulum stress. The study paves a new avenue for the rational design and synergy of confined energy conversion and responsive nanostructures to achieve the treatment of low immunogenicity tumors.


Assuntos
Imunoterapia , Indóis , Lisossomos , Técnicas Fotoacústicas , Neoplasias de Mama Triplo Negativas , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/terapia , Feminino , Imunoterapia/métodos , Animais , Linhagem Celular Tumoral , Humanos , Indóis/química , Indóis/farmacologia , Camundongos , Nanocompostos/química , Polímeros/química , Polímeros/farmacologia , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Camundongos Endogâmicos BALB C , Permeabilidade , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...