Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.086
Filtrar
1.
Cells ; 13(14)2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39056805

RESUMO

The real-time detection of intracellular biological processes by encoded sensors has broad application prospects. Here, we developed a degron-based modular reporting system, the Device of Death Operation (DODO), that can monitor various biological processes. The DODO system consists of a "reporter", an "inductor", and a "degron". After zymogen activation and cleavage, the degron will be released from the "reporter", which eventually leads to the stabilization of the "reporter", and can be detected. By replacing different "inductors" and "reporters", a series of biological processes can be reported through various signals. The system can effectively report the existence of TEV protease. To prove this concept, we successfully applied the DODO system to report apoptosis in 2D and 3D cultures. In addition, the reporter based on degron will help to design protease reporters other than caspase.


Assuntos
Apoptose , Humanos , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/instrumentação
2.
Lab Chip ; 24(14): 3546-3555, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38949063

RESUMO

Microfluidic chips have emerged as significant tools in cell culture due to their capacity for supporting cells to adopt more physiologically relevant morphologies in 3D compared with traditional cell culture in 2D. Currently, irreversible bonding methods, where chips cannot be detached from their substrates without destroying the structure, are commonly used in fabrication, making it challenging to conduct further analysis on cells that have been cultured on-chip. Although some reversible bonding techniques have been developed, they are either restricted to certain materials such as glass, or require complex processing procedures. Here, we demonstrate a simple and reversible polydimethylsiloxane (PDMS)-polystyrene (PS) bonding technique that allows devices to withstand extended operations while pressurized, and supports long-term stable cell cultures. More importantly, it allows rapid and gentle live cell extraction for downstream manipulation and characterization after long-term on-chip culturing, and even further subculturing. Our new approach could greatly facilitate microfluidic chip-based cell and tissue cultures, overcoming current analytical limitations and opening up new avenues for downstream uses of on-chip cultures, including 3D-engineered tissue structures for biomedical applications.


Assuntos
Técnicas de Cultura de Células , Dimetilpolisiloxanos , Poliestirenos , Dimetilpolisiloxanos/química , Técnicas de Cultura de Células/instrumentação , Humanos , Poliestirenos/química , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Desenho de Equipamento
3.
Biofabrication ; 16(4)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39019062

RESUMO

Three-dimensional (3D) cell culture models capable of emulating the biological functions of natural tissues are pivotal in tissue engineering and regenerative medicine. Despite progress, the fabrication ofin vitroheterocellular models that mimic the intricate structures of natural tissues remains a significant challenge. In this study, we introduce a novel, scaffold-free approach leveraging the inertial focusing effect in rotating hanging droplets for the reliable production of heterocellular spheroids with controllable core-shell structures. Our method offers precise control over the core-shell spheroid's size and geometry by adjusting the cell suspension density and droplet morphology. We successfully applied this technique to create hair follicle organoids, integrating dermal papilla cells within the core and epidermal cells in the shell, thereby achieving markedly enhanced hair inducibility compared to mixed-structure models. Furthermore, we have developed melanoma tumor spheroids that accurately mimic the dynamic interactions between tumor and stromal cells, showing increased invasion capabilities and altered expressions of cellular adhesion molecules and proteolytic enzymes. These findings underscore the critical role of cellular spatial organization in replicating tissue functionalityin vitro. Our method represents a significant advancement towards generating heterocellular spheroids with well-defined architectures, offering broad implications for biological research and applications in tissue engineering.


Assuntos
Técnicas de Cultura de Células em Três Dimensões , Esferoides Celulares , Esferoides Celulares/citologia , Técnicas de Cultura de Células em Três Dimensões/métodos , Humanos , Engenharia Tecidual/métodos , Organoides/citologia , Folículo Piloso/citologia , Animais , Linhagem Celular Tumoral , Alicerces Teciduais/química , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/instrumentação
4.
Stem Cell Res Ther ; 15(1): 171, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38886860

RESUMO

BACKGROUND: There is a significant demand for intermediate-scale bioreactors in academic and industrial institutions to produce cells for various applications in drug screening and/or cell therapy. However, the application of these bioreactors in cultivating hiPSC-derived immune cells and other blood cells is noticeably lacking. To address this gap, we have developed a xeno-free and chemically defined intermediate-scale bioreactor platform, which allows for the generation of standardized human iPSC-derived hematopoietic organoids and subsequent continuous production of macrophages (iPSC-Mac). METHODS: We describe a novel method for intermediate-scale immune cell manufacturing, specifically the continuous production of functionally and phenotypically relevant macrophages that are harvested on weekly basis for multiple weeks. RESULTS: The continuous production of standardized human iPSC-derived macrophages (iPSC-Mac) from 3D hematopoietic organoids also termed hemanoids, is demonstrated. The hemanoids exhibit successive stage-specific embryonic development, recapitulating embryonic hematopoiesis. iPSC-Mac were efficiently and continuously produced from three different iPSC lines and exhibited a consistent and reproducible phenotype, as well as classical functionality and the ability to adapt towards pro- and anti-inflammatory activation stages. Single-cell transcriptomic analysis revealed high macrophage purity. Additionally, we show the ability to use the produced iPSC-Mac as a model for testing immunomodulatory drugs, exemplified by dexamethasone. CONCLUSIONS: The novel method demonstrates an easy-to-use intermediate-scale bioreactor platform that produces prime macrophages from human iPSCs. These macrophages are functionally active and require no downstream maturation steps, rendering them highly desirable for both therapeutic and non-therapeutic applications.


Assuntos
Reatores Biológicos , Células-Tronco Pluripotentes Induzidas , Macrófagos , Organoides , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Organoides/citologia , Organoides/metabolismo , Diferenciação Celular , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/instrumentação , Hematopoese
5.
J Vis Exp ; (208)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38912772

RESUMO

Neuronal cultures have been a reference experimental model for several decades. However, 3D cell arrangement, spatial constraints on neurite outgrowth, and realistic synaptic connectivity are missing. The latter limits the study of structure and function in the context of compartmentalization and diminishes the significance of cultures in neuroscience. Approximating ex vivo the structured anatomical arrangement of synaptic connectivity is not trivial, despite being key for the emergence of rhythms, synaptic plasticity, and ultimately, brain pathophysiology. Here, two-photon polymerization (2PP) is employed as a 3D printing technique, enabling the rapid fabrication of polymeric cell culture devices using polydimethyl-siloxane (PDMS) at the micrometer scale. Compared to conventional replica molding techniques based on microphotolitography, 2PP micro-scale printing enables rapid and affordable turnaround of prototypes. This protocol illustrates the design and fabrication of PDMS-based microfluidic devices aimed at culturing modular neuronal networks. As a proof-of-principle, a two-chamber device is presented to physically constrain connectivity. Specifically, an asymmetric axonal outgrowth during ex vivo development is favored and allowed to be directed from one chamber to the other. In order to probe the functional consequences of unidirectional synaptic interactions, commercial microelectrode arrays are chosen to monitor the bioelectrical activity of interconnected neuronal modules. Here, methods to 1) fabricate molds with micrometer precision and 2) perform in vitro multisite extracellular recordings in rat cortical neuronal cultures are illustrated. By decreasing costs and future widespread accessibility of 2PP 3D-printing, this method will become more and more relevant across research labs worldwide. Especially in neurotechnology and high-throughput neural data recording, the ease and rapidity of prototyping simplified in vitro models will improve experimental control and theoretical understanding of in vivo large-scale neural systems.


Assuntos
Técnicas de Cultura de Células , Neurônios , Impressão Tridimensional , Neurônios/citologia , Animais , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/instrumentação , Dimetilpolisiloxanos/química , Polimerização , Ratos
6.
ACS Appl Mater Interfaces ; 16(23): 29823-29833, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38829198

RESUMO

Azopolymers are light-responsive materials that hold promise to transform in vitro cell culture systems. Through precise light illumination, they facilitate substrate pattern formation and erasure, allowing for the dynamic control and creation of active interfaces between cells and materials. However, these materials exhibit a tendency to locally detach from the supporting glass in the presence of aqueous solutions, such as cell culture media, due to the formation of blisters, which are liquid-filled cavities generated at the azopolymer film-glass interface. These blisters impede precise structurization of the surface of the azomaterial, limiting their usage for surface photoactivation in the presence of cells. In this study, we present a cost-effective and easily implementable method to improve the azopolymer-glass interface stability through silane functionalization of the glass substrate. This method proved to be efficient in preventing blister formation, thereby enabling the dynamic modulation of the azopolymer surface in situ for live-cell experiments. Furthermore, we proved that the light-illumination conditions used to induce azopolymer surface variations do not induce phototoxic effects. Consequently, this approach facilitates the development of a photoswitchable azopolymer cell culture platform for studying the impact of multiple in situ inscription and erasure cycles on cell functions while maintaining a physiological wet microenvironment.


Assuntos
Compostos Azo , Técnicas de Cultura de Células , Propriedades de Superfície , Compostos Azo/química , Compostos Azo/farmacologia , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/instrumentação , Humanos , Luz , Silanos/química , Vidro/química
7.
Biosens Bioelectron ; 262: 116513, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38941688

RESUMO

Lab-on-Chip electrochemical sensors, such as Ion-Sensitive Field-Effect Transistors (ISFETs), are being developed for use in point-of-care diagnostics, such as pH detection of tumour microenvironments, due to their integration with standard Complementary Metal Oxide Semiconductor (CMOS) technology. With this approach, the passivation of the CMOS process is used as a sensing layer to minimise post-processing, and Silicon Nitride (Si3N4) is the most common material at the microchip surface. ISFETs have the potential to be used for cell-based assays however, there is a poor understanding of the biocompatibility of microchip surfaces. Here, we quantitatively evaluated cell adhesion, morphogenesis, proliferation and mechano-responsiveness of both normal and cancer cells cultured on a Si3N4, sensor surface. We demonstrate that both normal and cancer cell adhesion decreased on Si3N4. Activation of the mechano-responsive transcription regulators, YAP/TAZ, are significantly decreased in cancer cells on Si3N4 in comparison to standard cell culture plastic, whilst proliferation marker, Ki67, expression markedly increased. Non-tumorigenic cells on chip showed less sensitivity to culture on Si3N4 than cancer cells. Treatment with extracellular matrix components increased cell adhesion in normal and cancer cell cultures, surpassing the adhesiveness of plastic alone. Moreover, poly-l-ornithine and laminin treatment restored YAP/TAZ levels in both non-tumorigenic and cancer cells to levels comparable to those observed on plastic. Thus, engineering the electrochemical sensor surface with treatments will provide a more physiologically relevant environment for future cell-based assay development on chip.


Assuntos
Técnicas Biossensoriais , Adesão Celular , Proliferação de Células , Dispositivos Lab-On-A-Chip , Semicondutores , Humanos , Técnicas Biossensoriais/instrumentação , Compostos de Silício/química , Técnicas de Cultura de Células/instrumentação , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Neoplasias , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular Tumoral
8.
J Biotechnol ; 391: 33-39, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38838744

RESUMO

3D printing has become widespread for the manufacture of parts in various industries and enabled radically new designs. This trend has not spread to bioprocess development yet, due to a lack of material suitable for the current workflow, including sterilization by autoclaving. This work demonstrates that commercially available heat temperature stable poly-lactic acid (PLA) can be used to easily manufacture novel bioreactor vessels with included features like harvest tubes and 3D printed spargers. Temperature responsiveness was tested for PLA, temperature stable PLA (PLA-HP) and glass for temperatures relevant for insect and mammalian cell culture, including temperature shifts within the process. Stability at 27 °C and 37 °C as well as temperature shifts to 22 °C and 32 °C showed acceptable performance with slightly higher temperature overshoot for 3D printed vessels. A stable temperature is reached after 2 h for PLA, 3 h for PLA-HP and 1 h for glass reactors. Temperature can be maintained with a fluctuation of 0.1 °C for all materials. A 3D printed sparger design directly integrated into the vessel wall and bottom was tested under three different conditions (0.3 SLPH and 27 °C, 3 SLPH and 37 °C and 13 SLPH and 37 °C). The 3D printed sparger showed a better kLa than the L-Sparger with more pronounced differences for higher flowrates. An insect cell culture run in the novel vessel exhibited the same growth behavior as that in standard glass vessels, reaching the same maximum cell concentration. Being 3D printed from biodegradable materials, these bioreactors offer design flexibility for novel bioreactor formats. Additionally, their autoclavability allows seamless integration into standard workflows.


Assuntos
Materiais Biocompatíveis , Reatores Biológicos , Poliésteres , Impressão Tridimensional , Poliésteres/química , Animais , Materiais Biocompatíveis/química , Esterilização/métodos , Temperatura , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/instrumentação , Linhagem Celular
9.
J Biomed Opt ; 29(Suppl 2): S22708, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38872791

RESUMO

Significance: The ability to observe and monitor cell density and morphology has been imperative for assessing the health of a cell culture and for producing high quality, high yield cell cultures for decades. Microcarrier-based cultures, used for large-scale cellular expansion processes, are not compatible with traditional visualization-based methods, such as widefield microscopy, due to their thickness and material composition. Aim: Here, we assess the optical imaging compatibilities of commercial polystyrene microcarriers versus custom-fabricated gelatin methacryloyl (gelMA) microcarriers for non-destructive and non-invasive visualization of the entire microcarrier surface, direct cell enumeration, and sub-cellular visualization of mesenchymal stem/stromal cells. Approach: Mie scattering and wavefront error simulations of the polystyrene and gelMA microcarriers were performed to assess the potential for elastic scattering-based imaging of adherent cells. A Zeiss Z.1 light-sheet microscope was adapted to perform light-sheet tomography using label-free elastic scattering contrast from planar side illumination to achieve optical sectioning and permit non-invasive and non-destructive, in toto, three-dimensional, high-resolution visualization of cells cultured on microcarriers. Results: The polystyrene microcarrier prevents visualization of cells on the distal half of the microcarrier using either fluorescence or elastic scattering contrast, whereas the gelMA microcarrier allows for high fidelity visualization of cell morphology and quantification of cell density using light-sheet fluorescence microscopy and tomography. Conclusions: The combination of optical-quality gelMA microcarriers and label-free light-sheet tomography will facilitate enhanced control of bioreactor-microcarrier cell culture processes.


Assuntos
Adesão Celular , Hidrogéis , Células-Tronco Mesenquimais , Poliestirenos , Poliestirenos/química , Células-Tronco Mesenquimais/citologia , Hidrogéis/química , Adesão Celular/fisiologia , Imagem Óptica/métodos , Imagem Óptica/instrumentação , Humanos , Gelatina/química , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/instrumentação , Células Cultivadas , Animais
10.
Sheng Wu Gong Cheng Xue Bao ; 40(6): 1792-1805, 2024 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-38914492

RESUMO

Cell culture is a fundamental tool for cell-based assays in biological and preclinical research. The measurements of cell culture, including cell count, viability, and metabolic activity, can reflect the conditions of cells under culture conditions. The conventional cell culture and detection methods have problems such as high consumption of reagents and samples, inability to monitor cell status in real time, and difficulty in spatiotemporally adjusting the cell microenvironment. A cell impedance sensor measures changes in the electrical impedance of cells through alternating current, enabling real-time monitoring of impedance changes caused by cell activities such as attachment, growth, proliferation, and migration. Microfluidic chips are praised for reducing complex biological processes, integrating multiple analysis modes, and achieving high automation in detection. Integrating microfluidic chips with cell impedance sensors greatly improves the capability and efficiency of cell-related analysis. This review outlines the application of microfluidic chip-based impedance sensors in 2D and 3D cell systems and summarizes the research progress in application of such sensors in research on cell growth, proliferation, viability, metabolic activity, and drug screening. Finally, this review prospects the future development trends and possible challenges, providing ideas for the development of microfluidic chips integrated with electrical impedance sensors in drug screening.


Assuntos
Impedância Elétrica , Humanos , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Técnicas de Cultura de Células/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Proliferação de Células , Sobrevivência Celular , Dispositivos Lab-On-A-Chip , Animais
11.
Methods Mol Biol ; 2804: 209-221, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753150

RESUMO

Microfluidic-based cytotoxic assays provide high physiological relevance with the potential to replace conventional animal experiments and two-dimensional (2D) assays. Here, a 3D method utilizing a microfluidic platform for analysis of lymphocyte cytotoxicity is introduced in detail, including platform design, cell culture method, real-time cytotoxic assay setup, and image-based analysis. A 2D experimental method is used for comparison, which effectively demonstrates the advantages of 3D microfluidic platforms in closely recapitulating immune responses within the tumor microenvironment. Moreover, a wide range of experimental possibilities and applications using microfluidic 3D cytotoxic assays is introduced in this chapter, along with their capabilities, limitations, and future outlook.


Assuntos
Técnicas Analíticas Microfluídicas , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/instrumentação , Testes Imunológicos de Citotoxicidade/métodos , Microfluídica/métodos , Microfluídica/instrumentação , Animais , Linfócitos/imunologia , Linfócitos/citologia , Microambiente Tumoral/imunologia
12.
Cell Transplant ; 33: 9636897241249556, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38742734

RESUMO

Pancreatic islet transplantation is one of the clinical options for certain types of diabetes. However, difficulty in maintaining islets prior to transplantation limits the clinical expansion of islet transplantations. Our study introduces a dynamic culture platform developed specifically for primary human islets by mimicking the physiological microenvironment, including tissue fluidics and extracellular matrix support. We engineered the dynamic culture system by incorporating our distinctive microwell-patterned porous collagen scaffolds for loading isolated human islets, enabling vertical medium flow through the scaffolds. The dynamic culture system featured four 12 mm diameter islet culture chambers, each capable of accommodating 500 islet equivalents (IEQ) per chamber. This configuration calculates > five-fold higher seeding density than the conventional islet culture in flasks prior to the clinical transplantations (442 vs 86 IEQ/cm2). We tested our culture platform with three separate batches of human islets isolated from deceased donors for an extended period of 2 weeks, exceeding the limits of conventional culture methods for preserving islet quality. Static cultures served as controls. The computational simulation revealed that the dynamic culture reduced the islet volume exposed to the lethal hypoxia (< 10 mmHg) to ~1/3 of the static culture. Dynamic culture ameliorated the morphological islet degradation in long-term culture and maintained islet viability, with reduced expressions of hypoxia markers. Furthermore, dynamic culture maintained the islet metabolism and insulin-secreting function over static culture in a long-term culture. Collectively, the physiological microenvironment-mimetic culture platform supported the viability and quality of isolated human islets at high-seeding density. Such a platform has a high potential for broad applications in cell therapies and tissue engineering, including extended islet culture prior to clinical islet transplantations and extended culture of stem cell-derived islets for maturation.


Assuntos
Colágeno , Ilhotas Pancreáticas , Alicerces Teciduais , Humanos , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Alicerces Teciduais/química , Porosidade , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/instrumentação , Transplante das Ilhotas Pancreáticas/métodos
13.
ACS Biomater Sci Eng ; 10(5): 3478-3488, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38695610

RESUMO

Static three-dimensional (3D) cell culture has been demonstrated in ultralow attachment well plates, hanging droplet plates, and microtiter well plates with hydrogels or magnetic nanoparticles. Although it is simple, reproducible, and relatively inexpensive, thus potentially used for high-throughput screening, statically cultured 3D cells often suffer from a necrotic core due to limited nutrient and oxygen diffusion and waste removal and have a limited in vivo-like tissue structure. Here, we overcome these challenges by developing a pillar/perfusion plate platform and demonstrating high-throughput, dynamic 3D cell culture. Cell spheroids were loaded on the pillar plate with hydrogel by simple sandwiching and encapsulation and cultured dynamically in the perfusion plate on a digital rocker. Unlike traditional microfluidic devices, fast flow velocity was maintained within perfusion wells and the pillar plate was separated from the perfusion plate for cell-based assays. It was compatible with common lab equipment and allowed cell culture, testing, staining, and imaging in situ. The pillar/perfusion plate enhanced cell growth by rapid diffusion, reproducibility, assay throughput, and user friendliness in a dynamic 3D cell culture.


Assuntos
Técnicas de Cultura de Células em Três Dimensões , Proliferação de Células , Técnicas de Cultura de Células em Três Dimensões/métodos , Técnicas de Cultura de Células em Três Dimensões/instrumentação , Humanos , Reprodutibilidade dos Testes , Perfusão/instrumentação , Hidrogéis/química , Esferoides Celulares/citologia , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/instrumentação
14.
Biomed Microdevices ; 26(2): 26, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38806765

RESUMO

Three-dimensional (3D) cell culture models have been extensively utilized in various mechanistic studies as well as for drug development studies as superior in vitro platforms than conventional two-dimensional (2D) cell culture models. This is especially the case in cancer biology, where 3D cancer models, such as spheroids or organoids, have been utilized extensively to understand the mechanisms of cancer development. Recently, many sophisticated 3D models such as organ-on-a-chip models are emerging as advanced in vitro models that can more accurately mimic the in vivo tissue functions. Despite such advancements, spheroids are still considered as a powerful 3D cancer model due to the relatively simple structure and compatibility with existing laboratory instruments, and also can provide orders of magnitude higher throughput than complex in vitro models, an extremely important aspects for drug development. However, creating well-defined spheroids remain challenging, both in terms of throughputs in generation as well as reproducibility in size and shape that can make it challenging for drug testing applications. In the past decades, droplet microfluidics utilizing hydrogels have been highlighted due to their potentials. Importantly, core-shell structured gel droplets can avoid spheroid-to-spheroid adhesion that can cause large variations in assays while also enabling long-term cultivation of spheroids with higher uniformity by protecting the core organoid area from external environment while the outer porous gel layer still allows nutrient exchange. Hence, core-shell gel droplet-based spheroid formation can improve the predictivity and reproducibility of drug screening assays. This review paper will focus on droplet microfluidics-based technologies for cancer spheroid production using various gel materials and structures. In addition, we will discuss emerging technologies that have the potential to advance the production of spheroids, prospects of such technologies, and remaining challenges.


Assuntos
Hidrogéis , Esferoides Celulares , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Humanos , Hidrogéis/química , Dispositivos Lab-On-A-Chip , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células em Três Dimensões/instrumentação , Técnicas de Cultura de Células em Três Dimensões/métodos , Neoplasias/patologia , Neoplasias/metabolismo , Microfluídica/instrumentação , Microfluídica/métodos , Animais
15.
J Biotechnol ; 387: 79-88, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38582408

RESUMO

Among all the operating parameters that control the cell culture environment inside bioreactors, appropriate mixing and aeration are crucial to ensure sufficient oxygen supply, homogeneous mixing, and CO2 stripping. A model-based manufacturing facility fit approach was applied to define agitation and bottom air flow rates during the process scale-up from laboratory to manufacturing, of which computational fluid dynamics (CFD) was the core modeling tool. The realizable k-ε turbulent dispersed Eulerian gas-liquid flow model was established and validated using experimental values for the volumetric oxygen transfer coefficient (kLa). Model validation defined the process operating parameter ranges for application of the model, identified mixing issues (e.g., impeller flooding, dissolved oxygen gradients, etc.) and the impact of antifoam on kLa. Using the CFD simulation results as inputs to the models for oxygen demand, gas entrance velocity, and CO2 stripping aided in the design of the agitation and bottom air flow rates needed to meet cellular oxygen demand, control CO2 levels, mitigate risks for cell damage due to shear, foaming, as well as fire hazards due to high O2 levels in the bioreactor gas outlet. The recommended operating conditions led to the completion of five manufacturing runs with a 100% success rate. This model-based approach achieved a seamless scale-up and reduced the required number of at-scale development batches, resulting in cost and time savings of a cell culture commercialization process.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células , Hidrodinâmica , Oxigênio , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/instrumentação , Oxigênio/metabolismo , Oxigênio/análise , Dióxido de Carbono/metabolismo , Simulação por Computador , Células CHO , Cricetulus , Modelos Biológicos , Animais
16.
J Neurosci Methods ; 407: 110127, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38615721

RESUMO

BACKGROUND: Human induced pluripotent stem cell (hiPSC)- derived neurons offer the possibility of studying human-specific neuronal behaviors in physiologic and pathologic states in vitro. It is unclear whether cultured neurons can achieve the fundamental network behaviors required to process information in the brain. Investigating neuronal oscillations and their interactions, as occurs in cross-frequency coupling (CFC), addresses this question. NEW METHODS: We examined whether networks of two-dimensional (2D) cultured hiPSC-derived cortical neurons grown with hiPSC-derived astrocytes on microelectrode array plates recapitulate the CFC that is present in vivo. We employed the modulation index method for detecting phase-amplitude coupling (PAC) and used offline spike sorting to analyze the contribution of single neuron spiking to network behavior. RESULTS: We found that PAC is present, the degree of PAC is specific to network structure, and it is modulated by external stimulation with bicuculline administration. Modulation of PAC is not driven by single neurons, but by network-level interactions. COMPARISON WITH EXISTING METHODS: PAC has been demonstrated in multiple regions of the human cortex as well as in organoids. This is the first report of analysis demonstrating the presence of coupling in 2D cultures. CONCLUSION: CFC in the form of PAC analysis explores communication and integration between groups of neurons and dynamical changes across networks. In vitro PAC analysis has the potential to elucidate the underlying mechanisms as well as capture the effects of chemical, electrical, or ultrasound stimulation; providing insight into modulation of neural networks to treat nervous system disorders in vivo.


Assuntos
Células-Tronco Pluripotentes Induzidas , Microeletrodos , Neurônios , Humanos , Neurônios/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Pluripotentes Induzidas/citologia , Potenciais de Ação/fisiologia , Células Cultivadas , Córtex Cerebral/fisiologia , Córtex Cerebral/citologia , Astrócitos/fisiologia , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/instrumentação , Bicuculina/farmacologia , Rede Nervosa/fisiologia
17.
Lab Chip ; 24(9): 2428-2439, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38625094

RESUMO

Rotary blood pumps (RBPs) operating at a constant speed generate non-physiologic blood pressure and flow rate, which can cause endothelial dysfunction, leading to adverse clinical events in peripheral blood vessels and other organs. Notably, pulsatile working modes of the RBP can increase vascular pulsatility to improve arterial endothelial function. However, the laws and related mechanisms of differentially regulating arterial endothelial function under different pulsatile working modes are still unclear. This knowledge gap hinders the optimal selection of the RBP working modes. To address these issues, this study developed a multi-element in vitro endothelial cell culture system (ECCS), which could realize in vitro cell culture effectively and accurately reproduce blood pressure, shear stress, and circumferential strain in the arterial endothelial microenvironment. Performance of this proposed ECCS was validated with numerical simulation and flow experiments. Subsequently, this study investigated the effects of four different pulsation frequency modes that change once every 1-4-fold cardiac cycles (80, 40, 80/3, and 20 cycles per min, respectively) of the RBP on the expression of nitric oxide (NO) and reactive oxygen species (ROS) in endothelial cells. Results indicated that the 2-fold and 3-fold cardiac cycles significantly increased the production of NO and prevented the excessive generation of ROS, potentially minimizing the occurrence of endothelial dysfunction and related adverse events during the RBP support, and were consistent with animal study findings. In general, this study may provide a scientific basis for the optimal selection of the RBP working modes and potential treatment options for heart failure.


Assuntos
Técnicas de Cultura de Células , Fluxo Pulsátil , Humanos , Técnicas de Cultura de Células/instrumentação , Hemodinâmica , Espécies Reativas de Oxigênio/metabolismo , Óxido Nítrico/metabolismo , Coração Auxiliar , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Dispositivos Lab-On-A-Chip , Desenho de Equipamento , Células Endoteliais da Veia Umbilical Humana/metabolismo , Técnicas Analíticas Microfluídicas/instrumentação , Células Cultivadas
18.
Lab Chip ; 24(9): 2561-2574, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38629978

RESUMO

Tumor spheroids are now intensively investigated toward preclinical and clinical applications, necessitating the establishment of accessible and cost-effective methods for routine operations. Without losing the advantage of organ-chip technologies, we developed a rocking system for facile formation and culture of tumor spheroids in hydrogel microwells of a suspended membrane under microfluidic conditions. While the rocking is controlled with a step motor, the microfluidic device is made of two plastic plates, allowing plugging directly syringe tubes with Luer connectors. Upon injection of the culture medium into the tubes and subsequent rocking of the chip, the medium flows back and forth in the channel underneath the membrane, ensuring a diffusion-based culture. Our results showed that such a rocking- and diffusion-based culture method significantly improved the quality of the tumor spheroids when compared to the static culture, particularly in terms of growth rate, roundness, junction formation and compactness of the spheroids. Notably, dynamically cultured tumor spheroids showed increased drug resistance, suggesting alternative assay conditions. Overall, the present method is pumpless, connectionless, and user-friendly, thereby facilitating the advancement of tumor-spheroid-based applications.


Assuntos
Dispositivos Lab-On-A-Chip , Esferoides Celulares , Esferoides Celulares/citologia , Esferoides Celulares/patologia , Humanos , Técnicas de Cultura de Células/instrumentação , Difusão , Técnicas Analíticas Microfluídicas/instrumentação , Hidrogéis/química , Linhagem Celular Tumoral , Células Tumorais Cultivadas , Desenho de Equipamento
19.
J Biotechnol ; 390: 71-79, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38685415

RESUMO

Shear stress during bioreactor cultivation has significant impact on cell health, growth, and fate. Mammalian cells, such as T cells and stem cells, in next-generation cell therapies are especially more sensitive to shear stress present in their culture environment than bacteria. Therefore, a base knowledge about the shear stress imposed by the bioprocesses is needed to optimize the process parameters and enhance cell growth and yield. However, typical computational flow dynamics modeling or PCR-based assays have several limitations. Implementing and interpreting computational modeling often requires technical specialties and also relies on many simplifications in modeling. PCR-based assays evaluating changes in gene expression involve cumbersome sample preparation with the use of advanced lab equipment and technicians, hampering rapid and straightforward assessment of shear stress. Here, we developed a simple, cell-based shear stress sensor for measuring shear stress levels in different bioreactor types and operating conditions. We engineered a CHO-DG44 cell line to make its stress sensitive promoter EGR-1 control GFP expression. Subsequently, the stressed CHO cells were transferred into a 96 well plate, and their GFP levels (population mean fluorescence) were monitored using a cell analysis instrument (Incucyte®, Sartorius Stedim Biotech) over 24 hours. After conducting sensor characterization, which included chemical induced stress and fluid shear stress, and stability investigation, we tested the shear stress sensor in the Ambr® 250 bioreactor vessels (Sartorius Stedim Biotech) with different impeller and vessel designs. The results showed that the CHO cell-based shear stress sensors expressed higher GFP levels in response to higher shear stress magnitude or exposure time. These sensors are useful tools to assess shear stress imposed by bioreactor conditions and can facilitate the design of various bioreactor vessels with a low shear stress profile.


Assuntos
Reatores Biológicos , Cricetulus , Estresse Mecânico , Animais , Células CHO , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/instrumentação , Resistência ao Cisalhamento
20.
ACS Biomater Sci Eng ; 10(5): 3280-3292, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38608136

RESUMO

Hydrogels have gained significant popularity as model platforms to study reciprocal interactions between cells and their microenvironment. While hydrogel tools to probe many characteristics of the extracellular space have been developed, fabrication approaches remain challenging and time-consuming, limiting multiplexing or widespread adoption. Thus, we have developed a modular fabrication approach to generate distinct hydrogel microenvironments within the same 96-well plate for increased throughput of fabrication as well as integration with existing high-throughput assay technologies. This approach enables in situ hydrogel mechanical characterization and is used to generate both elastic and viscoelastic hydrogels across a range of stiffnesses. Additionally, this fabrication method enabled a 3-fold reduction in polymer and up to an 8-fold reduction in fabrication time required per hydrogel replicate. The feasibility of this platform for two-dimensional (2D) cell culture applications was demonstrated by measuring both population-level and single-cell-level metrics via microplate reader and high-content imaging. Finally, a 96-well hydrogel array was utilized for three-dimensional (3D) cell culture, demonstrating the ability to support high cell viability. Together, this work demonstrates a versatile and easily adaptable fabrication approach that can support the ever-expanding tool kit of hydrogel technologies for cell culture applications.


Assuntos
Hidrogéis , Hidrogéis/química , Humanos , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/instrumentação , Sobrevivência Celular , Técnicas de Cultura de Células em Três Dimensões/métodos , Técnicas de Cultura de Células em Três Dimensões/instrumentação , Elasticidade , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...