RESUMO
This research aimed to study how exposing somatic embryos of Araucaria angustifolia to cold temperatures in vitro could enhance somatic embryogenesis. The somatic embryos were induced from immature zygotic embryos, grown for 120 days, and then subjected to 4.5°C for 0, 2, 4, 8, or 16 days. After the cold treatment, the embryogenic cultures were returned to 25±2°C for 20 days and examined using light microscopy and cytochemistry. It was found that the embryogenic cultures at the PEM III stage did not show further development, and the growth of the embryogenic masses was negatively affected in the longer-duration cold treatment. Overcoming these challenges in the somatic embryogenesis protocol for A. angustifolia requires further integrative investigations on epigenetic events driving the zygotic embryo development.
Assuntos
Araucaria , Temperatura Baixa , Técnicas de Embriogênese Somática de Plantas , Técnicas de Embriogênese Somática de Plantas/métodos , Fatores de TempoRESUMO
Cassava, a crop of importance for subsistence farming in Africa, Asia, and Latin America, has the potential to benefit from global economic integration as a versatile industrial resource. Enhancing cassava productivity is not just a matter of agricultural competitiveness but a crucial step toward ensuring many communities' food security and livelihoods. Given its high performance in marginal environments, where climate change poses threats, ensuring food security and livelihoods relies on rapidly adapting cassava. This study aimed to develop a protocol that swiftly transitions cassava embryogenic short-period liquid suspension cultures, facilitating the regeneration of genetically stable in vitro plants. The resulting protocol, with its potential to be a foundational component in future technologies employing various genome editing or genetic modification techniques, holds promise for the advancement of cassava biotechnology.
The method combines the two major players in this protocol: Casava's short suspension culture and an alternative bacterial strain that shows the potential to recognize these cells as a target for genetic modification. The method exhibits a high potential for developing future editing protocols for cassava.
Assuntos
Biotecnologia , Manihot , Manihot/genética , Manihot/crescimento & desenvolvimento , Biotecnologia/métodos , Edição de Genes/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/genética , Plantas Geneticamente Modificadas/genética , Técnicas de Embriogênese Somática de Plantas/métodosRESUMO
Long non-coding RNAs (lncRNAs) have emerged as important regulators of many biological processes, although their regulatory roles remain poorly characterized in woody plants, especially in gymnosperms. A major challenge of working with lncRNAs is to assign functional annotations, since they have a low coding potential and low cross-species conservation. We utilised an existing RNA-Sequencing resource and performed short RNA sequencing of somatic embryogenesis developmental stages in Norway spruce (Picea abies L. Karst). We implemented a pipeline to identify lncRNAs located within the intergenic space (lincRNAs) and generated a co-expression network including protein coding, lincRNA and miRNA genes. To assign putative functional annotation, we employed a guilt-by-association approach using the co-expression network and integrated these results with annotation assigned using semantic similarity and co-expression. Moreover, we evaluated the relationship between lincRNAs and miRNAs, and identified which lincRNAs are conserved in other species. We identified lincRNAs with clear evidence of differential expression during somatic embryogenesis and used network connectivity to identify those with the greatest regulatory potential. This work provides the most comprehensive view of lincRNAs in Norway spruce and is the first study to perform global identification of lincRNAs during somatic embryogenesis in conifers. The data have been integrated into the expression visualisation tools at the PlantGenIE.org web resource to enable easy access to the community. This will facilitate the use of the data to address novel questions about the role of lincRNAs in the regulation of embryogenesis and facilitate future comparative genomics studies.
Assuntos
Regulação da Expressão Gênica de Plantas , Picea , RNA Longo não Codificante , Picea/genética , Picea/embriologia , Picea/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , RNA Longo não Codificante/genética , MicroRNAs/genética , Técnicas de Embriogênese Somática de Plantas/métodos , RNA de Plantas/genética , Anotação de Sequência Molecular , Redes Reguladoras de Genes/genéticaRESUMO
The embryogenic transition of plant somatic cells to produce somatic embryos requires extensive reprogramming of the cell transcriptome. The prominent role of transcription factors (TFs) and miRNAs in controlling somatic embryogenesis (SE) induction in plants was documented. The profiling of MIRNA expression in the embryogenic culture of Arabidopsis implied the contribution of the miR156 and miR169 to the embryogenic induction. In the present study, the function of miR156 and miR169 and the candidate targets, SPL and NF-YA genes, were investigated in Arabidopsis SE. The results showed that misexpression of MIRNA156 and candidate SPL target genes (SPL2, 3, 4, 5, 9, 10, 11, 13, 15) negatively affected the embryogenic potential of transgenic explants, suggesting that specific fine-tuning of the miR156 and target genes expression levels seems essential for efficient SE induction. The results revealed that SPL11 under the control of miR156 might contribute to SE induction by regulating the master regulators of SE, the LEC (LEAFY COTYLEDON) genes (LEC1, LEC2, FUS3). Moreover, the role of miR169 and its candidate NF-YA targets in SE induction was demonstrated. The results showed that several miR169 targets, including NF-YA1, 3, 5, 8, and 10, positively regulated SE. We found, that miR169 via NF-YA5 seems to modulate the expression of a master SE regulator LEC1/NF-YA and other auxin-related genes: YUCCA (YUC4, 10) and PIN1 in SE induction. The study provided new insights into miR156-SPL and miR169-NF-YA functions in the auxin-related and LEC-controlled regulatory network of SE.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , MicroRNAs , Fatores de Transcrição , MicroRNAs/genética , MicroRNAs/metabolismo , Arabidopsis/genética , Arabidopsis/embriologia , Ácidos Indolacéticos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Técnicas de Embriogênese Somática de Plantas , Fator de Ligação a CCAAT/genética , Fator de Ligação a CCAAT/metabolismo , Plantas Geneticamente Modificadas/genética , Transdução de Sinais/genética , Proteínas Nucleares , Proteínas Repressoras , Proteínas Estimuladoras de Ligação a CCAATRESUMO
INTRODUCTION: Developing somatic embryogenesis is one of the main steps in successful in vitro propagation and gene transformation in the carrot. However, somatic embryogenesis is influenced by different intrinsic (genetics, genotype, and explant) and extrinsic (e.g., plant growth regulators (PGRs), medium composition, and gelling agent) factors which cause challenges in developing the somatic embryogenesis protocol. Therefore, optimizing somatic embryogenesis is a tedious, time-consuming, and costly process. Novel data mining approaches through a hybrid of artificial neural networks (ANNs) and optimization algorithms can facilitate modeling and optimizing in vitro culture processes and thereby reduce large experimental treatments and combinations. Carrot is a model plant in genetic engineering works and recombinant drugs, and therefore it is an important plant in research works. Also, in this research, for the first time, embryogenesis in carrot (Daucus carota L.) using Genetic algorithm (GA) and data mining technology has been reviewed and analyzed. MATERIALS AND METHODS: In the current study, data mining approach through multilayer perceptron (MLP) and radial basis function (RBF) as two well-known ANNs were employed to model and predict embryogenic callus production in carrot based on eight input variables including carrot cultivars, agar, magnesium sulfate (MgSO4), calcium dichloride (CaCl2), manganese (II) sulfate (MnSO4), 2,4-dichlorophenoxyacetic acid (2,4-D), 6-benzylaminopurine (BAP), and kinetin (KIN). To confirm the reliability and accuracy of the developed model, the result obtained from RBF-GA model were tested in the laboratory. RESULTS: The results showed that RBF had better prediction efficiency than MLP. Then, the developed model was linked to a genetic algorithm (GA) to optimize the system. To confirm the reliability and accuracy of the developed model, the result of RBF-GA was experimentally tested in the lab as a validation experiment. The result showed that there was no significant difference between the predicted optimized result and the experimental result. CONCLUTIONS: Generally, the results of this study suggest that data mining through RBF-GA can be considered as a robust approach, besides experimental methods, to model and optimize in vitro culture systems. According to the RBF-GA result, the highest somatic embryogenesis rate (62.5%) can be obtained from Nantes improved cultivar cultured on medium containing 195.23 mg/l MgSO4, 330.07 mg/l CaCl2, 18.3 mg/l MnSO4, 0.46 mg/l 2,4- D, 0.03 mg/l BAP, and 0.88 mg/l KIN. These results were also confirmed in the laboratory.
Assuntos
Meios de Cultura , Mineração de Dados , Daucus carota , Técnicas de Embriogênese Somática de Plantas , Daucus carota/genética , Daucus carota/embriologia , Mineração de Dados/métodos , Técnicas de Embriogênese Somática de Plantas/métodos , Meios de Cultura/química , Algoritmos , Redes Neurais de Computação , Reguladores de Crescimento de Plantas/farmacologiaRESUMO
The somatic embryo (SE) has bipolar characteristics, which is an ideal material for large-scale microproduction of woody plants represented by apples, and the somatic embryo is also an excellent receptor for genetic transformation. The formation of embryogenic cells is a prerequisite for somatic embryogenesis to occur. The embryogenic cells of apples cannot be obtained without induction of exogenous auxin, but how the auxin pathway regulates this process remains unknown. In this study, via RNA sequencing, MdARF5 and MdAHL15 were identified as differentially expressed genes involved in this process. Overexpression of MdARF5 and MdAHL15 induced the formation and proliferation of embryogenic cells and thus substantially shortened the induction cycle and improved the somatic embryo proliferation efficiency. A yeast one-hybrid assay showed that MdARF5 can directly bind to the promoter of MdAHL15. ß-Glucuronidase (GUS) and dual-luciferase reporter assays revealed that MdARF5 activation of MdAHL15 transcription was substantial. In conclusion, our results suggest that MdAHL15 is induced by auxin and promotes the formation of embryogenic cells in early somatic embryogenesis via the positive regulation of MdARF5 in apples. The results will provide a theoretical basis for somatic embryogenesis-based development, reproduction, and transgenic breeding in apples.
Assuntos
Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Malus , Proteínas de Plantas , Malus/genética , Malus/metabolismo , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/genética , Sementes/metabolismo , Sementes/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Técnicas de Embriogênese Somática de PlantasRESUMO
Somatic embryogenesis (SE) is a biotechnological tool used to generate new individuals and is the preferred method for rapid plant regeneration. However, the molecular basis underlying somatic cell regeneration through SE is not yet fully understood, particularly regarding interactions between the proteome and post-translational modifications. Here, we performed association analysis of high-throughput proteomics and phosphoproteomics in three representative samples (non-embryogenic calli, NEC; primary embryogenic calli, PEC; globular embryos, GE) during the initiation of plant regeneration in cotton, a pioneer crop for genetic biotechnology applications. Our results showed that protein accumulation is positively regulated by phosphorylation during SE, as revealed by correlation analyses. Of the 1418 proteins that were differentially accumulated in the proteome and the 1106 phosphoproteins that were differentially regulated in the phosphoproteome, 115 proteins with 229 phosphorylation sites overlapped (co-differential). Furthermore, seven dynamic trajectory patterns of differentially accumulated proteins (DAPs) and the correlated differentially regulated phosphoproteins (DRPPs) pairs with enrichment features were observed. During the initiation of plant regeneration, functional enrichment analysis revealed that the overlapping proteins (DAPs-DRPPs) were considerably enriched in cellular nitrogen metabolism, spliceosome formation, and reproductive structure development. Moreover, 198 DRPPs (387 phosphorylation sites) were specifically regulated at the phosphorylation level and showed four patterns of stage-enriched phosphorylation susceptibility. Furthermore, enrichment annotation analysis revealed that these phosphoproteins were significantly enriched in endosomal transport and nucleus organization processes. During embryogenic differentiation, we identified five DAPs-DRPPs with significantly enriched characteristic patterns. These proteins may play essential roles in transcriptional regulation and signaling events that initiate plant regeneration through protein accumulation and/or phosphorylation modification. This study enriched the understanding of key proteins and their correlated phosphorylation patterns during plant regeneration, and also provided a reference for improving plant regeneration efficiency.
Assuntos
Regulação da Expressão Gênica de Plantas , Gossypium , Fosfoproteínas , Proteínas de Plantas , Proteômica , Regeneração , Gossypium/metabolismo , Gossypium/genética , Gossypium/crescimento & desenvolvimento , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteômica/métodos , Regeneração/genética , Regeneração/fisiologia , Fosforilação , Proteoma/metabolismo , Técnicas de Embriogênese Somática de Plantas/métodos , Processamento de Proteína Pós-TraducionalRESUMO
Somatic embryogenesis (SE) is a fascinating example of the plant cellular totipotency concept [...].
Assuntos
Técnicas de Embriogênese Somática de Plantas , Técnicas de Embriogênese Somática de Plantas/métodos , Desenvolvimento Vegetal , Plantas/genética , Plantas/embriologia , Sementes/crescimento & desenvolvimento , Sementes/genéticaRESUMO
BACKGROUND: Somatic embryogenesis (SE) exemplifies the unique developmental plasticity of plant cells. The regulatory processes, including epigenetic modifications controlling embryogenic reprogramming of cell transcriptome, have just started to be revealed. RESULTS: To identify the genes of histone acetylation-regulated expression in SE, we analyzed global transcriptomes of Arabidopsis explants undergoing embryogenic induction in response to treatment with histone deacetylase inhibitor, trichostatin A (TSA). The TSA-induced and auxin (2,4-dichlorophenoxyacetic acid; 2,4-D)-induced transcriptomes were compared. RNA-seq results revealed the similarities of the TSA- and auxin-induced transcriptomic responses that involve extensive deregulation, mostly repression, of the majority of genes. Within the differentially expressed genes (DEGs), we identified the master regulators (transcription factors - TFs) of SE, genes involved in biosynthesis, signaling, and polar transport of auxin and NITRILASE-encoding genes of the function in indole-3-acetic acid (IAA) biosynthesis. TSA-upregulated TF genes of essential functions in auxin-induced SE, included LEC1/LEC2, FUS3, AGL15, MYB118, PHB, PHV, PLTs, and WUS/WOXs. The TSA-induced transcriptome revealed also extensive upregulation of stress-related genes, including those related to stress hormone biosynthesis. In line with transcriptomic data, TSA-induced explants accumulated salicylic acid (SA) and abscisic acid (ABA), suggesting the role of histone acetylation (Hac) in regulating stress hormone-related responses during SE induction. Since mostly the adaxial side of cotyledon explant contributes to SE induction, we also identified organ polarity-related genes responding to TSA treatment, including AIL7/PLT7, RGE1, LBD18, 40, HB32, CBF1, and ULT2. Analysis of the relevant mutants supported the role of polarity-related genes in SE induction. CONCLUSION: The study results provide a step forward in deciphering the epigenetic network controlling embryogenic transition in somatic cells of plants.
Assuntos
Arabidopsis , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Histonas , Ácidos Indolacéticos , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Acetilação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Histonas/metabolismo , Técnicas de Embriogênese Somática de Plantas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transcriptoma , Ácidos Hidroxâmicos/farmacologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Inibidores de Histona Desacetilases/farmacologiaRESUMO
Temporary immersion systems (TIS) have been widely recognized as a promising technology for micropropagation of various plant species. The TIS provides a suitable environment for culture and allows intermittent contact of the explant with the culture medium at different immersion frequencies and aeration of the culture in each cycle. The frequency or immersion is one of the most critical parameters for the efficiency of these systems. The design, media volume, and container capacity substantially improve cultivation efficiency. Different TIS have been developed and successfully applied to micropropagation in various in vitro systems, such as sprout proliferation, microcuttings, and somatic embryos. TIS increases multiplication and conversion rates to plants and a better response during the ex vitro acclimatization phase. This article covers the use of different immersion systems and their applications in plant biotechnology, particularly in plant tissue culture, as well as its use in the massive propagation of plants of agroeconomic interest.
Assuntos
Aclimatação , Desenvolvimento Vegetal , Meios de Cultura/química , Técnicas de Cultura de Tecidos/métodos , Técnicas de Cultura de Tecidos/instrumentação , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/fisiologia , Plantas , Imersão , Técnicas de Embriogênese Somática de Plantas/métodosRESUMO
In this chapter, we report advances in tissue culture applied to Passiflora. We present reproducible protocols for somatic embryogenesis, endosperm-derived triploid production, and genetic transformation for such species knowledge generated by our research team and collaborators in the last 20 years. Our research group has pioneered the work on passion fruit somatic embryogenesis, and we directed efforts to characterize several aspects of this morphogenic pathway. Furthermore, we expanded the possibilities of understanding the molecular mechanism related to developmental phase transitions of Passiflora edulis Sims. and P. cincinnata Mast., and a transformation protocol is presented for the overexpression of microRNA156.
Assuntos
Passiflora , Técnicas de Embriogênese Somática de Plantas , Técnicas de Cultura de Tecidos , Passiflora/genética , Passiflora/crescimento & desenvolvimento , Técnicas de Embriogênese Somática de Plantas/métodos , Técnicas de Cultura de Tecidos/métodos , Transformação Genética , MicroRNAs/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Endosperma/genética , Endosperma/crescimento & desenvolvimento , Regulação da Expressão Gênica de PlantasRESUMO
The coconut tree is a crop widely distributed in more than 90 countries worldwide. It has a high economic value derived from the large number of products obtained from the plant, with fast-growing global markets for some of them. Unfortunately, coconut production is decreasing mainly due to the old age of the plants and devastating pests and diseases, such as phytoplasma disease lethal yellowing (LY). Massive replanting is required with phytoplasma-resistant and high-yielding selected coconut plants to keep up with the market demand for fruit. For this purpose, an efficient micropropagation technology via somatic embryogenesis has been established at CICY, yielding fully developed vitro-plants grown within an in vitro environment. Hence, the last stage of the micropropagation process is the acclimatization of the vitro-plants, which are gradually adapted to live in external conditions outside the glass container and the growth room. A protocol has been developed at CICY to acclimate the coconut vitro-plants, and close to 80% survival can be obtained. This protocol is described here.
Assuntos
Aclimatação , Cocos , Técnicas de Embriogênese Somática de Plantas/métodos , PhytoplasmaRESUMO
Somatic embryogenesis (SE) is a clear example of cellular totipotency. The SE of the genus Coffea has become a model for in vitro propagation for woody species and for the large-scale production of disease-free plants that provide an advantage for modern agriculture. Temporary immersion systems (TIS) are in high demand for the propagation of plants. The success of this type of bioreactor is based on the alternating cycles of immersion of the plant material in the culture medium, usually a few minutes, and the permanence outside the medium of the tissues for several hours. Some bioreactors are very efficient for propagating one species but not another. The efficiency of bioreactors depends on the species, the tissue used to propagate, the species' nutritional needs, the amount of ethylene produced by the tissue, and many more. In this protocol, we show how we produce C. canephora plants that are being taken to the field.
Assuntos
Coffea , Técnicas de Embriogênese Somática de Plantas , Técnicas de Embriogênese Somática de Plantas/métodos , Coffea/crescimento & desenvolvimento , Coffea/genética , Reatores Biológicos , Sementes/crescimento & desenvolvimento , Meios de Cultura/químicaRESUMO
Over the years, our team has dedicated significant efforts to studying a unique natural dye-producing species, annatto (Bixa orellana L.). We have amassed knowledge and established foundations that support the applications of gene expression analysis in comprehending in vitro morphogenic regeneration processes, phase transition aspects, and bixin biosynthesis. Additionally, we have conducted gene editing associated with these processes. The advancements in this field are expected to enhance breeding practices and contribute to the overall improvement of this significant woody species. Here, we present a step-by-step protocol based on somatic embryogenesis and an optimized transformation protocol utilizing Agrobacterium tumefaciens.
Assuntos
Agrobacterium tumefaciens , Bixaceae , Transformação Genética , Agrobacterium tumefaciens/genética , Bixaceae/genética , Bixaceae/metabolismo , Técnicas de Cultura de Tecidos/métodos , Técnicas de Embriogênese Somática de Plantas/métodos , Edição de Genes/métodos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimentoRESUMO
This chapter describes a step-by-step protocol for rapid serological quantification of global DNA methylation by enzyme-linked immunosorbent assay (ELISA) in plant tissue culture specimens. As a case study model, we used the coconut palm (Cocos nucifera), from which plumules were subjected to somatic embryogenesis followed by embryogenic calli multiplication. DNA methylation is one of the most common epigenetic markers in the regulation of gene expression. DNA methylation is generally associated with non-expressed genes, that is, gene silencing under certain conditions, and the degree of DNA methylation can be used as a marker of various physiological processes, both in plants and in animal cells. Methylation consists of adding a methyl radical to carbon 5 of the DNA cytosine base. Herein, the global DNA methylation was quantified by ELISA with antibodies against methylated cytosines using a commercial kit (Zymo-Research™). The method allowed the detection of methylation in total DNA extracts from coconut palm embryogenic calli (arising from somatic embryogenesis) cultivated in liquid or solid media by using antibodies against methylated cytosines and enzymatic development with a colorimetric substrate. Control samples of commercially provided Escherichia coli bacterial DNA with previously known methylation percentages were included in the ELISA test to construct an experimental methylation standard curve. The logarithmic regression of this E. coli standard curve allowed methylation quantification in coconut palm samples. The present ELISA methodology, applied to coconut palm tissue culture specimens, is promising for use in other plant species and botanical families. This chapter is presented in a suitable format for use as a step-by-step laboratory procedure manual, with theoretical introduction information, which makes it easy to apply the protocol in samples of any biological nature to evaluate DNA global methylation associated with any physiological process.
Assuntos
Metilação de DNA , Ensaio de Imunoadsorção Enzimática , Epigênese Genética , Ensaio de Imunoadsorção Enzimática/métodos , DNA de Plantas/genética , Cocos/genética , Técnicas de Cultura de Tecidos/métodos , Técnicas de Embriogênese Somática de Plantas/métodosRESUMO
This chapter presents an efficient protocol for regenerating Carica papaya plants via somatic embryogenesis from immature zygotic embryos from economically important papaya genotypes. To achieve regenerated plants from somatic embryos, in the present protocol, four induction cycles are required, followed by one multiplication cycle and one regeneration cycle. With this optimized protocol, 80% of somatic embryos can be obtained in only 3.5 months. At this stage, calli containing more than 50% globular structures can be used for transformation (via agrobacterium, biobalistics, or any other transformation method). Once transformed, calli can be transferred to the following steps (multiplication, elongation, maturation, rooting, and ex vitro acclimatization) to regenerate a transformed somatic embryo-derived full plant.
Assuntos
Carica , Genótipo , Técnicas de Embriogênese Somática de Plantas , Carica/genética , Carica/embriologia , Técnicas de Embriogênese Somática de Plantas/métodos , Transformação Genética , Plantas Geneticamente Modificadas/genética , Regeneração/genética , Sementes/genética , Sementes/crescimento & desenvolvimentoRESUMO
Omic tools have changed the way of doing research in experimental biology. The somatic embryogenesis (SE) study has not been immune to this benefit. The transcriptomic tools have been used to compare the genes expressed during the induction of SE with the genes expressed in zygotic embryogenesis or to compare the development of the different stages embryos go through. It has also been used to compare the expression of genes during the development of calli from which SE is induced, as well as many other applications. The protocol described here is employed in our laboratory to extract RNA and generate several transcriptomes for the study of SE on Coffea canephora.
Assuntos
Coffea , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Técnicas de Embriogênese Somática de Plantas , Transcriptoma , Coffea/genética , Coffea/embriologia , Coffea/crescimento & desenvolvimento , Técnicas de Embriogênese Somática de Plantas/métodos , Perfilação da Expressão Gênica/métodos , Transcriptoma/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Regulação da Expressão Gênica no DesenvolvimentoRESUMO
Quercus aliena, a native Chinese tree species, is significant in industry and landscaping. However, it is traditionally propagated by seeds with many limitations, such as pest infestations, seed yield and quality. Thus, this study firstly introduces a somatic embryogenesis (SE) system for Q. aliena, enhancing its cultivation prospects. Thereinto, the development stage of zygotic embryo had a significant effect on SE, only immature embryos in 10-11 weeks after full bloom (WAF), rich in endogenous abscisic acid (ABA), could induce SE. Exogenous application ABA had positive roles in the early development process of both primary and secondary SE, while its antagonist had opposite roles. Transcriptome analysis showed that transcription regulation occupied the major position. Mfuzz cluster and WGCNA co-expression analysis showed that 24 candidate genes were involved in the SE process. The expression of the 24 genes were also affected by exogenous ABA signals, among which QaLEC2, QaCALS11 and QaSSRP1 occupied the important roles. Additionally, the callose content were also affected by exogenous ABA signals, which had significantly positive correlations with the expression of QaLEC2 and QaCALS11. This study not only established an efficient reproduction system for Q. aliena, but also revealed the difference in embryogenic ability of zygotic embryos from the aspects of transcriptome and endogenous hormone content, and lay a foundation for clarifying the molecular mechanism of SE, and provided a reference for exploring the vital roles of ABA in SE.
Assuntos
Ácido Abscísico , Regulação da Expressão Gênica de Plantas , Técnicas de Embriogênese Somática de Plantas , Quercus , Quercus/genética , Quercus/metabolismo , Quercus/embriologia , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Sementes/genética , Sementes/efeitos dos fármacos , Sementes/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Perfilação da Expressão Gênica , TranscriptomaRESUMO
A cryopreservation protocol has been developed for embryogenic cultures (ECs) of Castanea mollissima, an important economic species of the Castanea genus in China. We achieved 100 % regrowth when ECs were treated with Plant Vitrification Solution 2 (PVS2) for 30, 60 and 90 min on ice. Optimal PVS2 treatment for cryopreservation was determined to be 30 min on ice based on the highest biomass regrowth after thawing. Fluorescein diacetate (FDA) staining could rapidly and reliably determine post-thaw cell viability and its use facilitated the optimization of the cryopreservation protocols. Although the proliferation rate of the re-established ECs remained largely unchanged compared to non-cryopreserved ECs, the capacity of the re-established ECs to differentiate (on two media) into somatic embryos nearly doubled to approximately 2200-2300 globular somatic embryos per 1 g of re-established ECs. Based on cell cluster size analysis, this enhanced growth is primarily attributed to the presence of significantly greater cell clusters with a diameter of 100-200 µm, which have the highest level of differentiation ability. In order to understand the increased embryogenic potential following cryopreservation, we analyzed the expression of key genes related to somatic embryogenesis. Genes CmWUS and CmABP1 were downregulated while CmLEC1, CmAGL15, CmGRF2, and CmFUS3 were upregulated in re-established ECs when compared to non-cryopreserved ECs.
Assuntos
Diferenciação Celular , Criopreservação , Crioprotetores , Fagaceae , Criopreservação/métodos , Criopreservação/veterinária , Fagaceae/embriologia , Crioprotetores/farmacologia , Vitrificação , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Embriogênese Somática de Plantas/métodos , Regulação da Expressão Gênica de Plantas , Sementes/crescimento & desenvolvimentoRESUMO
BACKGROUND: Somatic embryogenesis (SE) is recognized as a promising technology for plant vegetative propagation. Although previous studies have identified some key regulators involved in the SE process in plant, our knowledge about the molecular changes in the SE process and key regulators associated with high embryogenic potential is still poor, especially in the important fiber and energy source tree - eucalyptus. RESULTS: In this study, we analyzed the transcriptome and proteome profiles of E. camaldulensis (with high embryogenic potential) and E. grandis x urophylla (with low embryogenic potential) in SE process: callus induction and development. A total of 12,121 differentially expressed genes (DEGs) and 3,922 differentially expressed proteins (DEPs) were identified in the SE of the two eucalyptus species. Integration analysis identified 1,353 (131 to 546) DEGs/DEPs shared by the two eucalyptus species in the SE process, including 142, 13 and 186 DEGs/DEPs commonly upregulated in the callus induction, maturation and development, respectively. Further, we found that the trihelix transcription factor ASR3 isoform X2 was commonly upregulated in the callus induction of the two eucalyptus species. The SOX30 and WRKY40 TFs were specifically upregulated in the callus induction of E. camaldulensis. Three TFs (bHLH62, bHLH35 isoform X2, RAP2-1) were specifically downregulated in the callus induction of E. grandis x urophylla. WGCNA identified 125 and 26 genes/proteins with high correlation (Pearson correlation > 0.8 or < -0.8) with ASR3 TF in the SE of E. camaldulensis and E. grandis x urophylla, respectively. The potential target gene expression patterns of ASR3 TF were then validated using qRT-PCR in the material. CONCLUSIONS: This is the first time to integrate multiple omics technologies to study the SE of eucalyptus. The findings will enhance our understanding of molecular regulation mechanisms of SE in eucalyptus. The output will also benefit the eucalyptus breeding program.