Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.351
Filtrar
1.
J Chem Inf Model ; 64(12): 4661-4672, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38860710

RESUMO

DNA-encoded library technology grants access to nearly infinite opportunities to explore the chemical structure space for drug discovery. Successful navigation depends on the design and synthesis of libraries with appropriate physicochemical properties (PCPs) and structural diversity while aligning with practical considerations. To this end, we analyze combinatorial library design constraints including the number of chemistry cycles, bond construction strategies, and building block (BB) class selection in pursuit of ideal library designs. We compare two-cycle library designs (amino acid + carboxylic acid, primary amine + carboxylic acid) in the context of PCPs and chemical space coverage, given different BB selection strategies and constraints. We find that broad availability of amines and acids is essential for enabling the widest exploration of chemical space. Surprisingly, cost is not a driving factor, and virtually, the same chemical space can be explored with "budget" BBs.


Assuntos
DNA , Bibliotecas de Moléculas Pequenas , DNA/química , Bibliotecas de Moléculas Pequenas/química , Descoberta de Drogas/métodos , Técnicas de Química Combinatória , Desenho de Fármacos , Aminas/química , Ácidos Carboxílicos/química , Biblioteca Gênica
3.
Chem Soc Rev ; 53(10): 4838-4861, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38596888

RESUMO

Targeted protein degraders such as PROTACs and molecular glues are a rapidly emerging therapeutic modality within industry and academia. Degraders possess unique mechanisms of action that lead to the removal of specific proteins by co-opting the cell's natural degradation mechanisms via induced proximity. Their optimisation thus far has often been largely empirical, requiring the synthesis and screening of a large number of analogues. In addition, the synthesis and development of degraders is often challenging, leading to lengthy optimisation campaigns to deliver candidate-quality compounds. This review highlights how the synthesis of degraders has evolved in recent years, in particular focusing on means of applying high-throughput chemistry and screening approaches to expedite these timelines, which we anticipate to be valuable in shaping the future of degrader optimisation campaigns.


Assuntos
Técnicas de Química Combinatória , Ensaios de Triagem em Larga Escala , Proteínas/química , Proteínas/metabolismo , Proteólise , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/síntese química
4.
Angew Chem Int Ed Engl ; 63(25): e202319456, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38626385

RESUMO

Dynamic combinatorial chemistry (DCC) leverages a reversible reaction to generate compound libraries from constituting building blocks under thermodynamic control. The position of this equilibrium can be biased by addition of a target macromolecule towards enrichment of bound ligands. While DCC has been applied to select ligands for a single target protein, its application to identifying chimeric molecules inducing proximity between two proteins is unprecedented. In this proof-of-concept study, we develop a DCC approach to select bifunctional proteolysis targeting chimeras (PROTACs) based on their ability to stabilize the ternary complex. We focus on VHL-targeting Homo-PROTACs as model system, and show that the formation of a VHL2 : Homo-PROTAC ternary complex reversibly assembled using thiol-disulfide exchange chemistry leads to amplification of potent VHL Homo-PROTACs with degradation activities which correlated well with their biophysical ability to dimerize VHL. Ternary complex templated dynamic combinatorial libraries allowed identification of novel Homo-PROTAC degraders. We anticipate future applications of ternary-complex directed DCC to early PROTAC screenings and expansion to other proximity-inducing modalities beyond PROTACs.


Assuntos
Técnicas de Química Combinatória , Proteína Supressora de Tumor Von Hippel-Lindau , Humanos , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/química , Proteólise , Ligantes , Termodinâmica , Quimera de Direcionamento de Proteólise
5.
Org Biomol Chem ; 22(19): 3854-3859, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38639197

RESUMO

The molecular recognition of saccharides by synthetic hosts has become an appealing but elusive task in the last decades. Herein, we combine Dynamic Combinatorial Chemistry (DCC) for the rapid self-assembly and screening of virtual libraries of receptors, with the use of ITC and NMR to validate the hits and molecular modelling to understand the binding mechanisms. We discovered a minimalistic receptor, 1F (N-benzyl-L-phenylalanine), with considerable affinity for fructose (Ka = 1762 M-1) and remarkable selectivity (>50-fold) over other common monosaccharides. The approach accelerates the discovery process of receptors for saccharides.


Assuntos
Técnicas de Química Combinatória , Monossacarídeos , Monossacarídeos/química , Modelos Moleculares , Fenilalanina/química , Fenilalanina/análogos & derivados , Fenilalanina/síntese química
6.
ChemMedChem ; 19(11): e202400145, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38445366

RESUMO

The binding process of insulin to its transmembrane receptor entails a sophisticated interplay between two proteins, each possessing two binding sites. Given the difficulties associated with the use of insulin in the treatment of diabetes, despite its remarkable efficacy, there is interest in smaller and more stable compounds than the native hormone that would effectively activate the receptor. Our study adopts a strategy focused on synthesizing extensive combinatorial libraries of bipodal compounds consisting of two distinct peptides linked to a molecular scaffold. These constructs, evaluated in a resin bead-bound format, were designed to assess their binding to the insulin receptor. Despite notable nonspecific binding, our approach successfully generated and tested millions of compounds. Rigorous evaluations via flow cytometry and specific antibodies revealed peptide sequences with specific interactions at either receptor binding Site 1 or 2. Notably, these sequences bear similarity to peptides discovered through phage display by other researchers. This convergence of chemical and biological methods underscores nature's beauty, revealing general principles in peptide binding to the insulin receptor. Overall, our study deepens the understanding of molecular interactions in ligand binding to the insulin receptor, highlighting the challenges of targeting large proteins with small synthetic peptides.


Assuntos
Técnicas de Química Combinatória , Receptor de Insulina , Receptor de Insulina/metabolismo , Receptor de Insulina/química , Humanos , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/síntese química , Sítios de Ligação , Biblioteca de Peptídeos , Ligantes , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/síntese química , Estrutura Molecular , Ligação Proteica , Insulina/metabolismo , Insulina/química
7.
Future Med Chem ; 16(5): 389-398, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38372134

RESUMO

Background: Traditional methods for chemical library generation in virtual screening often impose limitations on the accessible chemical space or produce synthetically irrelevant structures. Incorporating common chemical reactions into generative algorithms could offer significant benefits. Materials & methods: In this study, we developed NeuroClick, a graphical user interface software designed to perform in silico azide-alkyne cycloaddition, a widely utilized synthetic approach in modern medicinal chemistry. Results & conclusion: NeuroClick facilitates the generation and filtering of large combinatorial libraries at a remarkable rate of 10,000 molecules per minute. Moreover, the generated products can be filtered to identify subsets of pharmaceutically relevant compounds based on Lipinski's rule of five and blood-brain barrier permeability prediction. We demonstrate the utility of NeuroClick by generating and filtering several thousand molecules for dopamine D3 receptor ligand screening.


Assuntos
Barreira Hematoencefálica , Técnicas de Química Combinatória , Técnicas de Química Combinatória/métodos , Software , Algoritmos , Química Farmacêutica
8.
Chemistry ; 30(26): e202304166, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38372433

RESUMO

The realms of natural products and synthetic compounds exhibit distinct chemical spaces that not only differ but also complement each other. While the convergence of these two domains has been explored through semisynthesis and conventional pharmacomodulation endeavours applied to natural frameworks, a recent and innovative approach has emerged that involves the combinatorial generation of libraries of 'natural product-like compounds' (NPLCs) through the direct synthetic derivatization of natural extracts. This has led to the production of numerous NPLCs that incorporate structural elements from both their natural (multiple saturated rings, oxygen content, chiral centres) and synthetic (aromatic rings, nitrogen and halogen content, drug-like properties) precursors. Through careful selection of extracts and reagents, specific bioactivities have been achieved, and this strategy has been deployed in various ways, showing great promise without reaching its full potential to date. This review seeks to provide an overview of reported examples involving the chemical engineering of extracts, showcasing a spectrum of natural product alterations spanning from simple substitutions to complete scaffold remodelling. It also includes an analysis of the accomplishments, perspectives and technical challenges within this field.


Assuntos
Produtos Biológicos , Bibliotecas de Moléculas Pequenas , Produtos Biológicos/química , Bibliotecas de Moléculas Pequenas/química , Técnicas de Química Combinatória
9.
J Med Chem ; 67(2): 864-884, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38197367

RESUMO

The DNA-encoded library (DEL) discovery platform has emerged as a powerful technology for hit identification in recent years. It has become one of the major parallel workstreams for small molecule drug discovery along with other strategies such as HTS and data mining. For many researchers working in the DEL field, it has become increasingly evident that many hits and leads discovered via DEL screening bind to target proteins with unique and unprecedented binding modes. This Perspective is our attempt to analyze reports of DEL screening with the purpose of providing a rigorous and useful account of the binding modes observed for DEL-derived ligands with a focus on binding mode novelty.


Assuntos
DNA , Bibliotecas de Moléculas Pequenas , Bibliotecas de Moléculas Pequenas/química , Ligantes , DNA/química , Descoberta de Drogas , Técnicas de Química Combinatória
10.
J Pept Sci ; 30(4): e3555, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38220145

RESUMO

Newer solid-phase peptide synthesis and release strategies enable the production of short peptides with high purity, allowing direct screening for desired bioactivity without prior chromatographic purification. However, the maximum number of peptides that can currently be synthesized per microplate reactor is 96, allowing the parallel synthesis of 384 peptides in modern devices that have space for 4 microplate reactors. To synthesize larger numbers of peptides, we modified a commercially available peptide synthesizer to enable the production of peptides in 384-well plates, which allows the synthesis of 1,536 peptides in one run (4 × 384 peptides). We report new hardware components and customized software that allowed for the synthesis of 1,536 short peptides in good quantity (average > 0.5 µmol), at high concentration (average > 10 mM), and decent purity without purification (average > 80%). The high-throughput peptide synthesis, which we developed with peptide drug development in mind, may be widely used for peptide library synthesis and screening, antibody epitope scanning, epitope mimetic development, or protease/kinase substrate screening.


Assuntos
Técnicas de Química Combinatória , Técnicas de Síntese em Fase Sólida , Técnicas de Química Combinatória/métodos , Biblioteca de Peptídeos , Peptídeos/química , Epitopos
11.
Nat Chem Biol ; 20(5): 624-633, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38155304

RESUMO

Cyclic peptides can bind challenging disease targets with high affinity and specificity, offering enormous opportunities for addressing unmet medical needs. However, as with biological drugs, most cyclic peptides cannot be applied orally because they are rapidly digested and/or display low absorption in the gastrointestinal tract, hampering their development as therapeutics. In this study, we developed a combinatorial synthesis and screening approach based on sequential cyclization and one-pot peptide acylation and screening, with the possibility of simultaneously interrogating activity and permeability. In a proof of concept, we synthesized a library of 8,448 cyclic peptides and screened them against the disease target thrombin. Our workflow allowed multiple iterative cycles of library synthesis and yielded cyclic peptides with nanomolar affinities, high stabilities and an oral bioavailability (%F) as high as 18% in rats. This method for generating orally available peptides is general and provides a promising push toward unlocking the full potential of peptides as therapeutics.


Assuntos
Disponibilidade Biológica , Peptídeos Cíclicos , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacocinética , Peptídeos Cíclicos/administração & dosagem , Peptídeos Cíclicos/farmacologia , Administração Oral , Animais , Ratos , Humanos , Ciclização , Biblioteca de Peptídeos , Trombina/metabolismo , Trombina/química , Masculino , Técnicas de Química Combinatória , Acilação
12.
Chembiochem ; 24(24): e202300688, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37815502

RESUMO

Target-directed dynamic combinatorial chemistry is a very attractive strategy for the discovery of bioactive peptides. However, its application has not yet been demonstrated, presumably due to analytical challenges that arise from the diversity of a peptide library with combinatorial side-chains. We previously reported an efficient method to generate, under biocompatible conditions, large dynamic libraries of cyclic peptides grafted with amino acid's side-chains, by thiol-to-thioester exchanges. In this work, we present analytical tools to easily characterize such libraries by HPLC and mass spectrometry, and in particular to simplify the isomers' distinction requiring sequencing by MS/MS fragmentations. After structural optimization, the cyclic scaffold exhibits a UV-tag, absorbing at 415 nm, and an ornithine residue which favors the regioselective ring-opening and simultaneous MS/MS fragmentation, in the gas-phase.


Assuntos
Técnicas de Química Combinatória , Peptídeos Cíclicos , Peptídeos Cíclicos/química , Espectrometria de Massas em Tandem , Biblioteca de Peptídeos , Peptídeos
13.
Bioorg Chem ; 140: 106826, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37666108

RESUMO

Diabetes mellitus (DM) is a disease of civilization. If left untreated, it can cause serious complications and significantly shortens the life time. DM is one of the leading causes of end-stage renal disease (uremia) worldwide. Early diagnosis is a prerequisite for successful treatment, preferably before the first symptoms appear. In this paper, we describe the optimization and synthesis of the internally quenched fluorescent substrate disintegrin and metalloproteinase 10 (ADAM10). Using combinatorial chemistry methods with iterative deconvolution, the substrate specificity of the enzyme in non-primed and primed positions was determined. We used the ABZ-Lys-Ile-Ile-Asn-Leu-Lys-Arg-Tyr(3-NO2)-NH2 peptide to study ADAM10 activity in urine samples collected from patients diagnosed with type 2 diabetes, compared to urine samples from healthy volunteers. The proteolytically active enzyme was present in diabetes samples, while in the case of healthy people we did not observe any activity. In conclusion, our study provides a possible basis for further research into the potential role of ADAM10 in the diagnosis of type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Corantes , Técnicas de Química Combinatória , Voluntários Saudáveis , Especificidade por Substrato
14.
Org Biomol Chem ; 21(40): 8112-8116, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37772608

RESUMO

New somatostatin analogs are highly desirable for diagnosing and treating neuroendocrine tumors (NETs). Here we describe the solid-phase synthesis of a new octreotate (TATE) analog where the disulfide bond is replaced with a tryptathionine (Ttn) staple as part of an effort to prototyping a one-bead-one-compound (OBOC) library of Ttn-stapled peptides. Library design provides the potential for on- and off-bead screening. To validate our method, we labelled Ttn-TATE with a fluorescent dye to demonstrate binding to soluble somatostatin receptor subtype-2 and staining of Ar42J rat prostate cancer cells. By exploring this staple in the context of a ligand of known affinity, this method paves the way for an OBOC library construction of bioactive octreotate analogs and, more broadly speaking, tryptathionine-staped peptide macrocycles.


Assuntos
Técnicas de Química Combinatória , Técnicas de Síntese em Fase Sólida , Masculino , Animais , Técnicas de Química Combinatória/métodos , Peptídeos/química , Biblioteca de Peptídeos
15.
Chem Commun (Camb) ; 59(62): 9489-9492, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37439517

RESUMO

2-Thiobenzazole is among the privileged heterocyclic scaffolds in medicinal chemistry. Constructing such structural components in DNA-encoded libraries (DELs) may promote related bioactive hit discovery in a high-throughput fashion. Herein, we reported a DNA-compatible mild-condition synthetic methodology to efficiently forge functionalized 2-thiobenzazole scaffolds, realizing on-DNA sulfhydryl incorporation with broad substrate scope, thereby expanding the scope of 2-thiobenzazole-focused DNA-encoded chemical libraries.


Assuntos
DNA , Descoberta de Drogas , Descoberta de Drogas/métodos , DNA/química , Biblioteca Gênica , Bibliotecas de Moléculas Pequenas/química , Técnicas de Química Combinatória
16.
J Med Chem ; 66(14): 10108-10118, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37464766

RESUMO

We report on an innovative ligand discovery strategy based on protein NMR-based screening of a combinatorial library of ∼125,000 compounds that was arranged in 96 distinct mixtures. Using sensitive solution protein NMR spectroscopy and chemical perturbation-based screening followed by an iterative synthesis, deconvolutions, and optimization strategy, we demonstrate that the approach could be useful in the identification of initial binding molecules for difficult drug targets, such as those involved in protein-protein interactions. As an application, we will report novel agents targeting the Bcl-2 family protein hMcl-1. The approach is of general applicability and could be deployed as an effective screening strategy for de novo identification of ligands, particularly when tackling targets involved in protein-protein interactions.


Assuntos
Técnicas de Química Combinatória , Proteínas , Técnicas de Química Combinatória/métodos , Proteínas/química , Espectroscopia de Ressonância Magnética/métodos , Imageamento por Ressonância Magnética , Ligantes , Ligação Proteica
17.
Chem Soc Rev ; 52(13): 4248-4291, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37306487

RESUMO

Nucleic acids play crucial roles in transferring cellular information and gene regulations. DNA and RNA molecules have been associated with multiple human diseases and thus offer opportunities for exploring small molecule-based therapeutics. However, developing target-selective molecules possessing well-defined biological activity, has always been challenging. In the current scenario, where the world is continuously experiencing outbreaks of new infectious diseases, it is always important to expand the scope of chemical toolsets to override conventional drug discovery strategies for developing therapeutically relevant drug candidates. The template-directed synthetic approach has emerged as a promising tool for rapid drug discovery. It allows a biological target to template the selection or synthesis of its ligands from a pool of reactive fragments. There are two main template-directed synthetic strategies: thermodynamically controlled dynamic combinatorial chemistry (DCC) and kinetically controlled target-guided in situ click chemistry. Though discovered only two decades ago, these techniques have proven their usefulness for nucleic acid targets, as exemplified by the increasing number of applications with therapeutically important DNA and RNA targets. However, nucleic acid templated synthetic techniques are relatively unexplored in drug discovery compared to protein targets. In this review article, we have presented a detailed discussion of all the reported nucleic acid templated synthetic studies to portray the great potential of this strategy for efficient hit discovery and lead optimisation. This article would assist in expanding the scope and utility of this strategy through a summary of the advancements and emerging applications. Additionally, a brief overview of the catalytic potential of nucleic acids in asymmetric synthesis has been provided to give a valuable vision of the use of nucleic acids to induce enantioselectivity in chiral drug-like candidates.


Assuntos
Ácidos Nucleicos , Humanos , Química Click , RNA , Estereoisomerismo , DNA/química , Técnicas de Química Combinatória/métodos
18.
Int J Mol Sci ; 24(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37373476

RESUMO

The discovery of low- and very low-abundance proteins in medical applications is considered a key success factor in various important domains. To reach this category of proteins, it is essential to adopt procedures consisting of the selective enrichment of species that are present at extremely low concentrations. In the past few years pathways towards this objective have been proposed. In this review, a general landscape of the enrichment technology situation is made first with the presentation and the use of combinatorial peptide libraries. Then, a description of this peculiar technology for the identification of early-stage biomarkers for well-known pathologies with concrete examples is given. In another field of medical applications, the determination of host cell protein traces potentially present in recombinant therapeutic proteins, such as antibodies, is discussed along with their potentially deleterious effects on the health of patients on the one hand, and on the stability of these biodrugs on the other hand. Various additional applications of medical interest are disclosed for biological fluids investigations where the target proteins are present at very low concentrations (e.g., protein allergens).


Assuntos
Biblioteca de Peptídeos , Proteômica , Humanos , Proteômica/métodos , Proteínas Recombinantes , Anticorpos , Técnicas de Química Combinatória
19.
J Chem Inf Model ; 63(16): 5133-5141, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37221856

RESUMO

We present an efficient algorithm for substructure search in combinatorial libraries defined by synthons, i.e., substructures with connection points. Our method improves on existing approaches by introducing powerful heuristics and fast fingerprint screening to quickly eliminate branches of nonmatching combinations of synthons. With this, we achieve typical response times of a few seconds on a standard desktop computer for searches in large combinatorial libraries like the Enamine REAL Space. We published the Java source as part of the OpenChemLib under the BSD license, and we implemented tools to enable substructure search in custom combinatorial libraries.


Assuntos
Algoritmos , Técnicas de Química Combinatória , Biblioteca Gênica
20.
Int J Mol Sci ; 24(7)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37047554

RESUMO

Multicomponent reactions (MCRs) have emerged as a powerful strategy in synthetic organic chemistry due to their widespread applications in drug discovery and development. MCRs are flexible transformations in which three or more substrates react to form structurally complex products with high atomic efficiency. They are being increasingly appreciated as a highly exploratory and evolutionary tool by the medicinal chemistry community, opening the door to more sustainable, cost-effective and rapid synthesis of biologically active molecules. In recent years, MCR-based synthetic strategies have found extensive application in the field of drug discovery, and several anticancer drugs have been synthesized through MCRs. In this review, we present an overview of representative and recent literature examples documenting different approaches and applications of MCRs in the development of new anticancer drugs.


Assuntos
Antineoplásicos , Descoberta de Drogas , Análise Custo-Benefício , Técnicas de Química Combinatória , Química Orgânica , Antineoplásicos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...